心理学报 ›› 2022, Vol. 54 ›› Issue (4): 371-384.doi: 10.3724/SP.J.1041.2022.00371
谢敏1, 李峰2, 罗玉晗1, 柯李3, 王侠4, 王耘1()
收稿日期:
2021-05-17
发布日期:
2022-02-21
出版日期:
2022-04-25
通讯作者:
王耘
E-mail:wangyun@bnu.edu.cn
基金资助:
XIE Min1, LI Feng2, LUO Yuhan1, KE Li3, WANG Xia4, WANG Yun1()
Received:
2021-05-17
Online:
2022-02-21
Published:
2022-04-25
Contact:
WANG Yun
E-mail:wangyun@bnu.edu.cn
摘要:
教师职业倦怠的情感衰竭、去人性化和个人成就感降低3个维度相对独立但也存在相互影响, 对其发展关系进行研究, 有助于深入理解职业倦怠的发展过程, 尽早识别倦怠症状。本研究对3837名小学教师进行追踪测试, 测试间隔为3年, 采用结构方程模型和交叉滞后网络分析模型进行分析, 结果发现小学教师职业倦怠维度最优发展模型为“T1的情感衰竭和个人成就感降低分别预测T2的情感衰竭和个人成就感降低, T1的去人性化预测T2的去人性化和个人成就感降低”, 且最优发展模型具有性别间的一致性和教龄段之间的一致性。这一结果支持并强调了去人性化在小学教师职业倦怠发展中的重要作用, 对识别教师职业倦怠早期症状并采取相应措施有效阻断教师职业倦怠的进一步发展具有一定的理论和现实意义。
中图分类号:
谢敏, 李峰, 罗玉晗, 柯李, 王侠, 王耘. (2022). 小学教师职业倦怠维度发展顺序探究——来自结构方程模型和交叉滞后网络分析模型的证据. 心理学报, 54(4), 371-384.
XIE Min, LI Feng, LUO Yuhan, KE Li, WANG Xia, WANG Yun. (2022). A developmental model of job burnout dimensions among primary school teachers: Evidence from structural equation model and cross-lagged panel network model. Acta Psychologica Sinica, 54(4), 371-384.
维度 | M | SD | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|
1 情感衰竭T1 | 2.67 | 0.98 | 0.62** | 0.04* | 0.47** | 0.29** | 0.09** |
2 去人性化T1 | 1.79 | 0.66 | 0.16** | 0.31** | 0.40** | 0.20** | |
3 成就感降低T1 | 2.50 | 0.99 | 0.04* | 0.12** | 0.25** | ||
4 情感衰竭T2 | 2.47 | 0.93 | 0.67** | 0.14** | |||
5 去人性化T2 | 1.78 | 0.72 | 0.31** | ||||
6 成就感降低T2 | 2.22 | 0.84 |
表1 两次测试中3个维度的均值、标准差和相关系数
维度 | M | SD | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|
1 情感衰竭T1 | 2.67 | 0.98 | 0.62** | 0.04* | 0.47** | 0.29** | 0.09** |
2 去人性化T1 | 1.79 | 0.66 | 0.16** | 0.31** | 0.40** | 0.20** | |
3 成就感降低T1 | 2.50 | 0.99 | 0.04* | 0.12** | 0.25** | ||
4 情感衰竭T2 | 2.47 | 0.93 | 0.67** | 0.14** | |||
5 去人性化T2 | 1.78 | 0.72 | 0.31** | ||||
6 成就感降低T2 | 2.22 | 0.84 |
模型 | χ2 | df | RMSEA | SRMR | CFI | TLI | AIC | aBIC |
---|---|---|---|---|---|---|---|---|
基础模型 | 160.63 | 6 | 0.08 | 0.05 | 0.96 | 0.93 | 24076.50 | 24113.40 |
Golembiewski ( | 49.45 | 4 | 0.05 | 0.03 | 0.99 | 0.97 | 23969.32 | 24012.36 |
