Please wait a minute...
心理学报
  论文 本期目录 | 过刊浏览 | 高级检索 |
使用似然比D2统计量的题目属性定义方法
喻晓锋1,2;罗照盛1;高椿雷1;李喻骏1;王 睿1;王钰彤1
(1江西师范大学心理学院, 南昌 330022) (2亳州师范高等专科学校, 亳州 236800)
An Item Attribute Specification Method Based On the Likelihood D2 Statistic
YU Xiaofeng1,2; LUO Zhaosheng1; GAO Chunlei1; LI Yujun1; WANG Rui1; WANG Yutong1
(1 School of Psychology, Jiangxi Normal University, Nanchang 330022, China) (2 Computer Department, Bozhou Normal College, Bozhou 236800, China)
全文: PDF(413 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 

题目属性的定义是实施认知诊断评价的关键步骤, 通过有丰富经验的领域专家对题目的属性进行定义是当前的主要方法, 然而该方法受到许多主观经验因素的影响。寻找客观的题目属性定义或验证方法可以为主观定义过程提供策略支持或对结果进行改进, 因此已经引起研究者们的关注。本研究构建了一种简单高效的题目属性定义方法, 研究使用似然比D2统计量从作答数据中估计题目属性的方法, 实现属性掌握模式、题目参数和题目属性向量的联合估计。模拟研究结果表明, 使用似然比D2统计量可以有效地识别题目的属性向量, 该方法一方面可以实现新编制题目属性向量的在线估计, 另一方面可以验证已经定义的题目属性向量的准确性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
喻晓锋
罗照盛
高椿雷
李喻骏
王 睿
王钰彤
关键词 题目属性定义DINA模型似然比在线估计    
Abstract

The Q-matrix is a very important component of cognitive diagnostic assessments, and it maps attributes to items. Cognitive diagnostic assessments infer the attribute mastery pattern of respondents based on item responses. In a cognitive diagnostic assessment, item responses are observable, whereas respondents’ attribute mastery pattern is potentially, but not immediately observable. The Q-matrix plays the role of a bridge in cognitive diagnostic assessments. Therefore, Q-matrix impacts the reliability and validity of cognitive diagnostic assessments greatly. Research on how the errors of Q-matrix affect parameter estimation and classification accuracy showed that the Q-matrix from experts’ definition or experience was easily affected by experts’ personal judgment, leading to a misspecified Q-matrix. Thus, it is important to find more objective Q-matrix inference methods. This paper was inspired by Liu, Xu and Ying’s (2012) algorithm and the item-data fit statistic G2 in the item response theory framework. Further research on the Q-matrix inference, an online Q-matrix estimation method based on the statistic D2 was proposed in the present study. Those items which are the base of the online algorithm are called as base items, and it is assumed that the base items are correctly pre-specified. The online estimation algorithm can jointly estimate item parameters and item attribute vectors in an incrementally manner. In the simulation studies, we considered the DINA model with different Q-matrix (attribute-number is 3, 4 and 5), different sample size (400, 500, 800 and 1000), and different number of correct items (8, 9, 10, 11 and 12) in the initial Q-matrix. The attribute mastery pattern of the sample followed a uniform distribution, and the item parameters followed a uniform distribution with interval [0.05, 0.25]. The results indicated that: when the number of base items was not too small, the online estimation algorithm with the D2 statistic could estimate the attribute vectors of rest items one by one, and further improve the estimation by using the joint estimation. When item parameters were unknown, item number was 20, and item attributes was 3, 4 or 5, based on the initial Q-matrix, the online estimation algorithm could recover the true Q-matrix with a high probability even when the number of base items were as small as 8.

Key wordsitem attribute specification    DINA model    likelihood ratio    online estimation
收稿日期: 2014-04-24      出版日期: 2015-03-25
基金资助:

国家自然科学基金(31160203, 31100756, 31360237)、国家社会科学基金(12BYY055)、教育部人文社会科学研究青年基金项目(13YJC880060)、安徽省高校省级优秀青年人才基金重点项目(2013SQRL127ZD)、安徽省自然科学研究项目(KJ2010B123, KJ2013B151)、高等学校博士学科点专项科研基金(20113604110001)、江西省研究生创新专项基金(YC2013-B024)和安徽省哲学社会科学规划项目(AHSKY2014D102)资助。

通讯作者: 罗照盛, E-mail: luozs@126.com   
引用本文:   
喻晓锋;罗照盛;高椿雷;李喻骏;王 睿;王钰彤. 使用似然比D2统计量的题目属性定义方法[J]. 心理学报, 10.3724/SP.J.1041.2015.00417.
YU Xiaofeng; LUO Zhaosheng; GAO Chunlei; LI Yujun; WANG Rui; WANG Yutong. An Item Attribute Specification Method Based On the Likelihood D2 Statistic. Acta Psychologica Sinica, 2015, 47(3): 417-426.
链接本文:  
http://journal.psych.ac.cn/xlxb/CN/10.3724/SP.J.1041.2015.00417      或      http://journal.psych.ac.cn/xlxb/CN/Y2015/V47/I3/417
[1] 蔡艳;苗莹;涂冬波. 多级评分的认知诊断计算机化适应测验[J]. 心理学报, 2016, 48(10): 1338-1346.
[2] 喻晓锋;罗照盛;秦春影;高椿雷;李喻骏. 基于作答数据的模型参数和Q矩阵联合估计[J]. 心理学报, 2015, 47(2): 273-282.
[3] 郭磊;郑蝉金;边玉芳. 变长CD-CAT中的曝光控制与终止规则[J]. 心理学报, 2015, 47(1): 129-140.
[4] 涂冬波,蔡艳,戴海琦. 基于DINA模型的Q矩阵修正方法[J]. , 2012, 44(4): 558-568.
[5] 汪文义,丁树良, 游晓锋. 计算机化自适应诊断测验中原始题的属性标定[J]. , 2011, 43(08): 964-976.
[6] 涂冬波,蔡艳,戴海琦,丁树良. 一种多级评分的认知诊断模型:P-DINA模型的开发[J]. , 2010, 42(10): 1011-1020.
[7] 祝玉芳,丁树良. 基于等级反应模型的属性层级方法[J]. , 2009, 41(03): 267-275.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《心理学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn