Acta Psychologica Sinica ›› 2021, Vol. 53 ›› Issue (2): 113-127.doi: 10.3724/SP.J.1041.2021.00113
• Reports of Empirical Studies • Next Articles
WANG Hui-Yuan1(), CHEN Ai-Rui2, ZHANG Ming3,4()
Received:
2020-03-05
Published:
2021-02-25
Online:
2020-12-29
Contact:
WANG Hui-Yuan,ZHANG Ming
E-mail:wanghuiyuan@ccsfu.edu.cn;psyzm@suda.edu.cn
Supported by:
WANG Hui-Yuan, CHEN Ai-Rui, ZHANG Ming. (2021). Meaningful contingent attentional orienting effects: Spatial location-based inhibition and capture. Acta Psychologica Sinica, 53(2), 113-127.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.psych.ac.cn/acps/EN/10.3724/SP.J.1041.2021.00113
cue-target semantic congruency/cue validity | cue location | ||||
---|---|---|---|---|---|
above | right | below | left | ||
semantic congruent | cue invalid | 523.76 ± 40.26 | 519.42 ± 44.22 | 510.76 ± 40.28 | 516.21 ± 37.88 |
92.58 ± 6.94 | 92.58 ± 7.63 | 93.42 ± 5.20 | 93.83 ± 5.97 | ||
cue valid | 497.61 ± 35.19 | 503.24 ± 43.28 | 524.96 ± 50.30 | 497.87 ± 44.26 | |
96.50 ± 6.77 | 95.50 ± 5.85 | 96.25 ± 6.99 | 90.75 ± 8.49 | ||
semantic incongruent | cue invalid | 524.81 ± 35.75 | 521.99 ± 35.59 | 510.06 ± 32.23 | 520.28 ± 33.78 |
93.33 ± 6.28 | 93.25 ± 6.81 | 92.75 ± 7.24 | 94.67 ± 6.45 | ||
cue valid | 496.43 ± 34.03 | 503.84 ± 44.52 | 518.35 ± 37.04 | 504.62 ± 36.53 | |
96.50 ± 7.67 | 95.00 ± 5.71 | 94.75 ± 5.90 | 94.75 ± 5.61 |
Table 1 In Experiment 1, the average reaction time and accuracy (M ± SD) were measured under the conditions of cue-target semantic congruency, cue validity and cue location.
cue-target semantic congruency/cue validity | cue location | ||||
---|---|---|---|---|---|
above | right | below | left | ||
semantic congruent | cue invalid | 523.76 ± 40.26 | 519.42 ± 44.22 | 510.76 ± 40.28 | 516.21 ± 37.88 |
92.58 ± 6.94 | 92.58 ± 7.63 | 93.42 ± 5.20 | 93.83 ± 5.97 | ||
cue valid | 497.61 ± 35.19 | 503.24 ± 43.28 | 524.96 ± 50.30 | 497.87 ± 44.26 | |
96.50 ± 6.77 | 95.50 ± 5.85 | 96.25 ± 6.99 | 90.75 ± 8.49 | ||
semantic incongruent | cue invalid | 524.81 ± 35.75 | 521.99 ± 35.59 | 510.06 ± 32.23 | 520.28 ± 33.78 |
93.33 ± 6.28 | 93.25 ± 6.81 | 92.75 ± 7.24 | 94.67 ± 6.45 | ||
cue valid | 496.43 ± 34.03 | 503.84 ± 44.52 | 518.35 ± 37.04 | 504.62 ± 36.53 | |
96.50 ± 7.67 | 95.00 ± 5.71 | 94.75 ± 5.90 | 94.75 ± 5.61 |
Figure 2. The interaction between the cue validity and cue location in Experiment 1. Note. When the cue was in the lower position, the response was faster when the cue was invalid than when the cue was valid. When the cue was in other positions, the response was slower when the cue was invalid than when the cue was valid to different extents. * indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001, with the same applying below
cue-target semantic congruency /cue validity | cue location | ||||||
---|---|---|---|---|---|---|---|
above | upper right | lower right | below | lower left | upper left | ||
semantic congruent | cue invalid | 536.88 ± 42.35 | 537.75 ± 44.63 | 536.77 ± 45.04 | 531.48 ± 36.46 | 536.44 ± 40.01 | 533.55 ± 42.43 |
97.95 ± 3.33 | 96.59 ± 4.97 | 95.45 ± 6.71 | 96.82 ± 4.51 | 98.86 ± 2.14 | 97.05 ± 3.67 | ||
cue valid | 519.41 ± 45.78 | 519.72 ± 43.55 | 545.26 ± 60.33 | 545.51 ± 62.54 | 550.27 ± 63.40 | 536.36 ± 53.61 | |
97.73 ± 7.36 | 95.45 ± 12.53 | 95.45 ± 9.87 | 96.59 ± 11.69 | 89.77 ± 14.76 | 93.18 ± 11.40 | ||
semantic incongruent | cue invalid | 540.97 ± 36.93 | 536.90 ± 42.92 | 540.14 ± 42.30 | 534.26 ± 32.20 | 536.42 ± 44.58 | 530.14 ± 35.28 |
96.36 ± 4.92 | 96.36 ± 4.68 | 96.59 ± 5.21 | 96.82 ± 3.95 | 97.50 ± 3.36 | 97.05 ± 3.67 | ||
cue valid | 532.07 ± 53.20 | 533.43 ± 46.86 | 553.02 ± 53.33 | 568.89 ± 55.31 | 563.85 ± 62.08 | 535.43 ± 66.59 | |
98.96 ± 5.33 | 98.86 ± 5.33 | 98.86 ± 5.33 | 96.59 ± 8.78 | 93.18 ± 13.76 | 96.59 ± 8.78 |
Table 2 In Experiment 2, the average response time and accuracy (M ± SD) were measured under the conditions of the cue-target semantic congruency, cue validity and cue location.
cue-target semantic congruency /cue validity | cue location | ||||||
---|---|---|---|---|---|---|---|
above | upper right | lower right | below | lower left | upper left | ||
semantic congruent | cue invalid | 536.88 ± 42.35 | 537.75 ± 44.63 | 536.77 ± 45.04 | 531.48 ± 36.46 | 536.44 ± 40.01 | 533.55 ± 42.43 |
97.95 ± 3.33 | 96.59 ± 4.97 | 95.45 ± 6.71 | 96.82 ± 4.51 | 98.86 ± 2.14 | 97.05 ± 3.67 | ||
cue valid | 519.41 ± 45.78 | 519.72 ± 43.55 | 545.26 ± 60.33 | 545.51 ± 62.54 | 550.27 ± 63.40 | 536.36 ± 53.61 | |
97.73 ± 7.36 | 95.45 ± 12.53 | 95.45 ± 9.87 | 96.59 ± 11.69 | 89.77 ± 14.76 | 93.18 ± 11.40 | ||
semantic incongruent | cue invalid | 540.97 ± 36.93 | 536.90 ± 42.92 | 540.14 ± 42.30 | 534.26 ± 32.20 | 536.42 ± 44.58 | 530.14 ± 35.28 |
96.36 ± 4.92 | 96.36 ± 4.68 | 96.59 ± 5.21 | 96.82 ± 3.95 | 97.50 ± 3.36 | 97.05 ± 3.67 | ||
cue valid | 532.07 ± 53.20 | 533.43 ± 46.86 | 553.02 ± 53.33 | 568.89 ± 55.31 | 563.85 ± 62.08 | 535.43 ± 66.59 | |
98.96 ± 5.33 | 98.86 ± 5.33 | 98.86 ± 5.33 | 96.59 ± 8.78 | 93.18 ± 13.76 | 96.59 ± 8.78 |
Figure 4. The interaction between the cue validity and cue location in Experiment 2. Note. When the cue was in the below and lower left positions, the response was faster when the cue was invalid than when the cue was valid. There was no difference in response between the invalid cue and the valid cue conditions when the cue was in other locations.
cue-target semantic congruency/cue validity | cue location | ||||||
---|---|---|---|---|---|---|---|
above | upper right | lower right | below | lower left | upper left | ||
semantic congruent | cue invalid | 936.77 ± 93.65 | 935.36 ± 77.04 | 915.47 ± 75.92 | 890.01 ± 88.04 | 916.90 ± 101.56 | 956.92 ± 95.82 |
92.50 ± 4.89 | 91.96 ± 5.89 | 93.48 ± 4.69 | 92.17 ± 4.79 | 93.04 ± 5.22 | 94.13 ± 5.36 | ||
cue valid | 811.39 ± 187.07 | 855.84 ± 194.22 | 1017.24 ± 195.81 | 1057.90 ± 198.98 | 958.87 ± 145.62 | 779.27 ± 150.16 | |
94.02 ± 8.32 | 95.65 ± 8.09 | 92.93 ± 9.85 | 96.20 ± 5.88 | 89.67 ± 12.30 | 94.02 ± 9.88 | ||
semantic incongruent | cue invalid | 970.18 ± 85.43 | 950.88 ± 89.25 | 923.04 ± 82.25 | 928.99 ± 97.65 | 933.36 ± 83.62 | 949.07 ± 79.12 |
92.17 ± 3.72 | 91.41 ± 6.21 | 91.41 ± 4.70 | 91.09 ± 5.37 | 91.41 ± 5.43 | 91.20 ± 7.34 | ||
cue valid | 865.73 ± 165.24 | 861.82 ± 184.36 | 1014.82 ± 182.12 | 1065.98 ± 158.78 | 981.85 ± 165.56 | 777.12 ± 173.19 | |
94.02 ± 9.13 | 93.48 ± 9.13 | 91.85 ± 11.06 | 85.87 ± 16.12 | 89.67 ± 11.71 | 94.02 ± 9.13 |
Table 3 Average response times and accuracies (M ± SD) under the combinations of cue-target semantic congruency, cue validity and cue location in Experiment 3
cue-target semantic congruency/cue validity | cue location | ||||||
---|---|---|---|---|---|---|---|
above | upper right | lower right | below | lower left | upper left | ||
semantic congruent | cue invalid | 936.77 ± 93.65 | 935.36 ± 77.04 | 915.47 ± 75.92 | 890.01 ± 88.04 | 916.90 ± 101.56 | 956.92 ± 95.82 |
92.50 ± 4.89 | 91.96 ± 5.89 | 93.48 ± 4.69 | 92.17 ± 4.79 | 93.04 ± 5.22 | 94.13 ± 5.36 | ||
cue valid | 811.39 ± 187.07 | 855.84 ± 194.22 | 1017.24 ± 195.81 | 1057.90 ± 198.98 | 958.87 ± 145.62 | 779.27 ± 150.16 | |
94.02 ± 8.32 | 95.65 ± 8.09 | 92.93 ± 9.85 | 96.20 ± 5.88 | 89.67 ± 12.30 | 94.02 ± 9.88 | ||
semantic incongruent | cue invalid | 970.18 ± 85.43 | 950.88 ± 89.25 | 923.04 ± 82.25 | 928.99 ± 97.65 | 933.36 ± 83.62 | 949.07 ± 79.12 |
92.17 ± 3.72 | 91.41 ± 6.21 | 91.41 ± 4.70 | 91.09 ± 5.37 | 91.41 ± 5.43 | 91.20 ± 7.34 | ||
cue valid | 865.73 ± 165.24 | 861.82 ± 184.36 | 1014.82 ± 182.12 | 1065.98 ± 158.78 | 981.85 ± 165.56 | 777.12 ± 173.19 | |
94.02 ± 9.13 | 93.48 ± 9.13 | 91.85 ± 11.06 | 85.87 ± 16.12 | 89.67 ± 11.71 | 94.02 ± 9.13 |
Figure 6. The interaction between the cue validity and cue location in Experiment 3. Note. When the cue appeared in the lower right and below positions, the response to the invalid cue was faster than that to the valid cue. When the cue appeared in the above, upper right and upper left positions, the response to the invalid cue was slower than that to the valid cue. When the cue appeared in the lower left position, there was no difference in response between when the cue was invalid and when the cue was valid.
Figure 7. In Experiments 1~3, the attentional orientation effects and trend lines (the same ordinate effects were averaged) at different cue positions.