Leiter & Maslach ( | 25.35 | 4 | 0.04 | 0.02 | 0.99 | 0.98 | 23945.22 | 23988.27 |
Lee & Ashforth ( | 99.28 | 4 | 0.08 | 0.03 | 0.98 | 0.93 | 24019.15 | 24062.19 |
van Dierendonck ( | 145.37 | 4 | 0.09 | 0.05 | 0.97 | 0.90 | 24065.24 | 24108.29 |
Taris等( | 22.97 | 3 | 0.04 | 0.02 | 0.99 | 0.98 | 23944.83 | 23990.96 |
调整模型1 | 0.61 | 2 | 0.00 | 0.00 | 1 | 1 | 23924.48 | 23973.68 |
调整模型2 | 51.24 | 5 | 0.05 | 0.03 | 0.99 | 0.97 | 23969.11 | 24009.08 |
表2 维度作为显变量时各比较模型拟合指数
模型 | χ2 | df | RMSEA | SRMR | CFI | TLI | AIC | aBIC |
---|---|---|---|---|---|---|---|---|
基础模型 | 160.63 | 6 | 0.08 | 0.05 | 0.96 | 0.93 | 24076.50 | 24113.40 |
Golembiewski ( | 49.45 | 4 | 0.05 | 0.03 | 0.99 | 0.97 | 23969.32 | 24012.36 |
Leiter & Maslach ( | 25.35 | 4 | 0.04 | 0.02 | 0.99 | 0.98 | 23945.22 | 23988.27 |
Lee & Ashforth ( | 99.28 | 4 | 0.08 | 0.03 | 0.98 | 0.93 | 24019.15 | 24062.19 |
van Dierendonck ( | 145.37 | 4 | 0.09 | 0.05 | 0.97 | 0.90 | 24065.24 | 24108.29 |
Taris等( | 22.97 | 3 | 0.04 | 0.02 | 0.99 | 0.98 | 23944.83 | 23990.96 |
调整模型1 | 0.61 | 2 | 0.00 | 0.00 | 1 | 1 | 23924.48 | 23973.68 |
调整模型2 | 51.24 | 5 | 0.05 | 0.03 | 0.99 | 0.97 | 23969.11 | 24009.08 |
模型 | 路径 | b | SE | t | β | r |
---|---|---|---|---|---|---|
Golembiewski ( | ee1→ee2 | 0.40 | 0.01 | 36.82 | 0.44 | 0.49 |
pa1→ee2 | 0.01 | 0.01 | 1.40 | 0.01 | 0.06 | |
dp1→dp2 | 0.41 | 0.01 | 29.00 | 0.38 | 0.43 | |
dp1→pa2 | 0.21 | 0.02 | 10.45 | 0.16 | 0.21 | |
pa1→pa2 | 0.18 | 0.01 | 13.77 | 0.21 | 0.26 | |
Leiter & Maslach ( | ee1→ee2 | 0.44 | 0.01 | 34.00 | 0.44 | 0.49 |
ee1→dp2 | 0.06 | 0.01 | 5.17 | 0.06 | 0.11 | |
dp1→dp2 | 0.36 | 0.0 | 24.33 | 0.36 | 0.41 | |
dp1→pa2 | 0.21 | 0.02 | 10.65 | 0.21 | 0.26 | |
pa1→pa2 | 0.18 | 0.01 | 13.61 | 0.18 | 0.23 | |
Taris等 ( | ee1→ee2 | 0.42 | 0.02 | 25.00 | 0.45 | 0.50 |
dp1→ee2 | 0.04 | 0.03 | 1.50 | 0.03 | 0.08 | |
ee1→dp2 | 0.05 | 0.01 | 4.15 | 0.07 | 0.12 | |
dp1→dp2 | 0.38 | 0.02 | 19.25 | 0.35 | 0.40 | |
dp1→pa2 | 0.21 | 0.02 | 10.75 | 0.17 | 0.22 | |
pa1→pa2 | 0.18 | 0.01 | 13.69 | 0.21 | 0.26 | |
调整模型1 | ee1→ee2 | 0.44 | 0.01 | 34.08 | 0.47 | 0.52 |
pa1→ee2 | 0.05 | 0.01 | 3.92 | 0.05 | 0.10 | |
ee1→dp2 | 0.07 | 0.01 | 5.75 | 0.09 | 0.14 | |
dp1→dp2 | 0.35 | 0.02 | 22.06 | 0.33 | 0.38 | |
pa1→dp2 | 0.05 | 0.01 | 4.82 | 0.07 | 0.12 | |
dp1→pa2 | 0.21 | 0.02 | 10.55 | 0.16 | 0.21 | |
pa1→pa2 | 0.19 | 0.01 | 14.77 | 0.22 | 0.28 | |
调整模型2 | ee1→ee2 | 0.40 | 0.01 | 36.73 | 0.43 | 0.48 |
dp1→dp2 | 0.40 | 0.01 | 31.08 | 0.38 | 0.43 | |
dp1→pa2 | 0.21 | 0.02 | 10.45 | 0.16 | 0.21 | |
pa1→pa2 | 0.18 | 0.01 | 13.85 | 0.21 | 0.26 |
表3 维度作为显变量时5个模型回归系数和效应量
模型 | 路径 | b | SE | t | β | r |
---|---|---|---|---|---|---|
Golembiewski ( | ee1→ee2 | 0.40 | 0.01 | 36.82 | 0.44 | 0.49 |
pa1→ee2 | 0.01 | 0.01 | 1.40 | 0.01 | 0.06 | |
dp1→dp2 | 0.41 | 0.01 | 29.00 | 0.38 | 0.43 | |
dp1→pa2 | 0.21 | 0.02 | 10.45 | 0.16 | 0.21 | |
pa1→pa2 | 0.18 | 0.01 | 13.77 | 0.21 | 0.26 | |
Leiter & Maslach ( | ee1→ee2 | 0.44 | 0.01 | 34.00 | 0.44 | 0.49 |
ee1→dp2 | 0.06 | 0.01 | 5.17 | 0.06 | 0.11 | |
dp1→dp2 | 0.36 | 0.0 | 24.33 | 0.36 | 0.41 | |
dp1→pa2 | 0.21 | 0.02 | 10.65 | 0.21 | 0.26 | |
pa1→pa2 | 0.18 | 0.01 | 13.61 | 0.18 | 0.23 | |
Taris等 ( | ee1→ee2 | 0.42 | 0.02 | 25.00 | 0.45 | 0.50 |
dp1→ee2 | 0.04 | 0.03 | 1.50 | 0.03 | 0.08 | |
ee1→dp2 | 0.05 | 0.01 | 4.15 | 0.07 | 0.12 | |
dp1→dp2 | 0.38 | 0.02 | 19.25 | 0.35 | 0.40 | |
dp1→pa2 | 0.21 | 0.02 | 10.75 | 0.17 | 0.22 | |
pa1→pa2 | 0.18 | 0.01 | 13.69 | 0.21 | 0.26 | |
调整模型1 | ee1→ee2 | 0.44 | 0.01 | 34.08 | 0.47 | 0.52 |
pa1→ee2 | 0.05 | 0.01 | 3.92 | 0.05 | 0.10 | |
ee1→dp2 | 0.07 | 0.01 | 5.75 | 0.09 | 0.14 | |
dp1→dp2 | 0.35 | 0.02 | 22.06 | 0.33 | 0.38 | |
pa1→dp2 | 0.05 | 0.01 | 4.82 | 0.07 | 0.12 | |
dp1→pa2 | 0.21 | 0.02 | 10.55 | 0.16 | 0.21 | |
pa1→pa2 | 0.19 | 0.01 | 14.77 | 0.22 | 0.28 | |
调整模型2 | ee1→ee2 | 0.40 | 0.01 | 36.73 | 0.43 | 0.48 |
dp1→dp2 | 0.40 | 0.01 | 31.08 | 0.38 | 0.43 | |
dp1→pa2 | 0.21 | 0.02 | 10.45 | 0.16 | 0.21 | |
pa1→pa2 | 0.18 | 0.01 | 13.85 | 0.21 | 0.26 |
模型 | χ2 | df | RMSEA | SRMR | CFI | TLI | AIC | aBIC |
---|---|---|---|---|---|---|---|---|
