Acta Psychologica Sinica ›› 2021, Vol. 53 ›› Issue (2): 128-138.doi: 10.3724/SP.J.1041.2021.00128
• Reports of Empirical Studies • Previous Articles Next Articles
ZHANG Mengke, LI Qing, YIN Shouhang, CHEN Antao()
Received:
2020-02-24
Published:
2021-02-25
Online:
2020-12-29
Contact:
CHEN Antao
E-mail:xscat@swu.edu.cn
Supported by:
ZHANG Mengke, LI Qing, YIN Shouhang, CHEN Antao. (2021). Changes in the level of conflict trigger conflict adaptation. Acta Psychologica Sinica, 53(2), 128-138.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.psych.ac.cn/acps/EN/10.3724/SP.J.1041.2021.00128
Figure 2. Mean RTs (A) and ERs (B) of trial congruency (NC: no-conflict, LC: low-conflict, HC: high-conflict) ; Mean RTs (C) and ERs (D) of previous trial congruency (NC, LC, HC) × current trial congruency (NC, LC, HC). Error bars denote standard error of the mean (SEM) (***p < 0.001)
Previous trial congruency | Current trial congruency | ||
---|---|---|---|
NC | LC | HC | |
NC | 701.58 (65.86) | 763.27 (72.44) | 772.42 (78.31) |
3.36 (2.83) | 4.03 (2.96) | 3.68 (3.56) | |
LC | 706.88 (67.91) | 722.55 (70.05) | 768.02 (71.22) |
2.64 (2.72) | 3.68 (4.94) | 3.76 (4.68) | |
HC | 724.61 (69.82) | 755.61 (73.33) | 758.88 (65.31) |
3.09 (2.97) | 3.94 (4.64) | 3.77 (3.83) |
Table 1 RTs (SD) and ERs (SD) for transitions of previous × current trial congruency
Previous trial congruency | Current trial congruency | ||
---|---|---|---|
NC | LC | HC | |
NC | 701.58 (65.86) | 763.27 (72.44) | 772.42 (78.31) |
3.36 (2.83) | 4.03 (2.96) | 3.68 (3.56) | |
LC | 706.88 (67.91) | 722.55 (70.05) | 768.02 (71.22) |
2.64 (2.72) | 3.68 (4.94) | 3.76 (4.68) | |
HC | 724.61 (69.82) | 755.61 (73.33) | 758.88 (65.31) |
3.09 (2.97) | 3.94 (4.64) | 3.77 (3.83) |
Interactions | df | F | p | ηp2 | CAE mode |
---|---|---|---|---|---|
3 (NC, LC, HC) × 3 (NC, LC, HC) | 4,120 | 13.06*** | <0.001 | 0.30 | |
3 (NC, LC, HC) × 2 (NC, LC) | 2,60 | 19.70*** | <0.001 | 0.40 | |
2 (NC, LC) × 2 (NC, LC) | 1,30 | 35.43*** | <0.001 | 0.54 | classic |
2 (NC, HC) × 2 (NC, LC ) | 1,30 | 22.86*** | <0.001 | 0.43 | classic |
2 (LC, HC) × 2 (NC, LC) | 1,30 | 3.55 | 0.069 | 0.11 | reverse trend |
3 (NC, LC, HC) × 2 (NC, HC) | 2,60 | 10.43*** | <0.001 | 0.26 | |
2 (NC, LC) × 2 (NC, HC) | 1,30 | 1.17 | 0.287 | 0.04 | no |
2 (NC, HC) × 2 (NC, HC) | 1,30 | 25.08*** | <0.001 | 0.46 | classic |
2 (LC, HC) × 2 (NC, HC) | 1,30 | 9.90** | 0.004 | 0.25 | classic |
3 (NC, LC, HC) × 2 (LC, HC) | 2,60 | 11.06*** | <0.001 | 0.27 | |
2 (NC, LC) × 2 (LC, HC) | 1,30 | 11.97** | 0.002 | 0.29 | reverse |
2 (NC, HC) × 2 (LC, HC) | 1,30 | <1 | 0.529 | 0.01 | no |
2 (LC, HC) × 2 (LC, HC) | 1,30 | 20.22*** | <0.001 | 0.40 | classic |
Table 2 Results of statistical analysis of RTs for transitions of previous × current trial congruency
Interactions | df | F | p | ηp2 | CAE mode |
---|---|---|---|---|---|
3 (NC, LC, HC) × 3 (NC, LC, HC) | 4,120 | 13.06*** | <0.001 | 0.30 | |
3 (NC, LC, HC) × 2 (NC, LC) | 2,60 | 19.70*** | <0.001 | 0.40 | |