[1] |
Bao Y., Lei Q., Fang Y., Tong Y., Schill K., Pöppel E., & Strasburger H.( 2013). Inhibition of return in the visual field: The eccentricity effect is independent of cortical magnification. Experimental Psychology, 60( 6), 425-431.
doi: 10.1027/1618-3169/a000215 URL |
[2] | Bergerbest D., Shilkrot O., Joseph M., & Salti M.( 2017). Right visual-field advantage in the attentional blink: Asymmetry in attentional gating across time and space. Attention Perception & Psychophysics, 79( 7), 1979-1992. |
[3] |
Binder J. R., Conant L. L., Humphries C. J., Fernandino L., Simons S. B., & Aguilar M., & Desai R. H.( 2016). Toward a brain-based componential semantic representation. Cognitive Neuropsychology, 33( 3-4), 130-174.
doi: 10.1080/02643294.2016.1147426 URL pmid: 27310469 |
[4] |
Burnham, B. R.( 2007). Displaywide visual features associated with a search display’s appearance can mediate attentional capture. Psychonomic Bulletin & Review, 14( 3), 392-422.
doi: 10.3758/bf03194082 URL pmid: 17874581 |
[5] |
Carlei C., Framorando D., Burra N., & Kerzel D.( 2017). Face processing is enhanced in the left and upper visual hemi-fields. Visual Cognition, 25( 7-8), 749-761.
doi: 10.1080/13506285.2017.1327466 URL |
[6] |
Chee M. W. L., Weekes B., Lee K. M., Soon C. S., Schreiber A., Hoon J. J., & Chee M.( 2000). Overlap and dissociation of semantic processing of Chinese characters, English words, and pictures: Evidence from fMRI. Neuroimage, 12( 4), 392-403.
doi: 10.1006/nimg.2000.0631 URL pmid: 10988033 |
[7] | Colegatef R. L., Hoffman J. E., & Eriksen C. W.( 1973). Selective encoding from multielement visual displays. Perception & Psychophysics, 14( 2), 217-224. |
[8] |
Dampuré J., Ros C., Rouet J.-F., & Vibert N.( 2014). Task-dependent sensitisation of perceptual and semantic processing during visual search for words. Journal of Cognitive Psychology, 26( 5), 530-549.
doi: 10.1080/20445911.2014.907576 URL |
[9] |
Eriksen, C. W., & Murphy, T. D.( 1987). Movement of attentional focus across the visual field: A critical look at the evidence. Perception & Psychophysics, 42( 3), 299-305.
doi: 10.3758/bf03203082 URL pmid: 3671056 |
[10] |
Faul F., Erdfelder E., Lang, A.-G. & Buchner, A. ( 2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39( 2), 175-191.
doi: 10.3758/BF03193146 URL |
[11] |
Folk, C. L., & Anderson, B. A.( 2010). Target-uncertainty effects in attentional capture: Color-singleton set or multiple attentional control settings? Psychonomic Bulletin & Review, 17( 3), 421-426.
doi: 10.3758/PBR.17.3.421 URL pmid: 20551369 |
[12] |
Folk, C. L., & Remington, R. ( 1998). Selectivity in distraction by irrelevant featural singletons: Evidence for two forms of attentional capture. Journal of Experimental Psychology: Human Perception & Performance, 24( 3), 847-858.
doi: 10.1037//0096-1523.24.3.847 URL pmid: 9627420 |
[13] |
Folk C. L., Remington R. W., & Johnston J. C.( 1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception & Performance, 18( 4), 1030-1044.
URL pmid: 1431742 |
[14] |
Folk C. L., Remington R. W., & Wright J. H.( 1994). The structure of attentional control: Contingent attentional capture by apparent motion, abrupt onset, and color. Journal of Experimental Psychology: Human Perception and Performance, 20( 2), 317-329.
doi: 10.1037//0096-1523.20.2.317 URL pmid: 8189195 |
[15] |
Gibson, B. S., & Kelsey, E. M.( 1998). Stimulus-driven attentional capture is contingent on attentional set for displaywide visual features. Journal of Experimental Psychology: Human Perception & Performance, 24( 3), 699-706.
doi: 10.1037//0096-1523.24.3.699 URL pmid: 9627409 |
[16] | Goodhew S. C., Kendall W., Ferber S., & Pratt J.( 2014). Setting semantics: Conceptual set can determine the physical properties that capture attention. Attention, Perception, & Psychophysics, 76( 6), 1577-1589. |
[17] |
Greene D. J., Mooshagian E., Kaplan J. T., Zaidel E., & Iacoboni M.( 2009). The neural correlates of social attention: Automatic orienting to social and nonsocial cues. Psychological Research, 73( 4), 499-511.