基础模型 | 7528.05 | 656 | 0.05 | 0.05 | 0.92 | 0.91 | 361321.05 | 361699.27 |
Golembiewski ( | 7430.24 | 654 | 0.05 | 0.04 | 0.92 | 0.91 | 361227.25 | 361611.61 |
Leiter & Maslach ( | 7437.23 | 654 | 0.05 | 0.04 | 0.92 | 0.91 | 361234.24 | 361618.60 |
Lee & Ashforth ( | 7485.55 | 654 | 0.05 | 0.04 | 0.92 | 0.91 | 361282.55 | 361666.92 |
van Dierendonck ( | 7527.66 | 654 | 0.05 | 0.05 | 0.92 | 0.91 | 361324.66 | 361709.03 |
Taris等( | 7436.94 | 653 | 0.05 | 0.04 | 0.92 | 0.91 | 361235.95 | 361623.39 |
全模型 | 7417.33 | 650 | 0.05 | 0.04 | 0.92 | 0.91 | 361222.33 | 361619.00 |
调整模型2 | 7437.25 | 655 | 0.05 | 0.04 | 0.92 | 0.91 | 361232.30 | 361613.50 |
表4 维度作为潜变量时各比较模型拟合指数
模型 | χ2 | df | RMSEA | SRMR | CFI | TLI | AIC | aBIC |
---|---|---|---|---|---|---|---|---|
基础模型 | 7528.05 | 656 | 0.05 | 0.05 | 0.92 | 0.91 | 361321.05 | 361699.27 |
Golembiewski ( | 7430.24 | 654 | 0.05 | 0.04 | 0.92 | 0.91 | 361227.25 | 361611.61 |
Leiter & Maslach ( | 7437.23 | 654 | 0.05 | 0.04 | 0.92 | 0.91 | 361234.24 | 361618.60 |
Lee & Ashforth ( | 7485.55 | 654 | 0.05 | 0.04 | 0.92 | 0.91 | 361282.55 | 361666.92 |
van Dierendonck ( | 7527.66 | 654 | 0.05 | 0.05 | 0.92 | 0.91 | 361324.66 | 361709.03 |
Taris等( | 7436.94 | 653 | 0.05 | 0.04 | 0.92 | 0.91 | 361235.95 | 361623.39 |
全模型 | 7417.33 | 650 | 0.05 | 0.04 | 0.92 | 0.91 | 361222.33 | 361619.00 |
调整模型2 | 7437.25 | 655 | 0.05 | 0.04 | 0.92 | 0.91 | 361232.30 | 361613.50 |
模型 | 路径 | b | SE | t | β | r |
---|---|---|---|---|---|---|
Golembiewski ( | ee1→ee2 | 0.44 | 0.01 | 31.29 | 0.50 | 0.55 |
pa1→ee2 | 0.03 | 0.01 | 2.70 | 0.03 | 0.08 | |
dp1→dp2 | 0.54 | 0.02 | 23.65 | 0.48 | 0.53 | |
dp1→pa2 | 0.25 | 0.03 | 9.37 | 0.18 | 0.23 | |
pa1→pa2 | 0.18 | 0.02 | 12.00 | 0.23 | 0.28 | |
Leiter & Maslach ( | ee1→ee2 | 0.43 | 0.02 | 28.93 | 0.49 | 0.54 |
ee1→dp2 | 0.00 | 0.02 | 0.13 | 0.00 | 0.05 | |
dp1→dp2 | 0.53 | 0.03 | 18.35 | 0.47 | 0.52 | |
dp1→pa2 | 0.25 | 0.03 | 9.26 | 0.18 | 0.23 | |
pa1→pa2 | 0.18 | 0.02 | 12.27 | 0.23 | 0.28 | |
Taris等 ( | ee1→ee2 | 0.42 | 0.02 | 17.67 | 0.48 | 0.53 |
dp1→ee2 | 0.02 | 0.04 | 0.55 | 0.02 | 0.07 | |