2 (NC, LC) × 2 (NC, LC) | 1,30 | 35.43*** | <0.001 | 0.54 | classic |
2 (NC, HC) × 2 (NC, LC ) | 1,30 | 22.86*** | <0.001 | 0.43 | classic |
2 (LC, HC) × 2 (NC, LC) | 1,30 | 3.55 | 0.069 | 0.11 | reverse trend |
3 (NC, LC, HC) × 2 (NC, HC) | 2,60 | 10.43*** | <0.001 | 0.26 | |
2 (NC, LC) × 2 (NC, HC) | 1,30 | 1.17 | 0.287 | 0.04 | no |
2 (NC, HC) × 2 (NC, HC) | 1,30 | 25.08*** | <0.001 | 0.46 | classic |
2 (LC, HC) × 2 (NC, HC) | 1,30 | 9.90** | 0.004 | 0.25 | classic |
3 (NC, LC, HC) × 2 (LC, HC) | 2,60 | 11.06*** | <0.001 | 0.27 | |
2 (NC, LC) × 2 (LC, HC) | 1,30 | 11.97** | 0.002 | 0.29 | reverse |
2 (NC, HC) × 2 (LC, HC) | 1,30 | <1 | 0.529 | 0.01 | no |
2 (LC, HC) × 2 (LC, HC) | 1,30 | 20.22*** | <0.001 | 0.40 | classic |
[1] |
Algom, D., & Chajut, E. (2019). Reclaiming the Stroop effect back from control to input-driven attention and perception. Frontiers in Psychology, 10, 1683.
doi: 10.3389/fpsyg.2019.01683 URL pmid: 31428008 |
[2] | Botvinick, M. M. (2007). Conflict monitoring and decision making: Reconciling two perspectives on anterior cingulate function. Cognitive, Affective, & Behavioral Neuroscience, 7(4), 356-366. |
[3] |
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624-652.
URL pmid: 11488380 |
[4] |
Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8(12), 539-546.
doi: 10.1016/j.tics.2004.10.003 URL pmid: 15556023 |
[5] |
Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D. (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature, 402(6758), 179-181.
URL pmid: 10647008 |
[6] |
Braem, S., Bugg, J. M., Schmidt, J. R., Crump, M. J. C., Weissman, D. H., Notebaert, W., & Egner, T. (2019). Measuring adaptive control in conflict tasks. Trends in Cognitive Sciences, 23(9), 769-783.
doi: 10.1016/j.tics.2019.07.002 URL pmid: 31331794 |
[7] |
Chiu, Y. -C., & Egner, T. (2019). Cortical and subcortical contributions to context-control learning. Neuroscience & Biobehavioral Reviews, 99, 33-41.
doi: 10.1016/j.neubiorev.2019.01.019 URL pmid: 30685484 |
[8] |
Clayson, P. E., & Larson, M. J. (2011). Conflict adaptation and sequential trial effects: Support for the conflict monitoring theory. Neuropsychologia, 49(7), 1953-1961.
doi: 10.1016/j.neuropsychologia.2011.03.023 URL pmid: 21435347 |
[9] |
Danielmeier, C., Wessel, J. R., Steinhauser, M., & Ullsperger, M. (2009). Modulation of the error-related negativity by response conflict. Psychophysiology, 46(6), 1288-1298.
doi: 10.1111/j.1469-8986.2009.00860.x URL pmid: 19572907 |
[10] |
Dignath, D., Johannsen, L., Hommel, B., & Kiesel, A. (2019). Reconciling cognitive-control and episodic-retrieval accounts of sequential conflict modulation: Binding of control-states into event-files. Journal of Experimental Psychology: Human Perception and Performance, 45(9), 1265-1270.
doi: 10.1037/xhp0000673 URL pmid: 31380673 |
[11] |
Egner, T. (2008). Multiple conflict-driven control mechanisms in the human brain. Trends in Cognitive Sciences, 12(10), 374-380.
