心理学报 ›› 2022, Vol. 54 ›› Issue (11): 1403-1415.doi: 10.3724/SP.J.1041.2022.01403
收稿日期:
2021-10-06
发布日期:
2022-09-08
出版日期:
2022-11-25
通讯作者:
喻晓锋
E-mail:xyu6@jxnu.edu.cn
基金资助:
QIN Chunying1,2, YU Xiaofeng1()
Received:
2021-10-06
Online:
2022-09-08
Published:
2022-11-25
Contact:
YU Xiaofeng
E-mail:xyu6@jxnu.edu.cn
摘要:
多级属性是将诊断测验中传统的二值(即两种水平, 通常定义为0和1)属性定义为多值(多个水平可以为0, 1, …), 它不但可以描述学生对于知识属性是否掌握, 而且可以描述学生在属性上的掌握程度, 这样使得诊断测验能提供给被试更丰富的知识掌握详情。本文将适用于二级属性Q矩阵的统计量(S统计量)拓展到多级属性下的Q矩阵验证和估计, 在两种常见的条件下, 设计了两种估计算法:联合估计算法和在线估计算法。模拟实验结果表明:联合估计算法适用于对专家界定的初始Q矩阵进行验证, 当初始Q矩阵中包含较少的错误时, 通过联合估计算法有很大可能恢复正确的Q矩阵; 在线估计算法适用于对“新项目”进行属性向量和项目参数的在线标定, 基于一定数量的“基础项目”, 在线估计算法对于新项目的估计也能达到较满意的成功率。实证数据分析则进一步展示了该方法的使用。
中图分类号:
秦春影, 喻晓锋. (2022). 多级属性Q矩阵的验证与估计. 心理学报, 54(11), 1403-1415.
QIN Chunying, YU Xiaofeng. (2022). Validation and estimation of expert-defined Q-matrix with polytomous attribute. Acta Psychologica Sinica, 54(11), 1403-1415.
包含的错 误项目数 | 被试人数 | ||||||||
---|---|---|---|---|---|---|---|---|---|
1000 | 2000 | 4000 | |||||||
成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | 成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | 成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | |
3 | 94 | 2.05 | 197397.50 | 98 | 2.04 | 205128.46 | 98 | 2.00 | 211650.67 |
4 | 92 | 2.14 | 210386.75 | 95 | 2.12 | 208827.46 | 96 | 2.14 | 213588.22 |
5 | 81 | 2.30 | 234271.81 | 94 | 2.19 | 211649.67 | 94 | 2.21 | 215590.22 |
表1 错误类型I, $Q_{1}^{30}$时JE算法的估计成功率和平均迭代次数
包含的错 误项目数 | 被试人数 | ||||||||
---|---|---|---|---|---|---|---|---|---|
1000 | 2000 | 4000 | |||||||
成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | 成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | 成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | |
3 | 94 | 2.05 | 197397.50 | 98 | 2.04 | 205128.46 | 98 | 2.00 | 211650.67 |
4 | 92 | 2.14 | 210386.75 | 95 | 2.12 | 208827.46 | 96 | 2.14 | 213588.22 |
5 | 81 | 2.30 | 234271.81 | 94 | 2.19 | 211649.67 | 94 | 2.21 | 215590.22 |
包含的错 误项目数 | 被试人数 | ||||||||
---|---|---|---|---|---|---|---|---|---|
1000 | 2000 | 4000 | |||||||
成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | 成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | 成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | |
3 | 36 | 3.13 | 89182.33 | 46 | 3.02 | 101401.32 | 54 | 2.92 | 109542.61 |
4 | 21 | 3.63 | 90511.47 | 27 | 3.44 | 111399.52 | 38 | 3.33 | 115674.36 |
5 | 18 | 3.89 | 135365.82 | 22 | 3.62 | 138115.65 | 25 | 3.47 | 144921.76 |
表2 错误类型I, $Q_{1}^{15}$时JE算法的估计估计成功率和平均迭代次数
包含的错 误项目数 | 被试人数 | ||||||||
---|---|---|---|---|---|---|---|---|---|
1000 | 2000 | 4000 | |||||||
成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | 成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | 成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | |
3 | 36 | 3.13 | 89182.33 | 46 | 3.02 | 101401.32 | 54 | 2.92 | 109542.61 |