ee1→dp2 | 0.00 | 0.02 | -0.16 | -0.01 | 0.05 | |
dp1→dp2 | 0.54 | 0.04 | 15.11 | 0.48 | 0.53 | |
dp1→pa2 | 0.25 | 0.03 | 9.30 | 0.18 | 0.23 | |
pa1→pa2 | 0.18 | 0.02 | 12.27 | 0.24 | 0.29 | |
全模型 | ee1→ee2 | 0.45 | 0.03 | 17.39 | 0.51 | 0.56 |
dp1→ee2 | -0.04 | 0.05 | -0.87 | -0.03 | 0.02 | |
pa1→ee2 | 0.05 | 0.02 | 3.33 | 0.06 | 0.11 | |
ee1→dp2 | 0.00 | 0.02 | -0.10 | 0.00 | 0.05 | |
dp1→dp2 | 0.53 | 0.04 | 12.95 | 0.47 | 0.52 | |
pa1→dp2 | 0.02 | 0.01 | 1.85 | 0.04 | 0.09 | |
ee1→pa2 | -0.08 | 0.03 | -2.78 | -0.09 | -0.04 | |
dp1→pa2 | 0.36 | 0.05 | 7.26 | 0.26 | 0.31 | |
pa1→pa2 | 0.17 | 0.02 | 10.06 | 0.22 | 0.27 | |
调整模型2 | ee1→ee2 | 0.43 | 0.01 | 31.00 | 0.49 | 0.54 |
dp1→dp2 | 0.53 | 0.02 | 23.22 | 0.47 | 0.52 | |
dp1→pa2 | 0.25 | 0.03 | 9.26 | 0.18 | 0.23 | |
pa1→pa2 | 0.18 | 0.02 | 12.27 | 0.24 | 0.29 |
表5 维度作为潜变量时5个模型的回归系数效应量
模型 | 路径 | b | SE | t | β | r |
---|---|---|---|---|---|---|
Golembiewski ( | ee1→ee2 | 0.44 | 0.01 | 31.29 | 0.50 | 0.55 |
pa1→ee2 | 0.03 | 0.01 | 2.70 | 0.03 | 0.08 | |
dp1→dp2 | 0.54 | 0.02 | 23.65 | 0.48 | 0.53 | |
dp1→pa2 | 0.25 | 0.03 | 9.37 | 0.18 | 0.23 | |
pa1→pa2 | 0.18 | 0.02 | 12.00 | 0.23 | 0.28 | |
Leiter & Maslach ( | ee1→ee2 | 0.43 | 0.02 | 28.93 | 0.49 | 0.54 |
ee1→dp2 | 0.00 | 0.02 | 0.13 | 0.00 | 0.05 | |
dp1→dp2 | 0.53 | 0.03 | 18.35 | 0.47 | 0.52 | |
dp1→pa2 | 0.25 | 0.03 | 9.26 | 0.18 | 0.23 | |
pa1→pa2 | 0.18 | 0.02 | 12.27 | 0.23 | 0.28 | |
Taris等 ( | ee1→ee2 | 0.42 | 0.02 | 17.67 | 0.48 | 0.53 |
dp1→ee2 | 0.02 | 0.04 | 0.55 | 0.02 | 0.07 | |
ee1→dp2 | 0.00 | 0.02 | -0.16 | -0.01 | 0.05 | |
dp1→dp2 | 0.54 | 0.04 | 15.11 | 0.48 | 0.53 | |
dp1→pa2 | 0.25 | 0.03 | 9.30 | 0.18 | 0.23 | |
pa1→pa2 | 0.18 | 0.02 | 12.27 | 0.24 | 0.29 | |
全模型 | ee1→ee2 | 0.45 | 0.03 | 17.39 | 0.51 | 0.56 |
dp1→ee2 | -0.04 | 0.05 | -0.87 | -0.03 | 0.02 | |
pa1→ee2 | 0.05 | 0.02 | 3.33 | 0.06 | 0.11 | |
ee1→dp2 | 0.00 | 0.02 | -0.10 | 0.00 | 0.05 | |
dp1→dp2 | 0.53 | 0.04 | 12.95 | 0.47 | 0.52 | |
pa1→dp2 | 0.02 | 0.01 | 1.85 | 0.04 | 0.09 | |
ee1→pa2 | -0.08 | 0.03 | -2.78 | -0.09 | -0.04 | |