URL pmid: 18760657 |
[12] |
Egner, T. (2014). Creatures of habit (and control): A multi-level learning perspective on the modulation of congruency effects. Frontiers in Psychology, 5, 1247.
doi: 10.3389/fpsyg.2014.01247 URL pmid: 25414679 |
[13] |
Egner, T., Delano, M., & Hirsch, J. (2007). Separate conflict-specific cognitive control mechanisms in the human brain. NeuroImage, 35(2), 940-948.
doi: 10.1016/j.neuroimage.2006.11.061 URL pmid: 17276088 |
[14] |
Egner, T., Jamieson, G., & Gruzelier, J. (2005). Hypnosis decouples cognitive control from conflict monitoring processes of the frontal lobe. NeuroImage, 27(4), 969-978.
doi: 10.1016/j.neuroimage.2005.05.002 URL pmid: 15964211 |
[15] |
Eriksen, C. W., & Schultz, D. W. (1979). Information processing in visual search: A continuous flow conception and experimental results. Perception & Psychophysics, 25(4), 249-263.
doi: 10.3758/bf03198804 URL pmid: 461085 |
[16] |
Eriksen, C. W., & ST. James, J. D. (1986). Visual attention within and around the field of focal attention: A zoom lens model. Perception & Psychophysics, 40(4), 225-240.
doi: 10.3758/bf03211502 URL pmid: 3786090 |
[17] |
Flowers, J. H. (1980). Response priming effects in a digit naming task as a function of target-noise separation. Bulletin of the Psychonomic Society, 16(6), 443-446.
doi: 10.3758/BF03329593 URL |
[18] |
Forster, S. E., Carter, C. S., Cohen, J. D., & Cho, R. Y. (2011). Parametric manipulation of the conflict signal and control-state adaptation. Journal of Cognitive Neuroscience, 23(4), 923-935.
doi: 10.1162/jocn.2010.21458 URL |
[19] |
Funes, M. J., Lupiáñez, J., & Humphreys, G. (2010). Analyzing the generality of conflict adaptation effects. Journal of Experimental Psychology: Human Perception and Performance, 36(1), 147-161.
doi: 10.1037/a0017598 URL pmid: 20121301 |
[20] |
Gratton, G., Coles, M. G. H., & Donchin, E. (1992). Optimizing the use of information: Strategic control of activation of responses. Journal of Experimental Psychology: General, 121(4), 480-506.
doi: 10.1037/0096-3445.121.4.480 URL |
[21] |
Grundy, J. G., & Shedden, J. M. (2014). A role for recency of response conflict in producing the bivalency effect. Psychological Research, 78(5), 679-691.
doi: 10.1007/s00426-013-0520-x URL pmid: 24146081 |
[22] |
Kerns, J. G. (2006). Anterior cingulate and prefrontal cortex activity in an FMRI study of trial-to-trial adjustments on the Simon task. NeuroImage, 33(1), 399-405.
doi: 10.1016/j.neuroimage.2006.06.012 URL pmid: 16876434 |
[23] |
Kerns, J. G., Cohen, J. D., MacDonald III, A. W., Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303(5660), 1023-1026.
doi: 10.1126/science.1089910 URL pmid: 14963333 |
[24] |
Kim, C., Chung, C., & Kim, J. (2010). Multiple cognitive control mechanisms associated with the nature of conflict. Neuroscience Letters, 476(3), 156-160.
doi: 10.1016/j.neulet.2010.04.019 URL pmid: 20399838 |
[25] |
Kim, C., Kroger, J. K., & Kim, J. (2011). A functional dissociation of conflict processing within anterior cingulate cortex. Human Brain Mapping, 32(2), 304-312.
doi: 10.1002/hbm.21020 URL pmid: 21229616 |
[26] |
Liu, P. D., Chen, A. T., Li, C., Li, H., & West, R. (2012). Conflict adaptation is reflected by response interference. Journal of Cognitive Psychology, 24(4), 457-467.