4 | 21 | 3.63 | 90511.47 | 27 | 3.44 | 111399.52 | 38 | 3.33 | 115674.36 |
5 | 18 | 3.89 | 135365.82 | 22 | 3.62 | 138115.65 | 25 | 3.47 | 144921.76 |
包含的错 误项目数 | 被试人数 | ||||||||
---|---|---|---|---|---|---|---|---|---|
1000 | 2000 | 4000 | |||||||
成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | 成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | 成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | |
3 | 91 | 2.94 | 217999.39 | 97 | 2.38 | 207354.22 | 98 | 2.43 | 212017.28 |
4 | 90 | 3.17 | 221085.75 | 95 | 2.58 | 209615.68 | 96 | 2.68 | 214643.81 |
5 | 80 | 3.75 | 254841.29 | 89 | 3.32 | 242336.01 | 93 | 3.58 | 287900.52 |
表3 错误类型II, $Q_{1}^{30}$时JE算法的估计成功率平均迭代次数
包含的错 误项目数 | 被试人数 | ||||||||
---|---|---|---|---|---|---|---|---|---|
1000 | 2000 | 4000 | |||||||
成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | 成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | 成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | |
3 | 91 | 2.94 | 217999.39 | 97 | 2.38 | 207354.22 | 98 | 2.43 | 212017.28 |
4 | 90 | 3.17 | 221085.75 | 95 | 2.58 | 209615.68 | 96 | 2.68 | 214643.81 |
5 | 80 | 3.75 | 254841.29 | 89 | 3.32 | 242336.01 | 93 | 3.58 | 287900.52 |
包含的错 误项目数 | 被试人数 | ||||||||
---|---|---|---|---|---|---|---|---|---|
1000 | 2000 | 4000 | |||||||
成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | 成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | 成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | |
3 | 33 | 3.34 | 92723.60 | 45 | 3.32 | 101737.07 | 51 | 3.28 | 119922.70 |
4 | 17 | 3.85 | 97788.49 | 25 | 3.74 | 111740.98 | 37 | 3.73 | 126056.07 |
5 | 15 | 4.41 | 144782.21 | 18 | 4.32 | 184428.18 | 20 | 4.27 | 195388.36 |
表4 错误类型II, $Q_{2}^{15}$时JE算法的估计成功率和平均迭代次数
包含的错 误项目数 | 被试人数 | ||||||||
---|---|---|---|---|---|---|---|---|---|
1000 | 2000 | 4000 | |||||||
成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | 成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | 成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | |
3 | 33 | 3.34 | 92723.60 | 45 | 3.32 | 101737.07 | 51 | 3.28 | 119922.70 |
4 | 17 | 3.85 | 97788.49 | 25 | 3.74 | 111740.98 | 37 | 3.73 | 126056.07 |
5 | 15 | 4.41 | 144782.21 | 18 | 4.32 | 184428.18 | 20 | 4.27 | 195388.36 |
包含的基 础项目数 | 被试人数 | ||||||||
---|---|---|---|---|---|---|---|---|---|
1000 | 2000 | 4000 | |||||||
成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | 成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | 成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | |
8 | 88 | 1.78 | 176481.88 | 90 | 1.65 | 166386.66 | 91 | 1.57 | 171756.48 |
9 | 89 | 1.23 | 118728.54 | 91 | 1.20 | 123921.95 | 93 | 1.14 | 122017.14 |
10 | 91 | 0.74 | 72991.02 | 92 | 0.71 | 78193.55 | 93 | 0.68 | 74526.40 |
11 | 92 | 0.49 | 49849.71 | 92 | 0.47 | 51103.55 | 94 | 0.39 | 41299.84 |
