Please wait a minute...
Advances in Psychological Science    2018, Vol. 26 Issue (8) : 1417-1428     DOI: 10.3724/SP.J.1042.2018.01417
Regular Articles |
Neural mechanisms underlying dynamic changes of active maternal behavior in rodents
Yifan ZHANG1,Xingliang QI2,Houde CAI1,2()
1 School of Psychology, Nanjing Normal University, Nanjing 210097, China
2 College of Preschool Education, Nanjing Xiaozhuang University, Nanjing 211171, China
Download: PDF(603 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

Active maternal behavior refers to a set of motivated behaviors that promote female mammals to effectively care for the pups during their lactation, so it has a vital important role for the survival and behavioral development in pups. Evidence has shown that the active maternal behavior in rodents could dynamically change from the onset and maintenance in early postpartum to the decline in late postpartum, which reflects female rodents’ adaptation to the stage changes of incentive values in pups. This process not only involves in the pathway of medial preoptic area (MPOA)-ventral tegmental area (VTA)-nucleus accumbens (NA)-ventral pallidum (VP) opened by hormone profile at parturition, but also requires the basolateral amygdala (BLA), medial prefrontal cortex (MPFC), and other areas to real-timely regulate this pathway. Studies on the dynamic changes about active maternal behavior and its neural mechanisms in lactating rodents could deepen our knowledge about the evolution and early development of behaviors, and also be helpful for the clinical intervention to postpartum depression in humans. This review illustrates the relationship between incentive values in pups and dynamic changes in active maternal behavior with evidence used by conditioned place preference (CPP), then systematically elaborates the neural mechanisms underlying dynamic changes of active maternal behavior, and finally discusses several major issues or future research directions.

Keywords active maternal behavior      dynamic changes      incentive values      neural mechanisms     
ZTFLH:  B845  
Corresponding Authors: Houde CAI     E-mail: caihoude@163.com
Online First Date: 02 July 2018    Issue Date: 02 July 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yifan ZHANG
Xingliang QI
Houde CAI
Cite this article:   
Yifan ZHANG,Xingliang QI,Houde CAI. Neural mechanisms underlying dynamic changes of active maternal behavior in rodents[J]. Advances in Psychological Science, 2018, 26(8): 1417-1428.
URL:  
http://journal.psych.ac.cn/xlkxjz/EN/10.3724/SP.J.1042.2018.01417     OR     http://journal.psych.ac.cn/xlkxjz/EN/Y2018/V26/I8/1417
  
1 陈磊磊, 聂莉娜, 李钰, 程鹏, 李鸣, 高军 . ( 2017). 五羟色胺系统对母性行为的调控及其机制. 心理科学进展, 25( 12), 2089-2098.
2 刘飞, 蔡厚德 . ( 2010). 情绪生理机制研究的外周与中枢神经系统整合模型. 心理科学进展, 18( 4), 616-622.
3 Afonso, V. M, King, S., Chatterjee D., & Fleming A. S . ( 2009). Hormones that increase maternal responsiveness affect accumbal dopaminergic responses to pup- and food-stimuli in the female rat. Hormones and Behavior, 56( 1), 11-23.
url: http://linkinghub.elsevier.com/retrieve/pii/S0018506X09000415
4 Afonso V. M., Shams W. M., Jin D., & Fleming A. S . ( 2013). Distal pup cues evoke dopamine responses in hormonally primed rats in the absence of pup experience or ongoing maternal behavior. Journal of Neuroscience, 33( 6), 2305-2312.
url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.2081-12.2013
5 Afonso V. M., Sison M., Lovic V., & Fleming A. S . ( 2007). Medial prefrontal cortex lesions in the female rat affect sexual and maternal behavior and their sequential organization. Behavioral Neuroscience, 121( 3), 515-526.
url: http://doi.apa.org/getdoi.cfm?doi=10.1037/0735-7044.121.3.515
6 Atzil S., Hendler T., & Feldman R . ( 2011). Specifying the neurobiological basis of human attachment: Brain, hormones, and behavior in synchronous and intrusive mothers. Neuropsychopharmacology, 36( 13), 2603-2615.