dp1→pa2 | 0.36 | 0.05 | 7.26 | 0.26 | 0.31 | |
pa1→pa2 | 0.17 | 0.02 | 10.06 | 0.22 | 0.27 | |
调整模型2 | ee1→ee2 | 0.43 | 0.01 | 31.00 | 0.49 | 0.54 |
dp1→dp2 | 0.53 | 0.02 | 23.22 | 0.47 | 0.52 | |
dp1→pa2 | 0.25 | 0.03 | 9.26 | 0.18 | 0.23 | |
pa1→pa2 | 0.18 | 0.02 | 12.27 | 0.24 | 0.29 |
图3 省略自回归路径后, 对教师职业倦怠3个维度(19道题)的CLPN估计 注:a. EE1表示情感衰竭维度的第一道题, DP1表示去人性化维度的第一道题, PA1表示个人成就感降低维度的第一道题; b. 较粗的箭头表明较强的关系; c. 绿色箭头表示正向影响, 红色箭头表示负向影响; d. 图4同注
[1] | Bakker, A. B., Schaufeli, W. B., Sixma, H. J., Bosveld, W., & Van Dierendonck, D. (2000). Patient demands, lack of reciprocity, and burnout: A five-year longitudinal study among general practitioners. Journal of Organizational Behavior, 21(4), 425-441. |
[2] | Bi, Z. Z., & Huang, X. T. (2005). The role of burnout in the relationship between achievement motivation and turnover intention. Journal of Psychological Science, 28(1), 28-31. |
[ 毕重增, 黄希庭. (2005). 中学教师成就动机、离职意向与倦怠的关系. 心理科学, 28(1), 28-31.] | |
[3] |
Borsboom, D., & Cramer, A. O. J. (2013). Network analysis: An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9(1), 91-121.
doi: 10.1146/clinpsy.2013.9.issue-1 URL |
[4] | Brenner, J. (2020). Examining the stage progression of employee burnout (Order No. 28148693). Available from ProQuest Dissertations & Theses Global; Publicly Available Content Database. ( 2451849425). |
[5] | Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum. |
[6] | Cramer, A. O. J., van Borkulo, C., D., Giltay, E. J., van der Maas, H. L. J., Kendler, K. S., Scheffer, M., & Borsboom, D. (2016). Major depression as a complex dynamic system. PLoS One, 11(12), 1-20. |
[7] |
Cramer, A. O. J., van der Sluis, S., Noordhof, A., Wichers, M., Geschwind, N., Aggen, S. H., … Borsboom, D. (2012). Dimensions of normal personality as networks in search of equilibrium: You can’t like parties if you don’t like people. European Journal of Personality, 26(4), 414-431.
doi: 10.1002/per.1866 URL |
[8] |
Deboeck, P. R., & Preacher, K. J. (2016). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling, 23(1), 61-75.