12 | 94 | 0.44 | 43077.71 | 94 | 0.40 | 45441.27 | 95 | 0.37 | 42427.26 |
13 | 95 | 0.37 | 38305.11 | 95 | 0.35 | 40129.54 | 96 | 0.27 | 30554.28 |
14 | 95 | 0.31 | 31613.60 | 97 | 0.31 | 33325.60 | 97 | 0.20 | 22460.50 |
15 | 96 | 0.22 | 23545.31 | 98 | 0.20 | 24116.44 | 99 | 0.14 | 15503.14 |
表5 $Q_{1}^{30}$时OE算法的估计成功率和平均迭代次数
包含的基 础项目数 | 被试人数 | ||||||||
---|---|---|---|---|---|---|---|---|---|
1000 | 2000 | 4000 | |||||||
成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | 成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | 成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | |
8 | 88 | 1.78 | 176481.88 | 90 | 1.65 | 166386.66 | 91 | 1.57 | 171756.48 |
9 | 89 | 1.23 | 118728.54 | 91 | 1.20 | 123921.95 | 93 | 1.14 | 122017.14 |
10 | 91 | 0.74 | 72991.02 | 92 | 0.71 | 78193.55 | 93 | 0.68 | 74526.40 |
11 | 92 | 0.49 | 49849.71 | 92 | 0.47 | 51103.55 | 94 | 0.39 | 41299.84 |
12 | 94 | 0.44 | 43077.71 | 94 | 0.40 | 45441.27 | 95 | 0.37 | 42427.26 |
13 | 95 | 0.37 | 38305.11 | 95 | 0.35 | 40129.54 | 96 | 0.27 | 30554.28 |
14 | 95 | 0.31 | 31613.60 | 97 | 0.31 | 33325.60 | 97 | 0.20 | 22460.50 |
15 | 96 | 0.22 | 23545.31 | 98 | 0.20 | 24116.44 | 99 | 0.14 | 15503.14 |
包含的基 础项目数 | 被试人数 | ||||||||
---|---|---|---|---|---|---|---|---|---|
1000 | 2000 | 4000 | |||||||
成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | 成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | 成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | |
5 | 37 | 1.98 | 59247.69 | 46 | 1.65 | 60889.27 | 57 | 1.57 | 65979.07 |
6 | 45 | 1.73 | 51665.79 | 61 | 1.50 | 59236.04 | 63 | 1.44 | 58697.26 |
7 | 56 | 1.54 | 51053.47 | 69 | 1.47 | 54194.22 | 72 | 1.39 | 52665.52 |
8 | 74 | 1.59 | 52259.96 | 77 | 1.41 | 47412.48 | 79 | 1.38 | 57552.01 |
9 | 81 | 1.24 | 37851.94 | 85 | 1.14 | 42252.64 | 91 | 1.07 | 42516.31 |
10 | 89 | 1.06 | 30857.39 | 91 | 1.05 | 37500.04 | 93 | 1.01 | 40903.18 |
表6 $Q_{2}^{15}$时OE算法的估计估计成功率和平均迭代次数
包含的基 础项目数 | 被试人数 | ||||||||
---|---|---|---|---|---|---|---|---|---|
1000 | 2000 | 4000 | |||||||
成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | 成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | 成功率(%) | 平均迭 代次数 | 平均执行 时间(s) | |
5 | 37 | 1.98 | 59247.69 | 46 | 1.65 | 60889.27 | 57 | 1.57 | 65979.07 |
6 | 45 | 1.73 | 51665.79 | 61 | 1.50 | 59236.04 | 63 | 1.44 | 58697.26 |
7 | 56 | 1.54 | 51053.47 | 69 | 1.47 | 54194.22 | 72 | 1.39 | 52665.52 |
8 | 74 | 1.59 | 52259.96 | 77 | 1.41 | 47412.48 | 79 | 1.38 | 57552.01 |
9 | 81 | 1.24 | 37851.94 | 85 | 1.14 | 42252.64 | 91 | 1.07 | 42516.31 |
10 | 89 | 1.06 | 30857.39 | 91 | 1.05 | 37500.04 | 93 | 1.01 | 40903.18 |
题目编号 | 属性1 | 属性2 | 属性3 | 属性4 | 题目编号 | 属性1 | 属性2 | 属性3 | 属性4 |
---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 0 | 0 | 11 | 0 | 0 | 4 | 2 |