url: http://www.nature.com/articles/npp2011172
7 Balleine, B. W., & Dickinson, A . ( 1998). Goal-directed instrumental action: Contingency and incentive learning and their cortical substrates. Neuropharmacology, 37( 4-5), 407-419.
url: http://linkinghub.elsevier.com/retrieve/pii/S0028390898000331
8 Banerjee S. B., & Liu R. C . ( 2013). Storing maternal memories: Hypothesizing an interaction of experience and estrogen on sensory cortical plasticity to learn infant cues. Frontiers in Neuroendocrinology, 34( 4), 300-314.
url: http://linkinghub.elsevier.com/retrieve/pii/S0091302213000423
9 Benedetto L., Pereira M., Ferreira A., & Torterolo P . ( 2014). Melanin-concentrating hormone in the medial preoptic area reduces active components of maternal behavior in rats. Peptides, 58, 20-25.
url: http://linkinghub.elsevier.com/retrieve/pii/S0196978114001582
10 Cortés-Mendoza J., Díaz de León-Guerrero S., Pedraza-Alva G., & Pérez-Martínez L . ( 2013). Shaping synaptic plasticity: The role of activity-mediated epigenetic regulation on gene transcription. International Journal of Developmental Neuroscience, 31( 6), 359-369.
11 Dalley J. W., Cardinal R. N., & Robbins T. W . ( 2004). Prefrontal executive and cognitive functions in rodents: Neural and neurochemical substrates. Neuroscience and Biobehavioral Reviews, 28, 771-784.
url: http://linkinghub.elsevier.com/retrieve/pii/S014976340400096X
12 D'Cunha T. M., King S. J., Fleming A. S., & Lévy F . ( 2011). Oxytocin receptors in the nucleus accumbens shell are involved in the consolidation of maternal memory in postpartum rats. Hormones & Behavior, 59( 1), 14-21.
13 Dilgen J., Tejeda H. A., & O'Donnell P . ( 2013). Amygdala inputs drive feedforward inhibition in the medial prefrontal cortex. Journal of Neurophysiology, 110( 1), 221-229.
url: http://www.physiology.org/doi/10.1152/jn.00531.2012
14 Dobolyi A., Grattan D. R., & Stolzenberg D. S . ( 2014). Preoptic inputs and mechanisms that regulate maternal responsiveness. Journal of Neuroendocrinology, 26( 10), 627-640.
url: http://doi.wiley.com/10.1111/jne.12185
15 Febo M., Numan M., & Ferris C. F . ( 2005). Functional magnetic resonance imaging shows oxytocin activates brain regions associated with mother-pup bonding during suckling. Journal of Neuroscience, 25( 50), 11637-11644.
url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.3604-05.2005
16 Fleming A. S., Ruble D., Krieger H., & Wong P. Y . ( 1997). Hormonal and experiential correlates of maternal responsiveness during pregnancy and the puerperium in human mothers. Hormones & Behavior, 31( 2), 145-158.
17 Gagnidze K., Weil Z. M., Faustino L. C., Schaafsma S. M., & Pfaff D. W . ( 2013). Early histone modifications in the ventromedial hypothalamus and preoptic area following oestradiol administration. Journal of Neuroendocrinology, 25( 10), 939-955.
url: http://doi.wiley.com/10.1111/jne.2013.25.issue-10
18 Jin S. H., Blendy J. A., & Thomas S. A . ( 2005). Cyclic AMP response element-binding protein is required for normal maternal nurturing behavior. Neuroscience, 133( 3), 647-655.
url: http://linkinghub.elsevier.com/retrieve/pii/S0306452205003428
19 Kesner R. P . ( 2000). Subregional analysis of mnemonic functions of the prefrontal cortex in the rat. Psychobiology, 28( 2), 219-228.
