心理科学进展 ›› 2023, Vol. 31 ›› Issue (10): 1856-1872.doi: 10.3724/SP.J.1042.2023.01856
收稿日期:
2023-04-19
出版日期:
2023-10-15
发布日期:
2023-07-25
通讯作者:
王亮, E-mail: 基金资助:
Received:
2023-04-19
Online:
2023-10-15
Published:
2023-07-25
摘要:
空间导航对于人和动物的生存而言都十分重要, 有效的空间表征或认知地图是空间导航的基础。认知地图的典型属性包括选择性、灵活性以及层级性, 海马、场景选择区域以及前额叶等多个脑区都参与认知地图的构建。认知地图的表征形式存在欧式地图和拓扑图两种理论, 但各自单独都不能全面解释实际导航中的行为表现, 因此有研究者提出了标签图等理论试图调和二者间的矛盾。未来研究还需要关注在认知地图构建过程中层级性的变化, 空间范畴的扩展, 以及认知地图假说的局限。
中图分类号:
吴文雅, 王亮. (2023). 认知地图及其内在机制. 心理科学进展 , 31(10), 1856-1872.
WU Wenya, WANG Liang. (2023). The cognitive map and its intrinsic mechanisms. Advances in Psychological Science, 31(10), 1856-1872.
图1 单视点空间(a)、环境空间(b)和嵌套的环境空间(c)示意图。在单视点空间中, 从一个位置或视点可以总览空间内的所有物体或位置。在环境空间中, 由于存在遮挡, 需要在障碍物之间不断移动和穿梭, 分别观察和学习每个单视点空间中的信息, 随后整合形成全局空间认知。在嵌套空间中, 每个区域可能包含多个子区域, 如图中三种颜色背景代表三个不同区域, 每个区域内部又有由彩色线段分隔开的多个子区(类似于不同小区内部进一步分成不同单元)。彩图见电子版。
图2 海马位置细胞(a)和内嗅皮层网格细胞(b)的放电模式示意图。黑色线代表动物在方形区域内的奔跑轨迹, 红色点代表细胞发放(spikes)的峰值位置, 叠加在运动轨迹上。位置细胞只有单一的放电位置, 而网格细胞的放电位置构成了周期性的六边形(或6个正三角形) (改编自Moser et al., 2008)。
图3 a. 环境中心的参考框架(allocentric reference frame), 导航者对环境的表征不受导航者自身移动的影响; b. 自我中心的参考框架(egocentric reference frame), 导航者始终以自身为参考中心, 对环境的表征会随着自身移动而变化; c. 欧式认知地图的示意图, 包含具体的位置坐标、方向角度等全面的度量信息; d. 欧式几何的基本假定。
图4 a. 记忆空间理论示意图, 每个有色圆点代表特定的事件或位置, 连续发生的事件或连续经历的位置序列构成一条情景记忆, 不同情景记忆之间可能存在公共元素(红色圆点), 借此建立记忆空间(图改编自Eichenbaum et al., 1999)。 b. 拓扑图的示意图, 节点代表位置, 节点间的连接边代表位置间的转移关系。c. 地铁线路图——拓扑图在现实生活中的案例, 不同颜色线条代表不同线路, 线路上空心圆代表站点。彩图见电子版。
图7 认知地图的层级性变化假设。图中A, B和C代表位于上位等级的区域, 而各自之下树状分支的三个位置是它们的子区域, 同一上位等级区域内的不同子区域间(图中不同颜色的1, 2, 3)存在拓扑关系, 并且欧式位置信息也会被同时表征。随着认知地图的形成, 空间表征逐渐从局部扩展到全局, 相应负责的脑区也会变化(左侧蓝色虚线代表认知地图的形成, 红色虚线则表示调用认知地图进行导航规划的过程)。空间表征的层级性并非一成不变的, 可能会随着认知地图的逐步扩大, 而将不同区域的边界进行融合, 最终有可能所有位置表征之间的层级性会逐渐消失, 即形成图中A, B和C三个区域内9个位置的欧式表征和拓扑表征整合后的认知地图。彩图见电子版。
[1] |
何诗, 阴劼. (2022). 认知地图的地理学研究进展与展望. 地理科学进展, 41(1), 73-85.