2 | 0 | 0 | 2 | 1 | 12 | 0 | 4 | 0 | 1 |
3 | 0 | 3 | 0 | 4 | 13 | 2 | 0 | 3 | 0 |
4 | 0 | 0 | 2 | 0 | 14 | 0 | 1 | 0 | 3 |
5 | 1 | 2 | 0 | 0 | 15 | 2 | 1 | 0 | 0 |
6 | 0 | 1 | 1 | 0 | 16 | 0 | 1 | 1 | 0 |
7 | 0 | 2 | 0 | 0 | 17 | 0 | 2 | 0 | 0 |
8 | 3 | 0 | 0 | 1 | 18 | 4 | 0 | 0 | 1 |
9 | 1 | 1 | 0 | 0 | 19 | 0 | 0 | 4 | 2 |
10 | 1 | 2 | 0 | 0 | 20 | 0 | 1 | 0 | 1 |
表7 概率数据对应的原始Q矩阵
题目编号 | 属性1 | 属性2 | 属性3 | 属性4 | 题目编号 | 属性1 | 属性2 | 属性3 | 属性4 |
---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 0 | 0 | 11 | 0 | 0 | 4 | 2 |
2 | 0 | 0 | 2 | 1 | 12 | 0 | 4 | 0 | 1 |
3 | 0 | 3 | 0 | 4 | 13 | 2 | 0 | 3 | 0 |
4 | 0 | 0 | 2 | 0 | 14 | 0 | 1 | 0 | 3 |
5 | 1 | 2 | 0 | 0 | 15 | 2 | 1 | 0 | 0 |
6 | 0 | 1 | 1 | 0 | 16 | 0 | 1 | 1 | 0 |
7 | 0 | 2 | 0 | 0 | 17 | 0 | 2 | 0 | 0 |
8 | 3 | 0 | 0 | 1 | 18 | 4 | 0 | 0 | 1 |
9 | 1 | 1 | 0 | 0 | 19 | 0 | 0 | 4 | 2 |
10 | 1 | 2 | 0 | 0 | 20 | 0 | 1 | 0 | 1 |
项目编号 | 属性 | ||||
---|---|---|---|---|---|
属性1 | 属性2 | 属性3 | 属性4 | 属性5 | |
1 | 1 | 0 | 0 | 0 | 0 |
2 | 0 | 1 | 0 | 0 | 0 |
3 | 0 | 0 | 1 | 0 | 0 |
4 | 0 | 0 | 0 | 1 | 0 |
5 | 0 | 0 | 0 | 0 | 1 |
6 | 2 | 0 | 0 | 0 | 0 |
7 | 0 | 2 | 0 | 0 | 0 |
8 | 0 | 0 | 2 | 0 | 0 |
9 | 0 | 0 | 0 | 2 | 0 |
10 | 0 | 0 | 0 | 0 | 2 |
11 | 1 | 2 | 0 | 0 | 0 |
12a | 0 | 1 | 2 | 0 | 0 |
13 | 0 | 0 | 1 | 2 | 0 |
14 | 0 | 0 | 0 | 1 | 2 |
15 | 2 | 0 | 0 | 0 | 1 |
16 | 1 | 1 | 0 | 0 | 0 |
17 | 0 | 1 | 1 | 0 | 0 |
18 | 0 | 0 | 1 | 1 | 0 |
19 | 0 | 0 | 0 | 1 | 1 |
20 | 1 | 0 | 0 | 0 | 1 |
21 | 1 | 0 | 2 | 0 | 0 |
22 | 0 | 1 | 0 | 2 | 0 |
23 | 0 | 0 | 1 | 0 | 2 |
24 | 2 | 0 | 0 | 1 | 0 |
25 | 0 | 2 | 0 | 0 | 1 |
26 | 2 | 2 | 0 | 0 | 0 |
27 | 0 | 2 | 2 | 0 | 0 |
28 | 0 | 0 | 2 | 2 | 0 |
29 | 0 | 0 | 0 | 2 | 2 |
30 | 2 | 0 | 0 | 0 | 2 |
附表A1 30题对应的Q矩阵Q130
项目编号 | 属性 | ||||
---|---|---|---|---|---|
属性1 | 属性2 | 属性3 | 属性4 | 属性5 | |
1 | 1 | 0 | 0 | 0 | 0 |
2 | 0 | 1 | 0 | 0 | 0 |
3 | 0 | 0 | 1 | 0 | 0 |
4 | 0 | 0 | 0 | 1 | 0 |
5 | 0 | 0 | 0 | 0 | 1 |
6 | 2 | 0 | 0 | 0 | 0 |
7 | 0 | 2 | 0 | 0 | 0 |
8 | 0 | 0 | 2 | 0 | 0 |
9 | 0 | 0 | 0 | 2 | 0 |
10 | 0 | 0 | 0 | 0 | 2 |
11 | 1 | 2 | 0 | 0 | 0 |
12a | 0 | 1 | 2 | 0 | 0 |
13 | 0 | 0 | 1 | 2 | 0 |
14 | 0 | 0 | 0 | 1 | 2 |
15 | 2 | 0 | 0 | 0 | 1 |
16 | 1 | 1 | 0 | 0 | 0 |
17 | 0 | 1 | 1 | 0 | 0 |
18 | 0 | 0 | 1 | 1 | 0 |
19 | 0 | 0 | 0 | 1 | 1 |
20 | 1 | 0 | 0 | 0 | 1 |
21 | 1 | 0 | 2 | 0 | 0 |
22 | 0 | 1 | 0 | 2 | 0 |
23 | 0 | 0 | 1 | 0 | 2 |
24 | 2 | 0 | 0 | 1 | 0 |
25 | 0 | 2 | 0 | 0 | 1 |
26 | 2 | 2 | 0 | 0 | 0 |
27 | 0 | 2 | 2 | 0 | 0 |
28 | 0 | 0 | 2 | 2 | 0 |
29 | 0 | 0 | 0 | 2 | 2 |
30 | 2 | 0 | 0 | 0 | 2 |
项目编号 | 属性 | ||||
---|---|---|---|---|---|
属性1 | 属性2 | 属性3 | 属性4 | 属性5 | |
1 | 1 | 0 | 0 | 0 | 0 |
2 | 0 | 1 | 0 | 0 | 0 |
3 | 0 | 0 | 1 | 0 | 0 |
4 | 0 | 0 | 0 | 1 | 0 |
5 | 0 | 0 | 0 | 0 | 1 |
6 | 1 | 2 | 0 | 0 | 0 |
7 | 0 | 1 | 2 | 0 | 0 |
8 | 0 | 0 | 1 | 2 | 0 |