20 Killcross, S., & Coutureau, E . ( 2003). Coordination of actions and habits in the medial prefrontal cortex of rats. Cerebral Cortex, 13( 4), 400-408.
url: https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/13.4.400
21 Kim P., Strathearn L., & Swain J. E . ( 2016). The maternal brain and its plasticity in humans. Hormones & Behavior, 77, 113-123.
22 Kuroda K. O., Meaney M. J., Uetani N., Fortin Y., Ponton A., & Kato T . ( 2007). ERK-fosB signaling in dorsal MPOA neurons plays a major role in the initiation of parental behavior in mice. Molecular and Cellular Neuroscience, 36( 2), 121-131.
url: http://linkinghub.elsevier.com/retrieve/pii/S1044743107001315
23 Laurent, H. K., & Ablow, J. C . ( 2012). A cry in the dark: Depressed mothers show reduced neural activation to their own infant’s cry. Social Cognitive & Affective Neuroscience, 7( 2), 125-134.
24 Lee A., Clancy S., & Fleming A. S . ( 1999). Mother rats bar-press for pups: Effects of lesions of the MPOA and limbic sites on maternal behavior and operant responding for pup-reinforcement. Behavioural Brain Research, 100( 1-2), 15-31.
url: http://linkinghub.elsevier.com/retrieve/pii/S0166432898001090
25 Li, M., & Fleming, A. S . ( 2003). The nucleus accumbens shell is critical for normal expression of pup-retrieval in postpartum female rats. Behavioural Brain Research, 145( 1-2), 99-111.
url: http://linkinghub.elsevier.com/retrieve/pii/S0166432803001359
26 Lonstein J. S., Lévy F., & Fleming A. S . ( 2015). Common and divergent psychobiological mechanisms underlying maternal behaviors in non-human and human mammals. Hormones and Behavior, 73, 156-185.
url: http://linkinghub.elsevier.com/retrieve/pii/S0018506X15001233
27 Marlin B. J., Mitre M., D'Amour J. A., Chao M. V., & Froemke R. C . ( 2015). Oxytocin enables maternal behaviour by balancing cortical inhibition. Nature, 520( 7548), 499-504.
url: http://www.nature.com/articles/nature14402
28 Mattson, B. J., & Morrell, J. I . ( 2005). Preference for cocaine- versus pup-associated cues differentially activates neurons expressing either Fos or cocaine- and amphetamine- regulated transcript in lactating, maternal rodents. Neuroscience, 135( 2), 315-328.
url: http://linkinghub.elsevier.com/retrieve/pii/S0306452205006913
29 Mattson B. J., Williams S., Rosenblatt J. S., & Morrell J. I . ( 2001). Comparison of two positive reinforcing stimuli: Pups and cocaine throughout the postpartum period. Behavioral Neuroscience, 115( 3), 683-694.
url: http://doi.apa.org/getdoi.cfm?doi=10.1037/0735-7044.115.3.683
30 Moltz, H., & Wiener, E . ( 1966). Effects of ovariectomy on maternal behavior of primiparous and multiparous rats. Journal of Comparative & Physiological Psychology, 62( 3), 382-387.
31 Nicola, S. M . ( 2007). The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacology, 191( 3), 521-550.
url: http://link.springer.com/10.1007/s00213-006-0510-4
32 Numan, M . ( 2006). Hypothalamic neural circuits regulating maternal responsiveness toward infants. Behavioral and Cognitive Neuroscience Reviews, 5( 4), 163-190.
url: http://journals.sagepub.com/doi/10.1177/1534582306288790
33 Numan M., Bress J. A., Ranker L. R., Gary A. J., Denicola A. L., Bettis J. K., & Knapp S. E . ( 2010). The importance of the basolateral/basomedial amygdala for goal-directed maternal responses in postpartum rats. Behavioural Brain Research, 214( 2), 368-376.
url: http://linkinghub.elsevier.com/retrieve/pii/S0166432810004341
34 Numan M., Rosenblatt J. S., & Komisaruk B. R . ( 1977). Medial preoptic area and onset of maternal behavior in the rat. Journal of Comparative & Physiological Psychology, 91( 1), 146-164.