doi: 10.1080/20445911.2011.651080 URL |
[27] | Liu, P. -D., Yang, W. -J., Tian, X., & Chen, A. -T. (2012). An overview of current studies about the conflict adaptation effect. Advances in Psychological Science, 20(4), 532-541. |
[28] |
Mayr, U., & Awh, E. (2009). The elusive link between conflict and conflict adaptation. Psychological Research, 73(6), 794-802.
doi: 10.1007/s00426-008-0191-1 URL pmid: 19034501 |
[29] |
Notebaert, W., Gevers, W., Verbruggen, F., & Liefooghe, B. (2006). Top-down and bottom-up sequential modulations of congruency effects. Psychonomic Bulletin & Review, 13(1), 112-117.
doi: 10.3758/bf03193821 URL pmid: 16724777 |
[30] |
Notebaert, W., & Verguts, T. (2006). Stimulus conflict predicts conflict adaptation in a numerical flanker task. Psychonomic Bulletin & Review, 13(6), 1078-1084.
doi: 10.3758/bf03213929 URL pmid: 17484439 |
[31] |
Notebaert, W., & Verguts, T. (2011). Conflict and error adaptation in the Simon task. Acta Psychologica, 136(2), 212-216.
doi: 10.1016/j.actpsy.2010.05.006 URL pmid: 21420518 |
[32] | Rajkowski, J., Kubiak, P., & Aston-Jones, G. (1993). Correlations between locus coeruleus (LC) neural activity, pupil diameter and behavior in monkey support a role of LC in attention. Society for Neuroscience Abstracts, 19, 974. |
[33] |
Rey-Mermet, A., & Meier, B. (2014). More conflict does not trigger more adjustment of cognitive control for subsequent events: A study of the bivalency effect. Acta Psychologica, 145, 111-117.
doi: 10.1016/j.actpsy.2013.11.005 URL pmid: 24333810 |
[34] |
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643-662.
doi: 10.1037/h0054651 URL |
[35] |
Takezawa, T., & Miyatani, M. (2005). Quantitative relation between conflict and response inhibition in the flanker task. Psychological Reports, 97(2), 515-526.
doi: 10.2466/pr0.97.2.515-526 URL pmid: 16342579 |
[36] | Ullsperger, M., Bylsma, L. M., & Botvinick, M. M. (2005). The conflict adaptation effect: It’s not just priming. Cognitive, Affective, & Behavioral Neuroscience, 5(4), 467-472. |
[37] |
Verbruggen, F., Notebaert, W., Liefooghe, B., & Vandierendonck, A. (2006). Stimulus- and response-conflict-induced cognitive control in the flanker task. Psychonomic Bulletin & Review, 13(2), 328-333.
doi: 10.3758/bf03193852 URL pmid: 16893003 |
[38] |
Verguts, T., & Notebaert, W. (2008). Hebbian learning of cognitive control: Dealing with specific and nonspecific adaptation. Psychological Review, 115(2), 518-525.
doi: 10.1037/0033-295X.115.2.518 URL pmid: 18426302 |
[39] |
Verguts, T., & Notebaert, W. (2009). Adaptation by binding: A learning account of cognitive control. Trends in Cognitive Science, 13(6), 252-257.
doi: 10.1016/j.tics.2009.02.007 URL |
[40] |
Weissman, D. H., Egner, T., Hawks, Z., & Link, J. (2015). The congruency sequence effect emerges when the distracter precedes the target. Acta Psychologica, 156, 8-21.
doi: 10.1016/j.actpsy.2015.01.003 URL pmid: 25616120 |
[41] |
Weissman, D. H., Jiang, J., & Egner, T. (2014). Determinants of congruency sequence effects without learning and memory confounds. Journal of Experimental Psychology: Human Perception and Performance, 40(5), 2022-2037.
doi: 10.1037/a0037454 URL pmid: 25089574 |
[42] |
Wendt, M., Kiesel, A., Geringswald, F., Purmann, S., & Fischer, R. (2014). Attentional adjustment to conflict strength: Evidence from the effects of manipulating flanker-target SOA on response times and prestimulus pupil size. Experimental Psychology, 61(1), 55-67.
doi: 10.1027/1618-3169/a000227 URL pmid: 24149239 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||