9 | 0 | 0 | 0 | 1 | 2 |
10 | 2 | 0 | 0 | 0 | 1 |
11 | 2 | 2 | 0 | 1 | 0 |
12 | 2 | 1 | 0 | 0 | 2 |
13 | 1 | 0 | 2 | 2 | 0 |
14 | 0 | 2 | 1 | 0 | 2 |
15 | 0 | 0 | 2 | 2 | 1 |
附表A2 15题对应的Q矩阵Q215
项目编号 | 属性 | ||||
---|---|---|---|---|---|
属性1 | 属性2 | 属性3 | 属性4 | 属性5 | |
1 | 1 | 0 | 0 | 0 | 0 |
2 | 0 | 1 | 0 | 0 | 0 |
3 | 0 | 0 | 1 | 0 | 0 |
4 | 0 | 0 | 0 | 1 | 0 |
5 | 0 | 0 | 0 | 0 | 1 |
6 | 1 | 2 | 0 | 0 | 0 |
7 | 0 | 1 | 2 | 0 | 0 |
8 | 0 | 0 | 1 | 2 | 0 |
9 | 0 | 0 | 0 | 1 | 2 |
10 | 2 | 0 | 0 | 0 | 1 |
11 | 2 | 2 | 0 | 1 | 0 |
12 | 2 | 1 | 0 | 0 | 2 |
13 | 1 | 0 | 2 | 2 | 0 |
14 | 0 | 2 | 1 | 0 | 2 |
15 | 0 | 0 | 2 | 2 | 1 |
项目编号 | 属性 | |||
---|---|---|---|---|
属性1 | 属性2 | 属性3 | 属性4 | |
1 | 1 | 1 | 0 | 0 |
2 | 0 | 0 | 2 | 2 |
3 | 0 | 3 | 0 | 4 |
4 | 0 | 0 | 2 | 0 |
5 | 1 | 1 | 0 | 0 |
6 | 0 | 2 | 1 | 0 |
7 | 0 | 2 | 1 | 0 |
8 | 3 | 0 | 0 | 1 |
9 | 1 | 1 | 0 | 0 |
10 | 1 | 2 | 0 | 0 |
11 | 0 | 0 | 4 | 2 |
12 | 0 | 4 | 0 | 1 |
13 | 3 | 0 | 1 | 0 |
14 | 0 | 1 | 0 | 3 |
15 | 2 | 2 | 0 | 0 |
16 | 0 | 1 | 1 | 0 |
17 | 0 | 2 | 0 | 0 |
18 | 4 | 0 | 0 | 1 |
19 | 0 | 0 | 3 | 3 |
20 | 0 | 2 | 0 | 1 |
附表A3 由JE算法得到概率论数据的建议Q-matrix
项目编号 | 属性 | |||
---|---|---|---|---|
属性1 | 属性2 | 属性3 | 属性4 | |
1 | 1 | 1 | 0 | 0 |
2 | 0 | 0 | 2 | 2 |
3 | 0 | 3 | 0 | 4 |
4 | 0 | 0 | 2 | 0 |
5 | 1 | 1 | 0 | 0 |
6 | 0 | 2 | 1 | 0 |
7 | 0 | 2 | 1 | 0 |
8 | 3 | 0 | 0 | 1 |
9 | 1 | 1 | 0 | 0 |
10 | 1 | 2 | 0 | 0 |
11 | 0 | 0 | 4 | 2 |
12 | 0 | 4 | 0 | 1 |
13 | 3 | 0 | 1 | 0 |
14 | 0 | 1 | 0 | 3 |
15 | 2 | 2 | 0 | 0 |
16 | 0 | 1 | 1 | 0 |
17 | 0 | 2 | 0 | 0 |
18 | 4 | 0 | 0 | 1 |
19 | 0 | 0 | 3 | 3 |
20 | 0 | 2 | 0 | 1 |
项目编号 | 属性 | |||
---|---|---|---|---|
属性1 | 属性2 | 属性3 | 属性4 | |
1 | 1 | 1 | 0 | 0 |
2 | 0 | 0 | 2 | 2 |
3 | 0 | 3 | 0 | 4 |
4 | 0 | 0 | 2 | 0 |
5 | 1 | 1 | 0 | 0 |
6 | 0 | 2 | 1 | 0 |
7 | 0 | 2 | 1 | 0 |
8 | 3 | 0 | 0 | 1 |
9 | 1 | 1 | 0 | 0 |
10 | 1 | 2 | 0 | 0 |
11 | 0 | 0 | 4 | 2 |
12 | 0 | 4 | 0 | 1 |
13 | 3 | 0 | 3 | 0 |
14 | 0 | 1 | 0 | 3 |
15 | 2 | 2 | 0 | 0 |
16 | 0 | 1 | 1 | 0 |
17 | 0 | 2 | 0 | 0 |
18 | 4 | 0 | 0 | 1 |
19* | 0 | 0 | 4 | 3 |
20 | 0 | 1 | 0 | 1 |
附表A4 由OE算法得到概率论数据的建议Q-matrix
项目编号 | 属性 | |||
---|---|---|---|---|
属性1 | 属性2 | 属性3 | 属性4 | |
1 | 1 | 1 | 0 | 0 |
2 | 0 | 0 | 2 | 2 |
3 | 0 | 3 | 0 | 4 |
4 | 0 | 0 | 2 | 0 |
5 | 1 | 1 | 0 | 0 |
6 | 0 | 2 | 1 | 0 |
7 | 0 | 2 | 1 | 0 |
8 | 3 | 0 | 0 | 1 |
9 | 1 | 1 | 0 | 0 |
10 | 1 | 2 | 0 | 0 |
11 | 0 | 0 | 4 | 2 |
12 | 0 | 4 | 0 | 1 |
13 | 3 | 0 | 3 | 0 |
14 | 0 | 1 | 0 | 3 |
15 | 2 | 2 | 0 | 0 |
16 | 0 | 1 | 1 | 0 |
17 | 0 | 2 | 0 | 0 |
18 | 4 | 0 | 0 | 1 |
19* | 0 | 0 | 4 | 3 |
20 | 0 | 1 | 0 | 1 |
[1] |
Cai, Y., & Tu, D. B. (2015). Extension of cognitive diagnosis models based on the polytomous attributes framework and their Q-matrices designs. Acta Psychologica Sinica, 47(10), 1300-1310.