doi: 10.1007/s00426-009-0233-3 URL |
[18] |
Guo Y. N., You X. Q., & Li Y.( 2016). The role of stimulus type and semantic category-level attentional set in sustained inattentional blindness: Stimulus type and attentional set in inattentional blindness. Japanese Psychological Research, 58( 4), 332-341.
doi: 10.1111/jpr.12127 URL |
[19] |
He S., Cavanagh P., & Intriligator J.( 1997). Attentional resolution. Trends in Cognitive Sciences, 1( 3), 115-121.
doi: 10.1016/S1364-6613(97)89058-4 URL pmid: 21223875 |
[20] |
Henderson, J. M., & Hayes, T. R.( 2017). Meaning-based guidance of attention in scenes as revealed by meaning maps. Nature Human Behaviour, 1( 10), 743-747.
doi: 10.1038/s41562-017-0208-0 URL pmid: 31024101 |
[21] |
Hollingworth A., Maxcey-Richard A. M., & Vecera S. P.( 2012). The spatial distribution of attention within and across objects. Journal of Experimental Psychology: Human Perception & Performance, 38( 1), 135-151.
doi: 10.1037/a0024463 URL pmid: 21728455 |
[22] |
Huang W. Y., Su Y. L., Zhen Y. F., & Zhe Q.( 2016). The role of top-down spatial attention in contingent attentional capture. Psychophysiology, 53( 5), 650-662.
doi: 10.1111/psyp.12615 URL pmid: 26879628 |
[23] | Jonides, J. ( 1981). Voluntary vs. automatic control over the mind’s eye’s movement. In J.B. Long and A.D. Baddeley (Eds.) Attention and performance IX: 187-203. Hillsdale, NJ: Erlbaum. |
[24] |
Joseph R. M., Fricker Z., & Keehn B.( 2015). Activation of frontoparietal attention networks by non-predictive gaze and arrow cues. Social Cognitive and Affective Neuroscience, 10( 2), 294-301.
doi: 10.1093/scan/nsu054 URL pmid: 24748545 |
[25] |
Klein, R. M.( 2000). Inhibition of return. Trends in Cognitive Sciences, 4( 4), 138-147.
doi: 10.1016/s1364-6613(00)01452-2 URL pmid: 10740278 |
[26] |
Liu T., Heeger D. J., & Carrasco M.( 2006). Neural correlates of the visual vertical meridian asymmetry. Journal of Vision, 6( 11), 1294-1306.
doi: 10.1167/6.11.12 URL pmid: 17209736 |
[27] |
Lu J. C., Tian L. L., Zhang J. F., Wang J., Ye C. X., & Liu Q.( 2017). Strategic inhibition of distractors with visual working memory contents after involuntary attention capture. Scientific Reports, 7( 1), 16314.
doi: 10.1038/s41598-017-16305-5 URL pmid: 29176675 |
[28] |
Maxfield, L. ( 1997). Attention and semantic priming: A review of prime task effects. Consciousness & Cognition, 6( 2-3), 204-218.
doi: 10.1006/ccog.1997.0311 URL pmid: 9262409 |
[29] |
Meyer, D. E., & Schvaneveldt, R. W.( 1971). Facilitation in recognizing pairs of words: Evidence of a dependence between retrieval operations. Journal of Experimental Psychology, 90( 2), 227-234.
doi: 10.1037/h0031564 URL pmid: 5134329 |
[30] | Palanica, A., & Itier, R. J.( 2015). Eye gaze and head orientation modulate the inhibition of return for faces. Attention Perception & Psychophysics, 77( 8), 2589-2600. |
[31] |
Palanica, A., & Itier, R. J.( 2017). Asymmetry in gaze direction discrimination between the upper and lower visual fields. Perception, 46( 8), 941-955.