doi: 10.1080/10705511.2014.973960 URL |
[9] |
de Vos, J. A., Brouwers, A., Schoot, T., Pat-El, R., Verboon, P., & Näring, G. (2016). Early career burnout among Dutch nurses: A process captured in a Rasch model. Burnout Research, 3(3), 55-62.
doi: 10.1016/j.burn.2016.06.001 URL |
[10] |
Diestel, S., & Schmidt, K.-H. (2010). Direct and interaction effects among the dimensions of the Maslach Burnout Inventory: Results from two German longitudinal samples. International Journal of Stress Management, 17(2), 159-180.
doi: 10.1037/a0018967 URL |
[11] | Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D. (2012). qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical Software, 48(4), 1-18. |
[12] |
Fried, E. I., Epskamp, S., Nesse, R. M, Tuerlinckx, F., & Borsboom, D. (2016). What are “good” depression symptoms? Comparing the centrality of DSM and non- DSM symptoms of depression in a network analysis. Journal of Affective Disorders, 189, 314-320.
doi: 10.1016/j.jad.2015.09.005 pmid: 26458184 |
[13] |
Fried, E. I., van Borkulo, C. D., Cramer, A. O. J., Boschloo, L., Schoevers, R. A., & Borsboom, D. (2017). Mental disorders as networks of problems: A review of recent insights. Social Psychiatry and Psychiatric Epidemiology, 52(1), 1-10.
doi: 10.1007/s00127-016-1319-z pmid: 27921134 |
[14] |
Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33, 1-22.
pmid: 20808728 |
[15] |
Gan, T., & Gan, Y. (2014). Sequential development among dimensions of job burnout and engagement among IT employees. Stress and Health, 30(2), 122-133.
doi: 10.1002/smi.v30.2 URL |
[16] |
Golembiewski, R. T., Munzenrider, R., & Carter, D. (1983). Phases of progressive burnout and their work site covariants: Critical issues in OD research and praxis. The Journal of Applied Behavioral Science, 19(4), 461-481.
doi: 10.1177/002188638301900408 URL |
[17] |
Herman, K. C., Hickmon-Rosa, J., & Reinke, W. M. (2018). Empirically derived profiles of teacher stress, burnout, self-Efficacy, and coping and associated student outcomes. Journal of Positive Behavior Interventions, 20(2), 90-100.
doi: 10.1177/1098300717732066 URL |
[18] | Hou, K. T., Wen, Z. L., & Cheng, Z. J. (2004). Structural equation model and its applications. Beijing: Educational Science Publishing House. |
[ 侯杰泰, 温忠麟, 成子娟. (2004). 结构方程模型及其应用. 北京: 教育科学出版社.] | |
[19] | Huang, J., Bao, X. H., You, X. Q., & Zhou, L. M. (2010). The mediation effects of personal resources on relationship between the job demand-resource model and job burnout. Journal of Psychological Science, 33(4), 963-965. |
[ 黄杰, 鲍旭辉, 游旭群, 周丽敏. (2010). 个体资源对JD-R模型与工作倦怠关系的中介作用. 心理科学, 33(4), 963-965.] | |
[20] | Huang, J., You, X.Q., Wang, Y. S., & Bao, X. H. (2015). A Longitudinal Analysis of the Developmental Process of Job Burnout. Journal of Psychological Science, 38(4), 911-915. |
[ 黄杰, 游旭群, 王延松, 鲍旭辉. (2015). 员工工作倦怠的发展模型:来自纵向研究的证据. 心理科学, 38(4), 911-915.] | |
[21] |
Huyghebaert, T., Fouquereau, E., Gillet, N., Beltou, N., & Tellier, F. (2018). Effects of workload on teachers’ functioning: A moderated mediation model including sleeping problems and overcommitment. Stress and Health: Journal of the International Society for the Investigation of Stress, 34(5), 601-611.