doi: 10.18306/dlkxjz.2022.01.007 |
[2] | 康德. (2004). 纯粹理性批判 (邓晓芒译). 北京: 人民出版社. (原著1781) |
[3] | 梁群君, 郑森宁, 李金惠, 黄瑞旺. (2022). 压后皮质在空间导航的作用: 认知地图与环境的映射. 心理科学, 45(1), 2-8. |
[4] | 阮晓钢, 柴洁, 武悦, 张晓平, 黄静. (2021). 基于海马体位置细胞的认知地图构建与导航. 自动化学报, 47(3), 666-677. |
[5] | 王琳, 王亮. (2017). 认知地图的神经环路基础. 生物化学与生物物理进展, 44(3), 187-197. |
[6] | 赵民涛. (2006). 物体位置与空间关系的心理表征. 心理科学进展, 14(3), 321-327. |
[7] | Alme, C. B., Miao, C., Jezek, K., Treves, A., Moser, E. I., & Moser, M.-B. (2014). Place cells in the hippocampus:Eleven maps for eleven rooms. Proceedings of the National Academy of Sciences, 111(52), 18428-18435. |
[8] | Anggraini, D., Glasauer, S., & Wunderlich, K. (2018). Neural signatures of reinforcement learning correlate with strategy adoption during spatial navigation. Scientific Reports, 8(1), 10110. |
[9] |
Appleyard, D. (1970). Styles and methods of structuring a city. Environment and Behavior, 2(1), 100-117.
doi: 10.1177/001391657000200106 URL |
[10] |
Baldassano, C., Chen, J., Zadbood, A., Pillow, J. W., Hasson, U., & Norman, K. A. (2017). Discovering event structure in continuous narrative perception and memory. Neuron, 95(3), 709-721.
doi: S0896-6273(17)30593-7 pmid: 28772125 |
[11] |
Beals, R., Krantz, D. H., & Tversky, A. (1968). Foundations of multidimensional scaling. Psychological Review, 75(2), 127-142.
pmid: 4870550 |
[12] |
Bellmund, J. L., de Cothi, W., Ruiter, T. A., Nau, M., Barry, C., & Doeller, C. F. (2020). Deforming the metric of cognitive maps distorts memory. Nature Human Behaviour, 4(2), 177-188.
doi: 10.1038/s41562-019-0767-3 pmid: 31740749 |
[13] |
Bellmund, J. L., Deuker, L., Navarro Schröder, T., & Doeller, C. F. (2016). Grid-cell representations in mental simulation. Elife, 5, e17089. https://doi.org/10.7554/eLife.17089.001
doi: 10.7554/eLife.17089 URL |
[14] | Borges, J. L., & Casares, A. B. (Eds). (1971). Extraordinary tales. New York: Herder and Herder. |
[15] |
Brown, T. I., Gagnon, S. A., & Wagner, A. D. (2020). Stress disrupts human hippocampal-prefrontal function during prospective spatial navigation and hinders flexible behavior. Current Biology, 30(10), 1821-1833.
doi: S0960-9822(20)30342-0 pmid: 32243859 |
[16] |
Brown, T. I., Ross, R. S., Tobyne, S. M., & Stern, C. E. (2012). Cooperative interactions between hippocampal and striatal systems support flexible navigation. Neuroimage, 60(2), 1316-1330.
doi: 10.1016/j.neuroimage.2012.01.046 pmid: 22266411 |
[17] |
Brunec, I. K., Bellana, B., Ozubko, J. D., Man, V., Robin, J., Liu, Z. X., ... Moscovitch, M. (2018). Multiple scales of representation along the hippocampal anteroposterior axis in humans. Current Biology, 28(13), 2129-2135.
doi: S0960-9822(18)30618-3 pmid: 29937352 |
[18] |
Brunec, I. K., & Momennejad, I. (2022). Predictive representations in hippocampal and prefrontal hierarchies. Journal of Neuroscience, 42(2), 299-312.
doi: 10.1523/JNEUROSCI.1327-21.2021 URL |
[19] |
Burroughs, W. J., & Sadalla, E. K. (1979). Asymmetries in distance cognition. Geographical Analysis, 11(4), 414-421.
doi: 10.1111/gean.1979.11.issue-4 URL |
[20] |
Byrne, R. W. (1979). Memory for urban geography. The Quarterly Journal of Experimental Psychology, 31(1), 147-154.
doi: 10.1080/14640747908400714 URL |
[21] |
Carpenter, F., Manson, D., Jeffery, K., Burgess, N., & Barry, C. (2015). Grid cells form a global representation of connected environments. Current Biology, 25(9), 1176-1182.