doi: 10.1177/0301006616686989 URL pmid: 28056652 |
[32] | Posner, M. I. & Snyder, C. R. R.( 1975). Attention and cognitive control. In R. L. Solso (Ed.). Information processing and cognition: The Loyola symposium(pp. 55-85). Hillsdale, NJ: Erlbaum. |
[33] | Posner, M. I., & Cohen, Y. ( 1984). Components of visual orienting. In H. Bouma & D. G. Bouwhuis (Eds.), Attention and performance X: Control of language processes (pp. 531-556). Hillsdale, NJ: Lawrence Erlbaum. |
[34] | Quek, G. L., & Finkbeiner, M . ( 2016). The upper-hemifield advantage for masked face processing: Not just an attentional bias. Attention Perception & Psychophysics, 78( 1), 52-68. |
[35] |
Sato W., Kochiyama T., Uono S., & Yoshikawa S.( 2009). Commonalities in the neural mechanisms underlying automatic attentional shifts by gaze, gestures, and symbols. Neuroimage, 45( 3), 984-992.
doi: 10.1016/j.neuroimage.2008.12.052 URL pmid: 19167506 |
[36] | Schoeberl T., Fuchs I., Theeuwes J., & Ansorge U.( 2015). Stimulus-driven attentional capture by subliminal onset cues. Attention Perception & Psychophysics, 77( 3), 737-748. |
[37] | Seidl-Rathkopf K. N., Turk-Browne N. B., & Kastner S.( 2015). Automatic guidance of attention during real-world visual search. Attention, Perception, & Psychophysics, 77( 6), 1881-1895. |
[38] | Shen W., Qu Q. Q., & Li X. S.( 2016). Semantic information mediates visual attention during spoken word recognition in Chinese: Evidence from the printed-word version of the visual-world paradigm. Attention, Perception, & Psychophysics, 78( 5), 1267-1284. |
[39] | Sun S. Z., Shen J., Shaw M., Cant J. S., & Ferber S.( 2015). Automatic capture of attention by conceptually generated working memory templates. Attention Perception & Psychophysics, 77( 6), 1841-1847. |
[40] |
Thomas N. A., Castine B. R., Loetscher T., & Nicholls, M. E. R. ( 2015). Upper visual field distractors preferentially bias attention to the left. Cortex, 64, 179-193.
doi: 10.1016/j.cortex.2014.10.018 URL pmid: 25437374 |
[41] |
Wang B. C., Cao X. H., Theeuwes J., Olivers C. N. L., & Wang Z. G.( 2017). Separate capacities for storing different features in visual working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43( 2), 226-236.
doi: 10.1037/xlm0000295 URL pmid: 27399920 |
[42] |
Wang H. Y., Sui J., & Zhang M.( 2016). The effect of cue-target relevance and search strategies on attentional capture: Evidence from meaning cues. Acta Psychologica Sinica, 48( 7), 783-793.
doi: 10.3724/SP.J.1041.2016.00783 URL |
[43] |
Wang H. Y., Sui J., & Zhang M.( 2018). Attentional capture is contingent on attentional control setting for semantic meaning: evidence from modified spatial cueing paradigm. Acta Psychologica Sinica, 50( 10), 1071-1082.
doi: 10.3724/SP.J.1041.2018.01071 URL |
[44] |
Wang H. Y., Zhang M., & Sui J.( 2014). The effect of cue-target relevance and search strategies on attentional capture. Acta Psychologica Sinica, 46( 2), 185-195.
doi: 10.3724/SP.J.1041.2014.00185 URL |
[45] |
Wurm L. H., Legge G. E., Isenberg L. M., & Luebker A.( 1993). Color improves object recognition in normal and low vision. Journal of Experimental Psychology Human Perception & Performance, 19( 4), 899-911.
doi: 10.1037//0096-1523.19.4.899 URL pmid: 8409865 |
[46] |
Wyble B., Folk C., & Potter M. C.( 2013). Contingent attentional capture by conceptually relevant images. Journal of Experimental Psychology: Human Perception and Performance, 39( 3), 861-871.
doi: 10.1037/a0030517 URL pmid: 23163786 |
[47] | Yang M., Liu D. W., Cai A. N., & Zhou R. L.( 2012). Attentional bias of spatial location in viewing scenes: evidence from eye tracking research. Journal of Psychological Science, 35( 2), 258-263. |
[48] |
Yantis, S., & Jonides, J. ( 1984). Abrupt visual onsets and selective attention: evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance, 10( 5), 601-621.