35 Numan, M., & Stolzenberg, D. S . ( 2009). Medial preoptic area interactions with dopamine neural systems in the control of the onset and maintenance of maternal behavior in rats. Frontiers in Neuroendocrinology, 30( 1), 46-64.
url: http://linkinghub.elsevier.com/retrieve/pii/S0091302208000496
36 Numan, M., & Young, L. J . ( 2016). Neural mechanisms of mother-infant bonding and pair bonding: Similarities, differences, and broader implications. Hormones and Behavior, 77, 98-112.
url: http://linkinghub.elsevier.com/retrieve/pii/S0018506X15001038
37 Olazábal D., Pereira M., Agrati D., Ferreira A., Fleming A. S., González-Mariscal G.,.. Uriarte N . ( 2013 a). New theoretical and experimental approaches on maternal motivation in mammals. Neuroscience and Biobehavioral Reviews, 37, 1860-1874.
url: http://linkinghub.elsevier.com/retrieve/pii/S0149763413000997
38 Olazábal D., Pereira M., Agrati D., Ferreira A., Fleming A. S., González-Mariscal G.,.. Uriarte N . ( 2013 b). Flexibility and adaptation of the neural substrate that supports maternal behavior in mammals. Neuroscience and Biobehavioral Reviews, 37, 1875-1892.
url: http://linkinghub.elsevier.com/retrieve/pii/S0149763413001000
39 Parada M., King S., Li M., & Fleming A. S . ( 2008). The roles of accumbal dopamine D1 and D2 receptors in maternal memory in rats. Behavioral Neuroscience, 122( 2), 368-376.
url: http://doi.apa.org/getdoi.cfm?doi=10.1037/0735-7044.122.2.368
40 Peña, C. J., & Champagne, F. A . ( 2015). Neonatal overexpression of estrogen receptor-α alters midbrain dopamine neuron development and reverses the effects of low maternal care in female offspring. Developmental Neurobiology, 75( 10), 1114-1124.
url: http://doi.wiley.com/10.1002/dneu.v75.10
41 Pereira, M . ( 2016). Structural and functional plasticity in the maternal brain circuitry. In H. J. V. Rutherford & L. C. Mayes (Eds.), Maternal brain plasticity: Preclinical and human research and implications for intervention. New Directions for Child and Adolescent Development (no. 153, pp. 23-46). Wiley Periodicals, Inc.
42 Pereira, M., & Ferreira, A . ( 2016). Neuroanatomical and neurochemical basis of parenting: Dynamic coordination of motivational, affective and cognitive processes. Hormones and Behavior, 77, 72-85.
url: http://linkinghub.elsevier.com/retrieve/pii/S0018506X15300398
43 Pereira, M., & Morrell, J. I . ( 2009). The changing role of the medial preoptic area in the regulation of maternal behavior across the postpartum period: Facilitation followed by inhibition. Behavioural Brain Research, 205( 1), 238-248.
url: http://linkinghub.elsevier.com/retrieve/pii/S016643280900388X
44 Pereira, M., & Morrell, J. I . ( 2010). The medial preoptic area is necessary for motivated choice of pup- over cocaine- associated environments by early postpartum rats. Neuroscience, 167( 2), 216-231.
url: http://linkinghub.elsevier.com/retrieve/pii/S0306452210002113
45 Pereira, M., & Morrell, J. I . ( 2011). Functional mapping of the neural circuitry of rat maternal motivation: Effects of site-specific transient neural inactivation. Journal of Neuroendocrinology, 23( 11), 1020-1035.
url: http://doi.wiley.com/10.1111/j.1365-2826.2011.02200.x
46 Reisbick S., Rosenblatt J. S., & Mayer A. D . ( 1975). Decline of maternal behavior in the virgin and lactating rat. Journal of Comparative & Physiological Psychology, 89( 7), 722-732.