doi: 10.3724/SP.J.1041.2015.01300 URL |
[蔡艳, 涂冬波. (2015). 属性多级化的认知诊断模型拓展及其Q矩阵设计. 心理学报, 47(10), 1300-1310.] | |
[2] |
Chen, J. S., & de la Torre, J. (2013). A general cognitive diagnosis model for expert-defined polytomous attributes. Applied Psychological Measurement, 37(6), 419-437.
doi: 10.1177/0146621613479818 URL |
[3] |
Chen, Y. X., Liu, J. C., Xu, G. J., & Ying, Z. L. (2015). Statistical analysis of Q-matrix based diagnostic classification models. Journal of the American Statistical Association, 110(510), 850-866.
doi: 10.1080/01621459.2014.934827 URL |
[4] | Chung, M.-T. (2014). Estimating the Q-matrix for cognitive diagnosis models in a Bayesian framework. (Unpublished doctoral dissertation), Columbia University, New York. |
[5] |
DeCarlo, L. T. (2012). Recognizing Uncertainty in the Q-Matrix via a Bayesian Extension of the DINA Model. Applied Psychological Measurement, 36(6), 447-468.
doi: 10.1177/0146621612449069 URL |
[6] |
de La Torre, J. (2008). An empirically based method of Q-matrix validation for the DINA model: Development and applications. Journal of Educational Measurement, 45(4), 343-362.
doi: 10.1111/j.1745-3984.2008.00069.x URL |
[7] | de la Torre, J. (2009). DINA model and parameter estimation: A didactic. Journal of Educational and Behavioral Statistics, 34(1), 115-130. |
[8] |
de la Torre, J. (2011). The generalized dina model framework. Psychometrika, 76(2), 179-199.
doi: 10.1007/s11336-011-9207-7 URL |
[9] |
de la Torre, J., & Chiu, C. Y. (2016). A general method of empirical Q-matrix validation. Psychometrika, 81(2), 253-273.
doi: 10.1007/s11336-015-9467-8 pmid: 25943366 |
[10] | Ding, S. L., Luo, F., Wang, W. Y., & Xiong, J. H. (2019). The designing cognitive diagnostic test with dichotomous scoring. Journal of Jiangxi Normal University (Natural Science), 43(5), 441-447. |
[丁树良, 罗芬, 汪文义, 熊建华. (2019). 0-1 评分认知诊断测验设计. 江西师范大学学报(自然科学版), 43(5), 441-447.] | |
[11] |
Fung, W.-K. (1993). Unmasking outliers and leverage points: A confirmation. Journal of the American Statistical Association, 88(422), 515-519.
doi: 10.1080/01621459.1993.10476302 URL |
[12] |
Gu, Y. Q., Liu, J. C., Xu, G. J., & Ying, Z. L. (2018). Hypothesis testing of the Q-matrix, Psychometrika, 83(3), 515-537.
doi: 10.1007/s11336-018-9629-6 URL |
[13] | Gu, Y. Q., & Xu, G. J. (2021). Sufficient and Necessary Conditions for the Identifiability of the Q-matrix. Statistica Sinica, 31, 449-472. |
[14] | Haberman, S. J., von Davier, M., & Lee, Y.-H. (2008). Comparison of multidimensional item response models: Multivariate normal ability distributions versus multivariate polytomous ability distributions (ETS Research Report no. RR-08-45). Princeton, NJ: Educational Testing Service. |
[15] | Huang, Y., Luo, F., Xiong, J. H., Ding, S. L., & Gan, D. W. (2019). The multiple-strategy cognitive diagnosis method with polytomous scoring. Journal of Jiangxi Normal University (Natural Science), 43(4), 376-381. |
[黄玉, 罗芬, 熊建华, 丁树良, 甘登文. (2019). 多级评分多策略认知诊断方法. 江西师范大学学报(自然科学版), 43(4), 376-381.] | |
[16] | Karelitz, T. M. (2004). Ordered category attribute coding framework for cognitive assessments. (Unpublished doctoral dissertation), University of Illinois at Urbana-Champaign. |
[17] | Leighton, J. P., & Gierl, M. J. (2007). Cognitive diagnostic assessment for education: Theory and applications. Cambridge University Press. |
[18] |
Leighton, J. P., Gierl, M. J., & Hunka, S. M. (2004). The attribute hierarchy method for cognitive assessment: A variation on Tatsuoka’s rule-space approach. Journal of Educational Measurement, 41(3), 205-237.