doi: 10.1037//0096-1523.10.5.601 URL pmid: 6238122 |
[49] |
Zhao S., Li C. L., Uono S., Yoshimura S., & Toichi M.( 2017). Human cortical activity evoked by contextual processing in attentional orienting. Scientific Reports, 7( 1), 2962.
doi: 10.1038/s41598-017-03104-1 URL pmid: 28592863 |
[1] | ZHANG Ming, WANG Tingting, WU Xiaogang, ZHANG Yue’e, WANG Aijun. Effects of integration of facial expression and emotional voice on inhibition of return [J]. Acta Psychologica Sinica, 2022, 54(4): 331-342. |
[2] | JIN Hua, JIA Lina, YIN Xiaojuan, YAN Shizhen, WEI Shilin, CHEN Juntao. The neural basis of the continued influence effect of misinformation [J]. Acta Psychologica Sinica, 2022, 54(4): 343-354. |
[3] | CHE Xiaowei, XU Huiyun, WANG Kaixuan, ZHANG Qian, LI Shouxin. Precision requirement of working memory representations influences attentional guidance [J]. Acta Psychologica Sinica, 2021, 53(7): 694-713. |
[4] | HUANG Yuesheng, ZHANG Bao, FAN Xinhua, HUANG Jie. Can negative emotion of task-irrelevant working memory representation affect its attentional capture? A study of eye movements [J]. Acta Psychologica Sinica, 2021, 53(1): 26-37. |
[5] | SONG Xiaolei, WANG Dan, ZHANG Xinxin, JIA Xiaoqian. The underlying mechanism of object-based Correspondence effect [J]. Acta Psychologica Sinica, 2020, 52(6): 669-681. |
[6] | ZHENG Xutao, GUO Wenjiao, CHEN Man, JIN Jia, YIN Jun. Influence of the valence of social actions on attentional capture: Focus on helping and hindering actions [J]. Acta Psychologica Sinica, 2020, 52(5): 584-596. |
[7] | Xiaoyu TANG, Jiaying SUN, Xing PENG. The effect of bimodal divided attention on inhibition of return with audiovisual targets [J]. Acta Psychologica Sinica, 2020, 52(3): 257-268. |
[8] | CHEN Jiejia, ZHOU Yi, CHEN Jie. The relationship between musical training and inhibitory control: An ERPs study [J]. Acta Psychologica Sinica, 2020, 52(12): 1365-1376. |
[9] | WANG Yuan, LI Ke, GAI Xiaosong, CAO Yifei. Training and transfer effects of response inhibition training with online feedback on adolescents and adults’ executive function [J]. Acta Psychologica Sinica, 2020, 52(10): 1212-1223. |
[10] | PENG Xing, CHANG Ruosong, LI Qi, WANG Aijun, TANG Xiaoyu. Visually induced inhibition of return affects the audiovisual integration under different SOA conditions [J]. Acta Psychologica Sinica, 2019, 51(7): 759-771. |
[11] | YANG Qun, ZHANG Qingfang. Aging effect of picture naming in Chinese: The influence of the non-selective inhibition ability [J]. Acta Psychologica Sinica, 2019, 51(10): 1079-1090. |
[12] | Hui Hui WANG, Yu Dan LUO, Bing SHI, Feng Qiong YU, Kai WANG. Excitation of the right dorsolateral prefrontal cortex with transcranial direct current stimulation influences response inhibition [J]. Acta Psychologica Sinica, 2018, 50(6): 647-654. |
[13] | LI Biqin, LI Ling, WANG Aijun, ZHANG Ming. Visual and auditory verbal working memory affects visual attention in the semantic matching [J]. Acta Psychologica Sinica, 2018, 50(5): 483-493. |
[14] | ZHANG Yan, CAO Huimin, ZHENG Yuanjie, REN Yanju. Top-down goals modulate attentional orienting to and disengagement from rewarded distractors [J]. Acta Psychologica Sinica, 2018, 50(4): 377-389. |
[15] | Xuejun BAI, Haijuan YAO. Differences in cognitive inhibition between persons with high and low creativity: Evidences from behavioral and physiological studies [J]. Acta Psychologica Sinica, 2018, 50(11): 1197-1211. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||