47 Riccio, A . ( 2010). Dynamic epigenetic regulation in neurons: Enzymes, stimuli and signaling pathways. Nature Neuroscience, 13( 11), 1330-1337.
url: http://www.nature.com/articles/nn.2671
48 Romero-Fernandez W., Borroto-Escuela D. O., Agnati L. F., & Fuxe K . ( 2013). Evidence for the existence of dopamine D2-oxytocin receptor heteromers in the ventral and dorsal striatum with facilitatory receptor-receptor interactions. Molecular Psychiatry, 18( 8), 849-850.
url: http://www.nature.com/articles/mp2012103
49 Root D. H., Melendez R. I., Zaborszky L., & Napier T. C . ( 2015). The ventral pallidum: Subregion-specific functional anatomy and roles in motivated behaviors. Progress in Neurobiology, 130, 29-70.
url: http://linkinghub.elsevier.com/retrieve/pii/S0301008215000271
50 Rosenblatt, J. S . ( 1967). Nonhormonal basis of maternal behavior in the rat. Science, 156( 3781), 1512-1513.
url: http://www.sciencemag.org/cgi/doi/10.1126/science.156.3781.1512
51 Rosenblatt, J. S., & Siegel, H. I . ( 1981). Factors governing the onset and maintenance of maternal behavior among nonprimate mammals. In D. J. Gubernick & P. H. Klopfer (Eds.), Parental care in mammals ( pp. 13-76). Boston, MA: Springer.
52 Sabihi S., Dong S. M., Durosko N. E., & Leuner B . ( 2014). Oxytocin in the medial prefrontal cortex regulates maternal care, maternal aggression and anxiety during the postpartum period. Frontiers in Behavioral Neuroscience, 8, 258.
53 Seifritz E., Esposito F., Neuhoff J. G., Lüthi A., Mustovic H., Dammann G.,.. Di Salle F . ( 2003). Differential sex-independent amygdala response to infant crying and laughing in parents versus nonparents. Biological Psychiatry, 54( 12), 1367-1375.
url: http://linkinghub.elsevier.com/retrieve/pii/S0006322303006978
54 Seip, K. M., & Morrell, J. I . ( 2009). Transient inactivation of the ventral tegmental area selectively disrupts the expression of conditioned place preference for pup- but not cocaine- paired contexts. Behavioral Neuroscience, 123( 6), 1325-1338.
url: http://doi.apa.org/getdoi.cfm?doi=10.1037/a0017666
55 Seip K. M., Pereira M., Wansaw M. P., Reiss J. I., Dziopa E. I., & Morrell J. I . ( 2008). Incentive salience of cocaine across the postpartum period of the female rat. Psychopharmacology, 199( 1), 119-130.
url: http://link.springer.com/10.1007/s00213-008-1140-9
56 Sesack, S. R., & Grace, A. A . ( 2010). Cortico-basal ganglia reward network: Microcircuitry. Neuropsychopharmacology, 35( 1), 27-47.
url: http://www.nature.com/articles/npp200993
57 Stolzenberg, D. S., & Champagne, F. A . ( 2016). Hormonal and non-hormonal bases of maternal behavior: The role of experience and epigenetic mechanisms. Hormones and Behavior, 77, 204-210.
url: http://linkinghub.elsevier.com/retrieve/pii/S0018506X15300167
58 Strathearn, L . ( 2011). Maternal neglect: Oxytocin, dopamine and the neurobiology of attachment. Journal of Neuroendocrinology, 23( 11), 1054-1065.
url: http://doi.wiley.com/10.1111/j.1365-2826.2011.02228.x
59 Swain J. E., Tasgin E., Mayes L. C., Feldman R., Constable R. T., & Leckman J. F . ( 2008). Maternal brain response to own baby-cry is affected by cesarean section delivery. Journal of Child Psychology & Psychiatry, 49( 10), 1042-1052.