doi: 10.1111/j.1745-3984.2004.tb01163.x URL |
[19] | Li, C. C., Ma, C. C., & Xu, G. J. (2022). Learning large Q-matrix by restricted Boltzmann machines. Psychometrika. https://doi.org/10.1007/s11336-021-09828-4. |
[20] |
Liu, J. C., Xu, G. J., & Ying, Z. L. (2012). Data driven learning of Q matrix. Applied Psychological Measurement, 36(7), 548-564.
doi: 10.1177/0146621612456591 URL |
[21] | Liu, J. C., Xu, G. J., & Ying, Z. L. (2013). Theory of self-learning Q-matrix. Bernoulli, 19(5A), 1790-1817. |
[22] | Liu, N., Liu, X. L., Li, J. J., Zeng, P. F., Yu, X. J., & Kang, C. H. (2021). Constructing a non-parametric Q-matrix correction method based on Manhattan distance. Journal of Jiangxi Normal University (Natural Science), 45(6), 634-641. |
[刘娜, 刘芯伶, 李俊杰, 曾平飞, 俞向军, 康春花. (2021). 基于曼哈顿距离构建非参数Q矩阵修正方法. 江西师范大学学报(自然科学版), 45(6), 634-641.] | |
[23] | Luo, Z. S. (2019). Fundamentals of cognitive diagnostic assessment. Beijing Normal University publishing group. |
[24] | 罗照盛. (2019). 认知诊断评价理论基础. 北京师范大学出版集团. |
Ma, W., & de la Torre, J. (2019). An empirical Q-matrix validation method for the sequential generalized DINA model. British Journal of Mathematical and Statistical Psychology, 73(1), 142-163.
doi: 10.1111/bmsp.12156 URL |
|
[25] |
Peng, Y. F., Luo, Z. S., Li, Y. J., Gao, C. L. (2018). Optimization of test design for examinees with different cognitive structures. Acta Psychologica Sinica, 50(1), 130-140.
doi: 10.3724/SP.J.1041.2018.00130 URL |
[彭亚风, 罗照盛, 李喻骏, 高椿雷. (2018). 不同认知结构被试的测验设计模式. 心理学报, 50(1), 130-140.] | |
[26] |
Peng, Y. F., Luo, Z. S., Yu, X. F., Gao, C. L., Li, Y, J. (2016). The optimization of test design in Cognitive Diagnostic Assessment. Acta Psychologica Sinica, 48(12), 1600-1611.
doi: 10.3724/SP.J.1041.2016.01600 URL |
[彭亚风, 罗照盛, 喻晓锋, 高椿雷, 李喻骏. (2016). 认知诊断评价中测验结构的优化设计. 心理学报, 48(12), 1600-1611.] | |
[27] |
Qin, C. Y., Jia, S., Fang, X. W., & Yu, X. F. (2020). Relationship validation among items and attributes, Journal of Statistical Computation and Simulation, 90(18), 3360-3375
doi: 10.1080/00949655.2020.1802592 URL |
[28] |
Qin, C. Y., Zhang, L., Qiu, D., Huang, L., Geng, T., Jiang, H.,... Zhou, J. (2015). Model identification and Q-matrix incremental inference in cognitive diagnosis. Knowledge- Based Systems, 86, 66-76.
doi: 10.1016/j.knosys.2015.05.024 URL |
[29] | Rupp, A. A., Templin, J., & Henson, R. A. (2010). Diagnostic measurement: Theory, methods, and applications. Guilford Press. |
[30] | Shang, Z. R., Erosheva, E. A., Xu, G. J. (2021). Partial-mastery cognitive diagnosis models. The Annals of Applied Statistics, 15 (3), 1529-1555. |
[31] |
Sun, J. N., Xin, T., Zhang, S. M., & de la Torre, J. (2013). A polytomous extension of the generalized distance discriminating method. Applied Psychological Measurement, 37(7), 503-521.
doi: 10.1177/0146621613487254 URL |
[32] | Tatsuoka, K. K. (2009). Cognitive assessment: An introduction to the rule space method. Routledge. |
[33] | Templin, J. L. (2004). Generalized linear mixed proficiency models for cognitive diagnosis. (Unpublished doctoral dissertation), University of Illinois at Urbana-Champaign. |
[34] |
Templin, J. L., & Bradshaw, L. (2013). Measuring the reliability of diagnostic classification model examinee estimates. Journal of Classification, 30(2), 251-275.
doi: 10.1007/s00357-013-9129-4 URL |
[35] |
Templin, J. L., Bradshaw, L. (2014). The use and misuse of psychometric models. Psychometrika, 79 (2), 347-354.
doi: 10.1007/s11336-013-9364-y pmid: 24478023 |
[36] |
Tu, D. B., & Cai, Y. (2015). The development of CD-CAT with polytomous attributes. Acta Psychologica Sinica, 47(11), 1405-1414.
doi: 10.3724/SP.J.1041.2015.01405 URL |
[涂冬波, 蔡艳. (2015). 基于属性多级化的认知诊断计算机化自适应测验设计与实现. 心理学报, 47(11), 1405-1414.] | |
[37] |
von Davier, M. (2008). A general diagnostic model applied to language testing data. British Journal of Mathematical and Statistical Psychology, 61(2), 287-307.