doi: 10.1002/smi.v34.5 URL |
[22] | Lazarus, R. S. (1966). Psychological stress and the coping process. New York: McGraw-Hill. |
[23] |
Lee, R. T., & Ashforth, B. E. (1993). A longitudinal study of burnout among supervisors and managers: Comparisons between the Leiter and Maslach (1988) and Golembiewski et al. (1986) Models. Organizational Behavior and Human Decision Processes, 54(3), 369-398.
doi: 10.1006/obhd.1993.1016 URL |
[24] |
Leiter, M. P., & Maslach, C. (1988). The impact of interpersonal environment on burnout and organizational commitment. Journal of Organizational Behavior, 9(4), 297-308.
doi: 10.1002/(ISSN)1099-1379 URL |
[25] | Letina, S., Blanken, T. F., Deserno, M. K., & Borsboom, D. (2019). Expanding network analysis tools in psychological networks:Minimal spanning trees, participation coefficients, and motif analysis applied to a network of 26 psychological attributes. Complexity (New York, N.Y.), 2019, 1-27. |
[26] |
Maslach, C. (2003). Job burnout: New directions in research and intervention. Current Directions in Psychological Science, 12(5), 189-192.
doi: 10.1111/1467-8721.01258 URL |
[27] | Maslach, C. & Leiter, M. P. (2017). Understanding burnout: New models. In C. L. Cooper, & J. C. Quick (Eds.), The handbook of stress and health: A guide to research and practice (pp. 36-56, Chapter xxii). Wiley Blackwell. |
[28] | Maslach, C., & Schaufeli, W. B. (1993). Historical and conceptual development of burnout. In W. B. Schaufeli, C. Maslach, & T. Marek (Eds.), Professional burnout: Recent developments in theory and research (pp. 1-16). Washington, DC: Taylor & Francis. |
[29] |
McManus, I. C., Winder, B. C., & Gordon, D. (2002). The causal links between stress and burnout in a longitudinal study of UK doctors. The Lancet, 359, 2089-2090.
doi: 10.1016/S0140-6736(02)08915-8 URL |
[30] |
Nguyen, H. T. T., Kitaoka, K., Sukigara, M., & Thai, A. L. (2018). Burnout Study of clinical nurses in Vietnam: Development of job burnout model based on Leiter and Maslach’s theory. Asian Nursing Research, 12(1), 42-49.
doi: S1976-1317(17)30279-7 pmid: 29463486 |
[31] | Nieminen, P., Lehtiniemi, H., Vhkangas, K., Huusko, A., & Rautio, A. (2013). Standardised regression coefficient as an effect size index in summarising findings in epidemiological studies. Epidemiology Biostatistics & Public Health, 10(4), 1-15. |
[32] |
Peterson, R. A., & Brown, S. P. (2005). On the use of beta coefficients in meta-analysis. Journal of Applied Psychology, 90(1), 175-181.
pmid: 15641898 |
[33] | Rhemtulla, M., van Bork, R., & Cramer, A. O. J. (2019). Cross-lagged network models. Multivariate Behavioral Research. Retrived from https://osf.io/r24q6/ |
[34] | Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1-36. |
[35] |
Savicki, V., & Cooley, E. J. (1994). Burnout in child protective service workers: A longitudinal study. Journal of Organizational Behavior, 15(7), 655-666.
doi: 10.1002/(ISSN)1099-1379 URL |
[36] |
Schmittmann, V. D., Cramer, A. O. J., Waldorp, L. J., Epskamp, S., Kievit, R. A., & Borsboom, D. (2013). Deconstructing the construct: A network perspective on psychological phenomena. New Ideas in Psychology, 31(1), 43-53.
doi: 10.1016/j.newideapsych.2011.02.007 URL |
[37] |
Taris, T. W., Le Blanc, P. M., Schaufeli, W. B., & Schreurs, P. J. (2005). Are there causal relationships between the dimensions of the Maslach Burnout Inventory? A review and two longitudinal tests. