心理学报 ›› 2022, Vol. 54 ›› Issue (10): 1167-1180.doi: 10.3724/SP.J.1041.2022.01167
吴建校1,2, 曹碧华1, 陈云1, 李子夏1, 李富洪1()
收稿日期:
2021-09-14
发布日期:
2022-08-24
出版日期:
2022-10-25
通讯作者:
李富洪
E-mail:lifuhong@jxnu.edu.cn
基金资助:
WU Jianxiao1,2, CAO Bihua1, CHEN Yun1, LI Zixia1, LI Fuhong1()
Received:
2021-09-14
Online:
2022-08-24
Published:
2022-10-25
Contact:
LI Fuhong
E-mail:lifuhong@jxnu.edu.cn
摘要:
认知控制的主要研究范式之一是任务切换。以往研究发现切换代价受到认知控制层级性的调节, 但鲜有研究探索这一调节过程的动态神经机制。本研究通过嵌套的线索-任务切换范式考察不同层级任务切换代价的差异及其神经机制。在实验中, 要求被试完成高低两种层级任务, 低层级任务要求被试判断数字大小(或奇偶); 高层级任务则须先加工数字的某一语义特征(如当前数字是否是偶数), 然后进行大小判断。行为结果表明, 高层级任务切换代价显著大于低层级任务切换代价。线索锁时的脑电结果表明, 层级效应最早出现于P2成分, 切换效应(切换与重复之差)在CNV成分上受到任务层级的调控, 反映了在任务目标重构阶段给予高层级任务更多的选择性注意以及更高的主动性控制。目标锁时的脑电结果表明, 在N2及慢波(SP)成分上, 高层级任务切换与重复的波幅差异相比低层级任务显著更大, 反映了在抑制旧任务集与重构新反应集的过程中增强的反应性控制。这些结果为任务设置重构论和认知控制的层级性提供了新的证据。
中图分类号:
吴建校, 曹碧华, 陈云, 李子夏, 李富洪. (2022). 认知控制的层级性:来自任务切换的脑电证据*. 心理学报, 54(10), 1167-1180.
WU Jianxiao, CAO Bihua, CHEN Yun, LI Zixia, LI Fuhong. (2022). Hierarchical control in task switching: Electrophysiological evidence. Acta Psychologica Sinica, 54(10), 1167-1180.
实验条件 | 反应时 | 正确率 |
---|---|---|
低层级任务重复 | 763 ± 170 | 97.7 ± 2 |
低层级任务切换 | 850 ± 206 | 96.9 ± 3 |
高层级任务重复 | 975 ± 138 | 94.9 ± 4 |
高层级任务切换 | 1211 ± 202 | 92.9 ± 5 |
表1 不同条件下的反应时(ms)和正确率(%) (M ± SD)
实验条件 | 反应时 | 正确率 |
---|---|---|
低层级任务重复 | 763 ± 170 | 97.7 ± 2 |
低层级任务切换 | 850 ± 206 | 96.9 ± 3 |
高层级任务重复 | 975 ± 138 | 94.9 ± 4 |
高层级任务切换 | 1211 ± 202 | 92.9 ± 5 |
[1] | Allport, A., & Wylie, G. (1999). Task-switching:Positive and negative priming of task-set. In: Humphreys, G.W., Duncan, J., Treisman, A.M. (Eds.), Attention, space and action: Studies in cognitive neuroscience (pp.273-296)., Oxford University Press, Oxford, England. |
[2] |
Altmann, E. M. (2019). Response-cue interval effects in extended-runs task switching: Memory, or monitoring? Psychological Research, 83(5), 1007-1019.
doi: 10.1007/s00426-017-0921-3 pmid: 28951972 |
[3] |
Badre, D., & D'Esposito, M. (2007). Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex. Journal of Cognitive Neuroscience, 19(12), 2082-2099.
pmid: 17892391 |
[4] |
Badre, D., & Nee, D. E. (2018). Frontal cortex and the hierarchical control of behavior. Trends in Cognitive Sciences, 22(2), 170-188.
doi: S1364-6613(17)30245-0 pmid: 29229206 |
[5] |
Baene, W. D., & Brass, M. (2013). Switch probability context (in) sensitivity within the cognitive control network. Neuroimage, 77, 207-214.
doi: 10.1016/j.neuroimage.2013.03.057 URL |
[6] | Barceló, F., & Cooper, P. S. (2018). An information theory account of late frontoparietal ERP positivities in cognitive control. Psychophysiology, 55(3), e12814. |
[7] |
Barceló, F., Muñoz-Céspedes, J. M., Pozo, M. A., & Rubia, F. J. (2000). Attentional set shifting modulates the target P3b response in the wisconsin card sorting test. Neuropsychologia, 38(10), 1342-1355.
pmid: 10869577 |
[8] | Braver, T. S., Gray, J. R., & Burgess, G. C. (2007). Explaining the many varieties of working memory variation:Dual mechanisms of cognitive control. In A. R. A.Conway, C.Jarrold, M.J. Kane, A.Miyake, & J. N. Towse (Eds.), Variation in working memory (pp. 76-106). New York: Oxford University Press. |
[9] |
Brunia, C. H. M. (1999). Neural aspects of anticipatory behavior. Acta Psychologica, 101(2-3), 213-242.
pmid: 10344186 |
[10] |
Collins, A. G., Cavanagh, J. F., & Frank, M. J. (2014). Human EEG uncovers latent generalizable rule structure during learning. Journal of Neuroscience, 34(13), 4677-4685.
doi: 10.1523/JNEUROSCI.3900-13.2014 pmid: 24672013 |
[11] |
Folstein, J. R., & van Petten, C. (2008). Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology, 45(1), 152-170.
pmid: 17850238 |
[12] |
Fröber, K., Raith, L., & Dreisbach, G. (2018). The dynamic balance between cognitive flexibility and stability: The influence of local changes in reward expectation and global task context on voluntary switch rate. Psychological Research, 82(1), 65-77.
doi: 10.1007/s00426-017-0922-2 pmid: 28939942 |
[13] |
Gajewski, P. D., Ferdinand, N. K., Kray, J., & Falkenstein, M. (2018). Understanding sources of adult age differences in task switching: Evidence from behavioral and ERP studies. Neuroscience and Biobehavioral Reviews, 92, 255-275.
doi: S0149-7634(17)30395-0 pmid: 29885425 |
[14] |
Gajewski, P. D., Kleinsorge, T., & Falkenstein, M. (2010). Electrophysiological correlates of residual switch costs. Cortex, 46(9), 1138-1148.
doi: 10.1016/j.cortex.2009.07.014 pmid: 19717147 |
[15] |
Gajewski, P. D., Stoerig, P., & Falkenstein, M. (2008). ERP-correlates of response selection in a response conflict paradigm. Brain Research, 1189, 127-134.
pmid: 18053974 |
[16] |
Grzyb, K. R., & Hubner, R. (2013). Excessive response-repetition costs under task switching: How response inhibition amplifies response conflict. Journal of Experimental Psychology: Learning Memory and Cognition, 39(1), 126-139.
doi: 10.1037/a0028477 URL |
[17] |
Han, J., Dai, Y., Xie, L., & Li, F. (2018). Brain responses associated with different hierarchical effects on cues and targets during rule shifting. Biological Psychology, 134, 52-63.
doi: S0301-0511(18)30128-5 pmid: 29476839 |
[18] |
Han, J., Xie, L., Cao, B., Li, J., Chen, Y., & Li, F. (2019). More abstract, more difficult to shift: Behavior and electrophysiological evidence. Behavioural Brain Research, 362, 273-278.
doi: S0166-4328(18)31192-6 pmid: 30615892 |
[19] |
Hirsch, P., Roesch, C., & Koch, I. (2020). Evidence for a multicomponent hierarchical representation of dual tasks. Memory & Cognition, 49(2), 350-363.
doi: 10.3758/s13421-020-01097-3 URL |
[20] |
Hommel, B., Gehrke, J., & Knuf, L. (2000). Hierarchical coding in the perception and memory of spatial layouts. Psychological Research, 64(1), 1-10.
doi: 10.1007/s004260000032 URL |
[21] |
Hsieh, S. L., & Wu, M. Y. (2011). Electrophysiological correlates of preparation and implementation for different types of task shifts. Brain Research, 1423, 41-52.
doi: 10.1016/j.brainres.2011.09.018 pmid: 22000079 |
[22] | Huang, S. L., & Lin, C. D. (2009). Theoretical controversy and integration of task switching research. Studies of Psychology and Behavior, 7(4), 304-311. |
[黄四林, 林崇德. (2009). 任务切换机制研究的理论争议与整合. 心理与行为研究, 7(4), 304-311.] | |
[23] |
Jiang, H. (2018). Reconfiguration and interference in voluntary task switching. Advances in Psychological Science, 26(9), 1624-1631.