doi: 10.1348/000711007X193957 URL |
[38] | von Davier, M., & Lee, Y.-S. (2019). Handbook of diagnostic classification models. Cham: Springer International Publishing. |
[39] | Wang, D. X., Cai, Y, & Tu, D. B. (2020). Q-matrix estimation methods for cognitive diagnosis models: Based on partial known Q-matrix, Multivariate Behavioral Research, 1-13. https://doi.org/10.1080/00273171.2020.1746901. |
[40] | Xiang, R. (2013). Nonlinear penalized estimation of true Q-Matrix in cognitive diagnostic models. (Unpublished doctoral dissertation), Columbia University, New York. |
[41] | Xu, G.-J. (2013). Statistical inference for diagnostic classification models. (Unpublished doctoral dissertation), Columbia University, New York. |
[42] |
Yu, X. F., & Cheng, Y. (2020). Data-driven Q-matrix validation using a residual‐based statistic in cognitive diagnostic assessment. British Journal of Mathematical and Statistical Psychology, 73(1), 145-179.
doi: 10.1111/bmsp.12191 URL |
[43] |
Yu, X. F., Luo, Z. S., Gao, C. L., Li, Y. J., Wang, R., & Wang, Y. T. (2015a). An item attribute specification method based on the likelihood D2 statistic. Acta Psychologica Sinica, 47(3), 417-426.
doi: 10.3724/SP.J.1041.2015.00417 URL |
[喻晓锋, 罗照盛, 高椿雷, 李喻骏, 王睿, 王钰彤. (2015a). 使用似然比D2统计量的题目属性定义方法. 心理学报, 47(3), 417-426.] | |
[44] | Yu, X. F., Luo, Z. S., Qin, C. Y., Gao, C. L., & Li, Y. J. (2015b). Joint estimation of model parameters and Q-matrix based on response data. Acta Psychologica Sinica, 47(2), 273-282. |
[喻晓锋, 罗照盛, 秦春影, 高椿雷, 李喻骏. (2015b). 基于作答数据的模型参数和Q矩阵联合估计. 心理学报, 47(2), 273-282.] | |
[45] | Yu, X. F., Ma, Y. F., Luo, Z. S., & Qin, C. Y. (2021). The attribute hierarchical structure learning based on K2 algorithm. Journal of Jiangxi Normal University (Natural Science), 45(4), 376-383. |
[喻晓锋, 马奕帆, 罗照盛, 秦春影. (2021). 基于K2算法的属性层级结构学习研究. 江西师范大学学报(自然科学版), 45(4), 376-383.] | |
[46] |
Yuan, K.-H., & Zhong, X. (2008). Outliers, leverage observations, and influential cases in factor analysis: Using robust procedures to minimize their effect. Sociological Methodology, 38(1), 329-368.
doi: 10.1111/j.1467-9531.2008.00198.x URL |
[47] |
Zhan, P. D., Bian, Y. F., Wang, L. J. (2016). Factors affecting the classification accuracy of reparametrized diagnostic classification models for expert-defined polytomous attributes. Acta Psychologica Sinica, 48(3), 318-330.
doi: 10.3724/SP.J.1041.2016.00318 URL |
[詹沛达, 边玉芳, 王立君. (2016). 重参数化的多分属性诊断分类模型及其判准率影响因素. 心理学报, 48(3), 318-330.] | |
[48] |
Zhan, P. D., Wang, W., Li, X. M. (2020). A partial mastery, higher-order latent structural model for polytomous attributes in cognitive diagnostic assessments. Journal of Classification, 37, 328-351.
doi: 10.1007/s00357-019-09323-7 URL |
[49] | Zhang, Y. L., Zhao, B., & Tao, J. H. (2021). The study on students' cognitive state based on fuzzy cognitive diagnostic framework. Journal of Jiangxi Normal University (Natural Science), 45(5), 452-459. |
[张玉柳, 赵波, 陶金洪. (2021). 基于模糊认知诊断模型的学生认知状态研究. 江西师范大学学报(自然科学版), 45(5),452-459.] |
[1] | 李佳, 毛秀珍, 韦嘉. 一种简单有效的Q矩阵修正新方法[J]. 心理学报, 2022, 54(8): 996-1008. |
[2] | 谭青蓉, 汪大勋, 罗芬, 蔡艳, 涂冬波. 一种高效的CD-CAT在线标定新方法:基于熵的信息增益与EM视角[J]. 心理学报, 2021, 53(11): 1286-1300. |
[3] | 蔡艳;苗莹;涂冬波. 多级评分的认知诊断计算机化适应测验[J]. 心理学报, 2016, 48(10): 1338-1346. |
[4] | 涂冬波,蔡艳,戴海琦,丁树良. 一种多级评分的认知诊断模型:P-DINA模型的开发[J]. 心理学报, 2010, 42(10): 1011-1020. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||