doi: 10.1016/j.cub.2015.02.037 pmid: 25913404 |
[22] |
Chen, X., He, Q., Kelly, J. W., Fiete, I. R., & McNamara, T. P. (2015). Bias in human path integration is predicted by properties of grid cells. Current Biology, 25(13), 1771-1776.
doi: 10.1016/j.cub.2015.05.031 pmid: 26073138 |
[23] |
Costa, K. M., Scholz, R., Lloyd, K., Moreno-Castilla, P., Gardner, M. P., Dayan, P., & Schoenbaum, G. (2023). The role of the lateral orbitofrontal cortex in creating cognitive maps. Nature Neuroscience, 26(1), 107-115.
doi: 10.1038/s41593-022-01216-0 pmid: 36550290 |
[24] |
Coutrot, A., Manley, E., Goodroe, S., Gahnstrom, C., Filomena, G., Yesiltepe, D., ... Spiers, H. J. (2022). Entropy of city street networks linked to future spatial navigation ability. Nature, 604(7904), 104-110.
doi: 10.1038/s41586-022-04486-7 |
[25] |
Dabaghian, Y., Brandt, V. L., & Frank, L. M. (2014). Reconceiving the hippocampal map as a topological template. Elife, 3, e03476. https://doi.org/10.7554/eLife.03476.001
doi: 10.7554/eLife.03476 URL |
[26] | Dahmani, L., & Bohbot, V. D. (2020). Habitual use of GPS negatively impacts spatial memory during self-guided navigation. Scientific Report, 10(1), 6310. |
[27] |
de Cothi, W., Nyberg, N., Griesbauer, E.-M., Ghanamé, C., Zisch, F., Lefort, J. M., ... Spiers, H. J. (2022). Predictive maps in rats and humans for spatial navigation. Current Biology, 32(17), 3676-3689.
doi: 10.1016/j.cub.2022.06.090 URL |
[28] |
Dilks, D. D., Kamps, F. S., & Persichetti, A. S. (2022). Three cortical scene systems and their development. Trends in Cognitive Sciences, 26(2), 117-127.
doi: 10.1016/j.tics.2021.11.002 URL |
[29] |
Doeller, C. F., Barry, C., & Burgess, N. (2010). Evidence for grid cells in a human memory network. Nature, 463(7281), 657-661.
doi: 10.1038/nature08704 |
[30] |
Eichenbaum, H. (1997). Declarative memory: Insights from cognitive neurobiology. Annual Review of Psychology, 48(1), 547-572.
doi: 10.1146/psych.1997.48.issue-1 URL |
[31] |
Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M., & Tanila, H. (1999). The hippocampus, memory, and place cells: Is it spatial memory or a memory space? Neuron, 23(2), 209-226.
doi: 10.1016/s0896-6273(00)80773-4 pmid: 10399928 |
[32] |
Epstein, R. A., Parker, W. E., & Feiler, A. M. (2007). Where am I now? Distinct roles for parahippocampal and retrosplenial cortices in place recognition. Journal of Neuroscience, 27(23), 6141-6149.
doi: 10.1523/JNEUROSCI.0799-07.2007 pmid: 17553986 |
[33] |
Epstein, R. A., Patai, E. Z., Julian, J. B., & Spiers, H. J. (2017). The cognitive map in humans: Spatial navigation and beyond. Nature Neuroscience, 20(11), 1504-1513.
doi: 10.1038/nn.4656 pmid: 29073650 |
[34] |
Epsztein, J. (2022). Mental replays enable flexible navigation. Nature, 605(7908), 35-36.
doi: 10.1038/d41586-022-01035-0 |
[35] |
Evensmoen, H. R., Lehn, H., Xu, J., Witter, M. P., Nadel, L., & Håberg, A. K. (2013). The anterior hippocampus supports a coarse, global environmental representation and the posterior hippocampus supports fine-grained, local environmental representations. Journal of Cognitive Neuroscience, 25(11), 1908-1925.
doi: 10.1162/jocn_a_00436 pmid: 23806136 |
[36] |
Farzanfar, D., Spiers, H. J., Moscovitch, M., & Rosenbaum, R. S. (2023). From cognitive maps to spatial schemas. Nature Reviews Neuroscience, 24(2), 63-79.