60 Tzschentke T. M . ( 2007). Measuring reward with the conditioned place preference (CPP) paradigm: Update of the last decade. Addiction Biology, 12( 3-4), 227-462.
url: http://www.blackwell-synergy.com/toc/adb/12/3-4
61 Wansaw M. P., Pereira M., & Morrell J. I . ( 2008). Characterization of maternal motivation in the lactating rat: Contrasts between early and late postpartum responses. Hormones and Behavior, 54( 2), 294-301.
url: http://linkinghub.elsevier.com/retrieve/pii/S0018506X08000974
62 Wu Z., Autry A. E., Bergan J. F., Watabe-Uchida M., & Dulac C. G . ( 2014). Galanin neurons in the medial preoptic area govern parental behaviour. Nature, 509( 7500), 325-330.
url: http://www.nature.com/articles/nature13307
63 Zha, X., & Xu, X. H . ( 2015). Dissecting the hypothalamic pathways that underlie innate behaviors. Neuroscience Bulletin, 31( 6), 629-648.
url: http://link.springer.com/10.1007/s12264-015-1564-2
[1] Xiaoqian REN,Xian FANG,Xue SUI,Yan WU. Characteristics and neural mechanisms of handwritten character recognition[J]. Advances in Psychological Science, 2018, 26(7): 1174-1185.
[2] LIN Yuting, ZHANG Delong, LIU Ming.  The system of visual imagery generation and its effect factors[J]. Advances in Psychological Science, 2018, 26(4): 636-644.
[3] WU Qian, WANG Yunjia.  Categorical perception of lexical tone and the neural mechanisms[J]. Advances in Psychological Science, 2018, 26(1): 62-71.
[4] JIN Yuchang, DING Meiyue.  Predictive factors and the neurophysiological mechanism of postpartum depression[J]. Advances in Psychological Science, 2017, 25(7): 1145-1161.
[5] GUO Xiuyan, ZHENG Li, CHENG Xuemei, LIU Yingjie, LI Lin.  The cognitive and neural mechanisms of perception of unfairness and related decision-making process[J]. Advances in Psychological Science, 2017, 25(6): 903-911.
[6] MENG Jing; SHEN Lin. Empathy in individuals with autism spectrum disorder: Symptoms, theories and neural mechanisms[J]. Advances in Psychological Science, 2017, 25(1): 59-66.
[7] ZHOU Linshu; JIANG Cunmei. Neurocognitive mechanisms underlying the representations of philosophical concepts in music[J]. Advances in Psychological Science, 2016, 24(6): 855-862.
[8] ZHANG Wei; ZHANG Zhen; GAO Yu; DUAN Huaping; WU Xingnan. The theoretical models and brain mechanisms of interpersonal trust game during economic decision-making[J]. Advances in Psychological Science, 2016, 24(11): 1780-1791.
[9] YANG Jiemin; ZHANG Shu; YUAN Jiajin; LIU Guangyuan. The Interactive Regulation of Negative Emotions by #br# Anticipation and Cognitive Strategies[J]. Advances in Psychological Science, 2015, 23(8): 1312-1323.
[10] XIAO Xuezhen; WANG Aiping. Theoretical Debate and Brain Mechanisms of Repetition Blindness Effect[J]. Advances in Psychological Science, 2015, 23(2): 182-191.
[11] ZHANG Ying;FENG Tingyong. The Developmental Cognitive Neural Mechanisms of Adolescents’ Risky Decision Making[J]. Advances in Psychological Science, 2014, 22(7): 1139-1148.
[12] PENG Juan;FENG Tingyong. Intervention Program and Neural Mechanisms for Intertemporal Choice in Addicts[J]. Advances in Psychological Science, 2014, 22(5): 810-821.
[13] LUO Junlong;ZHANG Entao;YUE Caizhen;TANG Xiaochen;ZHONG Jun;ZHANG Qinglin. Neural Mechanisms of the Belief-bias Effect Based on Dual Process Theories[J]. Advances in Psychological Science, 2013, 21(5): 800-807.
[14] HE Xu;GUO Chunyan. Capacity and Resource Allocation of Visual Working Memory[J]. Advances in Psychological Science, 2013, 21(10): 1741-1748.
[15] LI He;CAI Houde. The Modulation of Emotion on the Attentional Function Networks[J]. Advances in Psychological Science, 2013, 21(1): 59-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Advances in Psychological Science
Support by Beijing Magtech