doi: 10.3724/SP.J.1042.2018.01624 URL |
[蒋浩. (2018). 自主任务转换中的重构和干扰. 心理科学进展, 26(9), 1624-1631.] | |
[24] |
Karayanidis, F., Coltheart, M., Michie, P. T., & Murphy, K. (2003). Electrophysiological correlates of anticipatory and poststimulus components of task switching. Psychophysiology, 40(3), 329-348.
pmid: 12946108 |
[25] | Karayanidis, F., & Jamadar, S. D. (2014). Event-related potentials reveal multiple components of proactive and reactive control in task switching. In: Grange, J. A., & Houghton, G. (Eds.), task switching and cognitive control (pp.200-236). Oxford University Press, New York. |
[26] |
Karayanidis, F., Jamadar, S., Ruge, H., Phillips, N., Heathcote, A., & Forstmann, B. U. (2010). Advance preparation in task-switching: Converging evidence from behavioral, brain activation, and model-based approaches. Frontiers in Psychology, 1, 25.
doi: 10.3389/fpsyg.2010.00025 pmid: 21833196 |
[27] |
Kieffaber, P. D., & Hetrick, W. P. (2005). Event-related potential correlates of task switching and switch costs. Psychophysiology, 42(1), 56-71.
pmid: 15720581 |
[28] |
Kieffaber, P. D., Kruschke, J. K., Cho, R. Y., Walker, P. M., & Hetrick, W. P. (2013). Dissociating stimulus-set and response-set in the context of task-set switching. Journal of Experimental Psychology: Human Perception and Performance, 39(3), 700-719.
doi: 10.1037/a0029545 URL |
[29] |
Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M., & Koch, I. (2010). Control and interference in task switching—A review. Psychological Bulletin, 136(5), 849-874.
doi: 10.1037/a0019842 URL |
[30] |
Kleinsorge, T., & Heuer, H. (1999). Hierarchical switching in a multi-dimensional task space. Psychological Research, 62(4), 300-312.
doi: 10.1007/s004260050060 URL |
[31] | Lashley, K. S. (1951). The problem of serial order in behavior. In L. A. Jeffress, (Ed.), Cerebral mechanisms in behavior (pp. 112-136). Wiley. |
[32] | Li, J., Cao, B., Han, J., Xie, L., & Li, F. (2019). Not inertia but reconfiguration: Asymmetric switch cost in a hierarchical task. Brain Research, 1720, 146291. |
[33] |
Lu, M., Doñamayor, N., Münte, T. F., & Bahlmann, J. (2017). Event-related potentials and neural oscillations dissociate levels of cognitive control. Behavioural Brain Research, 320, 154-164.
doi: S0166-4328(16)31239-6 pmid: 27979693 |
[34] |
Luck, S. J., & Hillyard, S. A. (2010). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31(3), 291-308.
doi: 10.1111/j.1469-8986.1994.tb02218.x URL |
[35] |
Mayr, U., & Kliegl, R. (2000). Task-set switching and long-term memory retrieval. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(5), 1124-1140.
doi: 10.1037/0278-7393.26.5.1124 URL |
[36] |
Meiran, N. (2008). The dual implication of dual affordance: Stimulus-task binding and attentional focus changing during task preparation. Experimental Psychology, 55(4), 251-259.
pmid: 18683622 |
[37] |
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167-202.
pmid: 11283309 |
[38] | Monsell, S., & Mizon, G. A. (2006). Can the task-cuing paradigm measure an endogenous task-set reconfiguration process?. Journal of Experimental Psychology: Human Perception & Performance, 32(3), 493-516. |
[39] |
Nicholson, R., Karayanidis, F., Bumak, E., Poboka, D., & Michie, P. T. (2006). ERPs dissociate the effects of switching task sets and task cues. Brain Research, 1095(1), 107-123.
pmid: 16714004 |
[40] |
Nicholson, R., Karayanidis, F., Poboka, D., Heathcote, A., & Michie, P. T. (2005). Electrophysiological correlates of anticipatory task-switching processes. Psychophysiology, 42(5), 540-554.
pmid: 16176376 |
[41] |
Nie, Q.-Y., Müller, H. J., & Conci, M. (2017). Hierarchical organization in visual working memory: From global ensemble to individual object structure. Cognition, 159, 85-96.
doi: 10.1016/j.cognition.2016.11.009 URL |
[42] |
Poljac, E., & Yeung, N. (2014). Dissociable neural correlates of intention and action preparation in voluntary task switching. Cerebral Cortex, 24(2), 465-478.
doi: 10.1093/cercor/bhs326 URL |
[43] |
Rogers, R. D., & Monsell, S. (1995). Costs of a predictible switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124(2), 207-231.
doi: 10.1037/0096-3445.124.2.207 URL |
[44] |
Rosenbaum, D. A., Kenny, S. B., & Derr, M. A. (1983). Hierarchical control of rapid movement sequences. Journal of Experimental Psychology: Human Perception and Performance, 9(1), 86-102.
doi: 10.1037/0096-1523.9.1.86 URL |
[45] |
Rushworth, M. F. S., Passingham, R. E., & Nobre, A. C. (2002). Components of switching intentional set. Journal of Cognitive Neuroscience, 14(8), 1139-1150.
pmid: 12495521 |
[46] |
Schneider, D. W. (2017). Phasic alertness and residual switch costs in task switching. Journal of Experimental Psychology: Human Perception and Performance, 43(2), 317-327.
doi: 10.1037/xhp0000318 URL |
[47] |
Schneider, D. W. & Logan, G. D. (2006). Hierarchical control of cognitive processes: Switching tasks in sequences. Journal of Experimental Psychology: General, 135(4), 623-640.
doi: 10.1037/0096-3445.135.4.623 URL |
[48] |
Schuch, S., & Koch, I. (2003). The role of response selection for inhibition of task sets in task shifting. Journal of Experimental Psychology: Human Perception and Performance, 29(1), 92-105.
doi: 10.1037/0096-1523.29.1.92 URL |
[49] | Shi, Y., Q., & Zhou, X. L. (2004). Task switching, a paradigm in the study of executive control. Advances in Psychological Science, 12(5), 672-679. |
[史艺荃, 周晓林. (2004). 执行控制研究的重要范式——任务切换. 心理科学进展, 12(5), 672-679.] | |
[50] |
Swainson, R., Cunnington, R., Jackson, G. M., Rorden, C., Peters, A. M., Morris, P. G., & Jackson, S. R. (2003). Cognitive control mechanisms revealed by ERP and fMRI: Evidence from repeated task-switching. Journal of Cognitive Neuroscience, 15(6), 785-799.
pmid: 14511532 |
[51] |
Swainson, R., Jackson, S. R., & Jackson, G. M. (2006). Using advance information in dynamic cognitive control: An ERP study of task-switching. Brain Research, 1105, 61-72.
pmid: 16626653 |
[52] |
Swainson, R., Martin, D., & Prosser, L. (2017). Task-switch costs subsequent to cue-only trials. Quarterly Journal of Experimental Psychology, 70(8), 1453-1470.
doi: 10.1080/17470218.2016.1188321 URL |
[53] |
Swainson, R., Prosser, L., Karavasilev, K., & Romanczuk, A. (2019). The effect of performing versus preparing a task on the subsequent switch cost. Psychological Research, 85(1), 364-383.
doi: 10.1007/s00426-019-01254-7 URL |
[54] |
Tarantino, V., Mazzonetto, I., & Vallesi, A. (2016). Electrophysiological correlates of the cognitive control processes underpinning mixing and switching costs. Brain Research, 1646, 160-173.
doi: S0006-8993(16)30410-3 pmid: 27238463 |
[55] |
Vandierendonck, A., Liefooghe, B., & Verbruggen, F. (2010). Task switching: Interplay of reconfiguration and interference control. Psychological Bulletin, 136(4), 601-626.
doi: 10.1037/a0019791 pmid: 20565170 |
[56] |
van Veen, V., & Carter, C. S. (2002). The timing of action--monitoring processes in the anterior cingulate cortex. Journal of Cognitive Neuroscience, 14(4), 593-602.
doi: 10.1162/08989290260045837 URL |
[57] |
Waszak, F., Hommel, B., & Allport, A. (2003). Task-switching and long-term priming: Role of episodic stimulus-task bindings in task-shift costs. Cognitive Psychology, 46(4), 361-413.
pmid: 12809680 |
[58] |
Woodward, T. S., Meier, B., Tipper, C., & Graf, P. (2003). Bivalency is costly: Bivalent stimuli elicit cautious responding. Experimental Psychology, 50(4), 233-238.
pmid: 14587170 |
[59] |
Wylie, G., & Allport, A. (2000). Task switching and the measurement of “switch costs”. Psychological Research, 63(3-4), 212-233.
doi: 10.1007/s004269900003 URL |
[60] |
Wylie, G. R., Murray, M. M., Javitt, D. C., & Foxe, J. J. (2009). Distinct neurophysiological mechanisms mediate mixing costs and switch costs. Journal of Cognitive Neuroscience, 21(1), 105-118.
doi: 10.1162/jocn.2009.21009 pmid: 18476759 |
[61] |
Xie, L., Cao, B., Li, Z., & Li, F. (2020). Neural dynamics of cognitive control in various types of incongruence. Frontiers in Human Neuroscience, 14, 214.
doi: 10.3389/fnhum.2020.00214 pmid: 32581754 |
[62] |
Yeung, N., & Cohen, J. D. (2006). The impact of cognitive deficits on conflict monitoring: Predictable dissociations between the error-related negativity and N2. Psychological Science, 17(2), 164-171.
pmid: 16466425 |
[63] | Zhu, M., Zhuo, B., Cao, B., & Li, F. (2020). Distinct brain activation in response to negative feedback at different stages in a variant of the wisconsin card sorting Test. Biological Psychology, 150, 107810. |
[64] | Zhuo, B. X., Chen, Y., Zhu, M. Q., Cao, B. H., & Li, F. H. (2021a). Response variations can promote the efficiency of task switching: Electrophysiological evidence. Neuropsychologia, 156, 107828. |
[65] |
Zhuo, B. X., Zhu, M. Q., Cao, B. H., & Li, F. H. (2021b). More change in task repetition, less cost in task switching: Behavioral and event-related potential evidence. European Journal of Neuroscience, 53(8), 2553-2566.
doi: 10.1111/ejn.15113 URL |
[1] | 潘玥安, 姜云鹏, 郭茂杰, 吴瑕. 不确定性和预期有效性对运动方向感知决策的影响[J]. 心理学报, 2022, 54(6): 595-603. |
[2] | 陈莉, 石晓柯, 李维娜, 胡妍. 基于不同冲突水平的认知控制对性别刻板印象表达的影响[J]. 心理学报, 2022, 54(6): 628-645. |
[3] | 李建花, 解佳佳, 庄锦英. 生理周期对情景记忆的影响[J]. 心理学报, 2022, 54(5): 466-480. |
[4] | 张孟可, 李晴, 尹首航, 陈安涛. 冲突水平的变化诱发冲突适应[J]. 心理学报, 2021, 53(2): 128-138. |
[5] | 邢强, 吴潇, 王家慰, 张忠炉. 通道呈现方式与感知学习风格的匹配性对粤-普双言切换代价的影响[J]. 心理学报, 2021, 53(10): 1059-1070. |
[6] | 黄月胜, 张豹, 范兴华, 黄杰. 无关工作记忆表征的负性情绪信息能否捕获视觉注意?一项眼动研究[J]. 心理学报, 2021, 53(1): 26-37. |
[7] | 孙岩, 吕娇娇, 兰帆, 张丽娜. 自我关注重评和情境关注重评情绪调节策略及对随后认知控制的影响[J]. 心理学报, 2020, 52(12): 1393-1406. |
[8] | 崔诣晨, 王沛, 崔亚娟. 知觉冲突印象形成的认知控制策略:以刻板化信息与反刻板化信息为例 *[J]. 心理学报, 2019, 51(10): 1157-1170. |
[9] | 王宴庆, 陈安涛, 胡学平, 尹首航. 奖赏通过增强信号监测提升认知控制[J]. 心理学报, 2019, 51(1): 48-57. |
[10] | 胡岑楼;张豹;黄赛. 无关长时记忆表征能否引导视觉注意选择?[J]. 心理学报, 2017, 49(5): 590-601. |
[11] | 张豹;胡岑楼;黄赛. 认知控制在工作记忆表征引导注意中的作用:来自眼动的证据[J]. 心理学报, 2016, 48(9): 1105-1118. |
[12] | 刘聪;焦鲁;孙逊;王瑞明. 语言转换对非熟练双语者不同认知控制成分的即时影响[J]. 心理学报, 2016, 48(5): 472-481. |
[13] | 王佳莹; 缴润凯; 张明. 任务设置影响负相容效应的机制 ——自上而下认知控制对阈下启动信息加工的影响[J]. 心理学报, 2016, 48(11): 1370-1378. |
[14] | 刘晓瑜;何朝丹;陈俊;邓沁丽. 熟练粤-普双言者的双言认知控制机制 ——来自双任务切换范式的行为研究证据[J]. 心理学报, 2015, 47(4): 439-454. |
[15] | 窦伟伟;郑希付;杨慧芳;王俊芳;李悦;俄小天;陈倩倩. 认知分心的强度对创伤性信息加工的影响[J]. 心理学报, 2014, 46(5): 656-665. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||