doi: 10.1038/s41583-022-00655-9 |
[37] | Gahnstrom, C. J., & Spiers, H. J. (2020). Striatal and hippocampal contributions to flexible navigation in rats and humans. Brain and Neuroscience Advances, 4, 1-7. |
[38] | Gallistel, C. R. (1990). The organization of learning. Cambridge: The MIT Press. |
[39] |
Garvert, M. M., Saanum, T., Schulz, E., Schuck, N. W., & Doeller, C. F. (2023). Hippocampal spatio-predictive cognitive maps adaptively guide reward generalization. Nature Neuroscience, 26(4), 615-626.
doi: 10.1038/s41593-023-01283-x |
[40] |
Gatti, D., Marelli, M., Vecchi, T., & Rinaldi, L. (2022). Spatial representations without spatial computations. Psychological Science, 33(11), 1947-1958.
doi: 10.1177/09567976221094863 pmid: 36201754 |
[41] | Genzel, D., Yovel, Y., & Yartsev, M. M. (2018). Neuroethology of bat navigation. Current Biology, 28(17), R997-R1004. |
[42] |
Goldshtein, A., Harten, L., & Yovel, Y. (2022). Mother bats facilitate pup navigation learning. Current Biology, 32(2), 350-360.
doi: 10.1016/j.cub.2021.11.010 URL |
[43] |
Golledge, R. G., Ruggles, A. J., Pellegrino, J. W., & Gale, N. D. (1993). Integrating route knowledge in an unfamiliar neighborhood: Along and across route experiments. Journal of Environmental Psychology, 13(4), 293-307.
doi: 10.1016/S0272-4944(05)80252-X URL |
[44] |
Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., & Moser, E. I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436(7052), 801-806.
doi: 10.1038/nature03721 |
[45] |
Harten, L., Katz, A., Goldshtein, A., Handel, M., & Yovel, Y. (2020). The ontogeny of a mammalian cognitive map in the real world. Science, 369(6500), 194-197.
doi: 10.1126/science.aay3354 pmid: 32647001 |
[46] | Hartley, S. (2017). Mrs P's journey: The remarkable story of the woman who created the AZ map. New York: Simon and Schuster. |
[47] |
Henriksson, L., Mur, M., & Kriegeskorte, N. (2019). Rapid invariant encoding of scene layout in human OPA. Neuron, 103(1), 161-171.
doi: S0896-6273(19)30349-6 pmid: 31097360 |
[48] |
Hirtle, S. C., & Jonides, J. (1985). Evidence of hierarchies in cognitive maps. Memory & Cognition, 13(3), 208-217.
doi: 10.3758/BF03197683 URL |
[49] |
Ho, M. K., Abel, D., Correa, C. G., Littman, M. L., Cohen, J. D., & Griffiths, T. L. (2022). People construct simplified mental representations to plan. Nature, 606(7912), 129-136.
doi: 10.1038/s41586-022-04743-9 |
[50] |
Howard, L. R., Javadi, A. H., Yu, Y., Mill, R. D., Morrison, L. C., Knight, R., ... Spiers, H. J. (2014). The hippocampus and entorhinal cortex encode the path and Euclidean distances to goals during navigation. Current Biology, 24(12), 1331-1340.
doi: S0960-9822(14)00526-0 pmid: 24909328 |
[51] |
Jacobs, J., Weidemann, C. T., Miller, J. F., Solway, A., Burke, J. F., Wei, X.-X., ... Kahana, M. J. (2013). Direct recordings of grid-like neuronal activity in human spatial navigation. Nature Neuroscience, 16(9), 1188-1190.
doi: 10.1038/nn.3466 pmid: 23912946 |
[52] |
Jacobs, L. F., & Schenk, F. (2003). Unpacking the cognitive map: The parallel map theory of hippocampal function. Psychological Review, 110(2), 285-315.
pmid: 12747525 |
[53] | Javadi, A.-H., Emo, B., Howard, L. R., Zisch, F. E., Yu, Y., Knight, R., Silva, J. P., & Spiers, H. J. (2017). Hippocampal and prefrontal processing of network topology to simulate the future. Nature Communications, 8(1), 14652. |
[54] |
Javadi, A.-H., Patai, E. Z., Marin-Garcia, E., Margolis, A., Tan, H.-R. M., Kumaran, D., ... Spiers, H. J. (2019). Prefrontal dynamics associated with efficient detours and shortcuts: A combined functional magnetic resonance imaging and magnetoencenphalography study. Journal of Cognitive Neuroscience, 31(8), 1227-1247.
doi: 10.1162/jocn_a_01414 URL |
[55] |
Julian, J. B., Ryan, J., Hamilton, R. H., & Epstein, R. A. (2016). The occipital place area is causally involved in representing environmental boundaries during navigation. Current Biology, 26(8), 1104-1109.
doi: 10.1016/j.cub.2016.02.066 pmid: 27020742 |
[56] |
Kabadayi, C., Bobrowicz, K., & Osvath, M. (2018). The detour paradigm in animal cognition. Animal cognition, 21(1), 21-35.
doi: 10.1007/s10071-017-1152-0 pmid: 29234898 |
[57] |
Kaefer, K., Nardin, M., Blahna, K., & Csicsvari, J. (2020). Replay of behavioral sequences in the medial prefrontal cortex during rule switching. Neuron, 106(1), 154-165.
doi: S0896-6273(20)30041-6 pmid: 32032512 |
[58] |
Kerkman, D. D., Stea, D., Norris, K., & Rice, J. L. (2004). Social attitudes predict biases in geographic knowledge. The Professional Geographer, 56(2), 258-269.
doi: 10.1111/j.0033-0124.2004.05602009.x URL |
[59] |
Kim, M., & Doeller, C. F. (2022). Adaptive cognitive maps for curved surfaces in the 3D world. Cognition, 225, 105126. https://doi.org/10.1016/j.cognition.2022.105126
doi: 10.1016/j.cognition.2022.105126 URL |
[60] |
Kim, M., & Maguire, E. A. (2018). Hippocampus, retrosplenial and parahippocampal cortices encode multicompartment 3D space in a hierarchical manner. Cerebral Cortex, 28(5), 1898-1909.
doi: 10.1093/cercor/bhy054 URL |
[61] |
Lacroix, L., White, I., & Feldon, J. (2002). Effect of excitotoxic lesions of rat medial prefrontal cortex on spatial memory. Behavioural Brain Research, 133(1), 69-81.
pmid: 12048175 |
[62] |
Lever, C., Burton, S., Jeewajee, A., O'Keefe, J., & Burgess, N. (2009). Boundary vector cells in the subiculum of the hippocampal formation. Journal of Neuroscience, 29(31), 9771-9777.
doi: 10.1523/JNEUROSCI.1319-09.2009 pmid: 19657030 |
[63] |
Liang, Q., Li, J., Zheng, S., Liao, J., & Huang, R. (2022). Dynamic causal modelling of hierarchical planning. NeuroImage, 258, 119384. https://doi.org/10.1016/j.neuroimage.2022.119384
doi: 10.1016/j.neuroimage.2022.119384 URL |
[64] |
Longo, M. R. (2021). Distortion of mental body representations. Trends in Cognitive Sciences. 26(3), 241-254.
doi: 10.1016/j.tics.2021.11.005 pmid: 34952785 |
[65] |
Mahmoodi, A., Nili, H., Harbison, C., Hamilton, S., Trudel, N., Bang, D., & Rushworth, M. F. (2023). Causal role of a neural system for separating and selecting multidimensional social cognitive information. Neuron. 111(7), 1152-1164.
doi: 10.1016/j.neuron.2022.12.030 URL |
[66] |
Mallot, H. A., & Basten, K. (2009). Embodied spatial cognition: Biological and artificial systems. Image and Vision Computing, 27(11), 1658-1670.
doi: 10.1016/j.imavis.2008.09.001 URL |
[67] |
Marchette, S. A., Vass, L. K., Ryan, J., & Epstein, R. A. (2015). Outside looking in: landmark generalization in the human navigational system. Journal of Neuroscience, 35(44), 14896-14908.
doi: 10.1523/JNEUROSCI.2270-15.2015 pmid: 26538658 |
[68] |
McNamara, T. P. (1986). Mental representations of spatial relations. Cognitive Psychology, 18(1), 87-121.
pmid: 3948491 |
[69] | Meilinger, T. (2008). The network of reference frames theory:A synthesis of graphs and cognitive maps. In: Freksa, C., Newcombe, N. S., Gärdenfors, P., Wölfl, S. (Eds.), Spatial cognition VI. Learning, reasoning, and talking about space. Spatial cognition 2008. Lecture Notes in Computer Science (Vol. 5248, pp. 344-360). Springer, Berlin, Heidelberg. |
[70] |
Meilinger, T., Strickrodt, M., & Bülthoff, H. H. (2016). Qualitative differences in memory for vista and environmental spaces are caused by opaque borders, not movement or successive presentation. Cognition, 155, 77-95.
doi: S0010-0277(16)30150-0 pmid: 27367592 |
[71] |
Moar, I., & Carleton, L. R. (1982). Memory for routes. The Quarterly Journal of Experimental Psychology Section A, 34(3), 381-394.
doi: 10.1080/14640748208400850 URL |
[72] |
Morgan, L. K., MacEvoy, S. P., Aguirre, G. K., & Epstein, R. A. (2011). Distances between real-world locations are represented in the human hippocampus. Journal of Neuroscience, 31(4), 1238-1245.
doi: 10.1523/JNEUROSCI.4667-10.2011 pmid: 21273408 |
[73] |
Moser, E. I., Kropff, E., & Moser, M.-B. (2008). Place cells, grid cells, and the brain's spatial representation system. Annual Review of Neuroscience, 31, 69-89.
doi: 10.1146/annurev.neuro.31.061307.090723 pmid: 18284371 |
[74] | Muhle-Karbe, P. S., Sheahan, H., Pezzulo, G., Spiers, H. J., Chien, S., Schuck, N. W., & Summerfield, C. (2023). Goal-seeking compresses neural codes for space in the human hippocampus and orbitofrontal cortex. bioRxiv, 2023-01. https://doi.org/10.1101/2023.01.12.523762 |
[75] | Nardin, M., Kaefer, K., & Csicsvari, J. (2021). The generalized spatial representation in the prefrontal cortex is inherited from the hippocampus. bioRxiv, 2021-09. https://doi.org/10.1101/2021.09.30.462269 |
[76] |
O’, Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map: Preliminary evidence from unit activity in the freely-moving rat. Brain Research. 34(1), 171-175.
doi: 10.1016/0006-8993(71)90358-1 URL |
[77] | O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Oxford University Press. |
[78] |
Park, J., & Park, S. (2020). Coding of navigational distance and functional constraint of boundaries in the human scene-selective cortex. Journal of Neuroscience, 40(18), 3621-3630.
doi: 10.1523/JNEUROSCI.1991-19.2020 pmid: 32209608 |
[79] |
Park, S. A., Miller, D. S., & Boorman, E. D. (2021). Inferences on a multidimensional social hierarchy use a grid-like code. Nature Neuroscience, 24(9), 1292-1301.
doi: 10.1038/s41593-021-00916-3 pmid: 34465915 |
[80] |
Park, S. A., Miller, D. S., Nili, H., Ranganath, C., & Boorman, E. D. (2020). Map making: Constructing, combining, and inferring on abstract cognitive maps. Neuron, 107(6), 1226-1238.
doi: S0896-6273(20)30484-0 pmid: 32702288 |
[81] |
Patai, E. Z., & Spiers, H. J. (2021). The versatile wayfinder: Prefrontal contributions to spatial navigation. Trends in Cognitive Sciences, 25(6), 520-533.
doi: 10.1016/j.tics.2021.02.010 pmid: 33752958 |
[82] |
Peer, M., Brunec, I. K., Newcombe, N. S., & Epstein, R. A. (2021). Structuring knowledge with cognitive maps and cognitive graphs. Trends in Cognitive Sciences, 25(1), 37-54.
doi: 10.1016/j.tics.2020.10.004 pmid: 33248898 |
[83] |
Presotto, A., Verderane, M. P., Biondi, L., Mendonça- Furtado, O. D., Spagnoletti, N., Madden, M., & Izar, P. (2018). Intersection as key locations for bearded capuchin monkeys (Sapajus libidinosus) traveling within a route network. Animal Cognition, 21(3), 393-405.
doi: 10.1007/s10071-018-1176-0 pmid: 29532262 |
[84] |
Robertson, C. E., Hermann, K. L., Mynick, A., Kravitz, D. J., & Kanwisher, N. (2016). Neural representations integrate the current field of view with the remembered 360 panorama in scene-selective cortex. Current Biology, 26(18), 2463-2468.
doi: S0960-9822(16)30753-9 pmid: 27618266 |
[85] | Sauer, J.-F., Folschweiller, S., & Bartos, M. (2022). Topographically organized representation of space and context in the medial prefrontal cortex. Proceedings of the National Academy of Sciences, 119(6), e2117300119. https://doi.org/10.1073/pnas.2117300119 |
[86] |
Schafer, M., & Schiller, D. (2018). Navigating social space. Neuron, 100(2), 476-489.
doi: S0896-6273(18)30894-8 pmid: 30359610 |
[87] |
Schinazi, V. R., & Epstein, R. A. (2010). Neural correlates of real-world route learning. Neuroimage, 53(2), 725-735.
doi: 10.1016/j.neuroimage.2010.06.065 pmid: 20603219 |
[88] |
Schlesiger, M. I., Boublil, B. L., Hales, J. B., Leutgeb, J. K., & Leutgeb, S. (2018). Hippocampal global remapping can occur without input from the medial entorhinal cortex. Cell Reports, 22(12), 3152-3159.
doi: S2211-1247(18)30292-4 pmid: 29562172 |
[89] |
Schuck, N. W., Cai, M. B., Wilson, R. C., & Niv, Y. (2016). Human orbitofrontal cortex represents a cognitive map of state space. Neuron, 91(6), 1402-1412.
doi: S0896-6273(16)30511-6 pmid: 27657452 |
[90] |
Shallice, T., & Burgess, P. W. (1991). Deficits in strategy application following frontal lobe damage in man. Brain, 114(Pt 2), 727-741.
doi: 10.1093/brain/114.2.727 URL |
[91] |
Sloan, H. L., Good, M., & Dunnett, S. B. (2006). Double dissociation between hippocampal and prefrontal lesions on an operant delayed matching task and a water maze reference memory task. Behavioural Brain Research, 171(1), 116-126.
pmid: 16677723 |
[92] | Son, J.-Y., Bhandari, A., & FeldmanHall, O. (2021). Cognitive maps of social features enable flexible inference in social networks. Proceedings of the National Academy of Sciences, 118(39), e2021699118. https://doi.org/10.1073/pnas.2021699118 |
[93] |
Stachenfeld, K. L., Botvinick, M. M., & Gershman, S. J. (2017). The hippocampus as a predictive map. Nature Neuroscience, 20(11), 1643-1653.
doi: 10.1038/nn.4650 pmid: 28967910 |
[94] |
Stensola, H., Stensola, T., Solstad, T., Frøland, K., Moser, M.-B., & Moser, E. I. (2012). The entorhinal grid map is discretized. Nature, 492(7427), 72-78.
doi: 10.1038/nature11649 |
[95] |
Stevens, A., & Coupe, P. (1978). Distortions in judged spatial relations. Cognitive Psychology, 10(4), 422-437.
pmid: 699514 |
[96] |
Sung, J. Y., Harris, O. K., Hensley, N. M., Chemero, A. P., & Morehouse, N. I. (2021). Beyond cognitive templates: Re-examining template metaphors used for animal recognition and navigation. Integrative and Comparative Biology, 61(3), 825-841.
doi: 10.1093/icb/icab040 URL |
[97] |
Taube, J. S., Muller, R. U., & Ranck, J. B. (1990). Head- direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. Journal of Neuroscience, 10(2), 420-435.
pmid: 2303851 |
[98] |
Thorndyke, P. W. (1981). Distance estimation from cognitive maps. Cognitive Psychology, 13(4), 526-550.
doi: 10.1016/0010-0285(81)90019-0 URL |
[99] |
Tversky, B. (1981). Distortions in memory for maps. Cognitive Psychology, 13(3), 407-433.
doi: 10.1016/0010-0285(81)90016-5 URL |
[100] |
Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55(4), 189-208. https://doi.org/10.1037/h0061626
doi: 10.1037/h0061626 URL pmid: 18870876 |
[101] | Tversky, B. (1993). Cognitive maps, cognitive collages, and spatial mental models. In: Frank, A. U., Campari, I. (Eds.), Spatial Information Theory A Theoretical Basis for GIS. COSIT 1993. Lecture Notes in Computer Science (Vol. 716, pp. 14-24). Springer, Berlin, Heidelberg. |
[102] |
Wang, R. F., & Brockmole, J. R. (2003). Human navigation in nested environments. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(3), 398-404.
doi: 10.1037/0278-7393.29.3.398 URL |
[103] | Warren, W. H. (2019). Non-euclidean navigation. Journal of Experimental Biology, 222(Suppl_1), jeb187971. https://doi.org/10.1242/jeb.187971 |
[104] |
Warren, W. H., Rothman, D. B., Schnapp, B. H., & Ericson, J. D. (2017). Wormholes in virtual space: From cognitive maps to cognitive graphs. Cognition, 166, 152-163.
doi: S0010-0277(17)30137-3 pmid: 28577445 |
[105] |
Wernle, T., Waaga, T., Mørreaunet, M., Treves, A., Moser, M.-B., & Moser, E. I. (2018). Integration of grid maps in merged environments. Nature Neuroscience, 21(1), 92-101.
doi: 10.1038/s41593-017-0036-6 pmid: 29230051 |
[106] |
Whittington, J. C., Muller, T. H., Mark, S., Chen, G., Barry, C., Burgess, N., & Behrens, T. E. (2020). The Tolman - Eichenbaum machine: Unifying space and relational memory through generalization in the hippocampal formation. Cell, 183(5), 1249-1263.
doi: 10.1016/j.cell.2020.10.024 pmid: 33181068 |
[107] |
Widdowson, C., & Wang, R. F. (2022). Human navigation in curved spaces. Cognition, 218, 104923. https://doi.org/10.1016/j.cognition.2021.104923
doi: 10.1016/j.cognition.2021.104923 URL |
[108] |
Widloski, J., & Foster, D. J. (2022). Flexible rerouting of hippocampal replay sequences around changing barriers in the absence of global place field remapping. Neuron, 110(9), 1547-1558.
doi: 10.1016/j.neuron.2022.02.002 pmid: 35180390 |
[109] |
Wu, X., & Foster, D. J. (2014). Hippocampal replay captures the unique topological structure of a novel environment. Journal of Neuroscience, 34(19), 6459-6469.
doi: 10.1523/JNEUROSCI.3414-13.2014 pmid: 24806672 |
[110] |
Yousif, S. R. (2022). Redundancy and reducibility in the formats of spatial representations. Perspectives on Psychological Science, 17(6), 1778-1793.
doi: 10.1177/17456916221077115 URL |
[111] |
Zhang, B., & Naya, Y. (2020). Medial prefrontal cortex represents the object-based cognitive map when remembering an egocentric target location. Cerebral Cortex, 30(10), 5356-5371.
doi: 10.1093/cercor/bhaa117 URL |
[112] |
Zhang, L., Chen, P., Schafer, M., Zheng, S., Chen, L., Wang, S., ... Huang, R. (2022). A specific brain network for a social map in the human brain. Scientific Reports, 12(1), 1773. https://doi.org/10.1038/s41598-022-05601-4
doi: 10.1038/s41598-022-05601-4 URL pmid: 35110581 |
[113] |
Zhao, M. (2018). Human spatial representation: What we cannot learn from the studies of rodent navigation. Journal of Neurophysiology, 120(5), 2453-2465.
doi: 10.1152/jn.00781.2017 pmid: 30133384 |
[114] | Zong, W., Zhou, J., Gardner, M. P., Costa, K. M., Zhang, Z., & Schoenbaum, G. (2023). Schema cell formation in orbitofrontal cortex is suppressed by hippocampal output. bioRxiv, 2023-05. https://doi.org/10.1101/2023.05.03.539307 |
[1] | 张凤翔, 陈美璇, 蒲艺, 孔祥祯. 空间导航能力个体差异的多层次形成机制[J]. 心理科学进展, 2023, 31(9): 1642-1664. |
[2] | 曹晋菁, 仇式明, 定险峰, 程晓荣, 范炤. 意识的层级性和丰富性:解读意识的两条路径[J]. 心理科学进展, 2023, 31(7): 1172-1185. |
[3] | 孔祥祯, 张凤翔, 蒲艺. 空间导航的脑网络基础和调控机制[J]. 心理科学进展, 2023, 31(3): 330-337. |
[4] | 聂婧;凌文辁;李明. 认知地图技术及其在管理心理学中的应用述评[J]. 心理科学进展, 2013, 21(1): 155-165. |
[5] | 许琴;罗宇;刘嘉. 方向感的加工机制及影响因素[J]. 心理科学进展, 2010, 18(8): 1208-1221. |
[6] | 徐晓东;刘昌. 数字的空间特性[J]. 心理科学进展, 2006, 14(6): 851-858. |
[7] | 牟炜民;赵民涛;李晓鸥. 人类空间记忆和空间巡航[J]. 心理科学进展, 2006, 14(4): 497-504. |
[8] | 赵民涛 . 物体位置与空间关系的心理表征[J]. 心理科学进展, 2006, 14(3): 321-327. |
[9] | 王彦;苏彦捷. 迷宫与动物行为研究[J]. 心理科学进展, 2001, 9(3): 264-269. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||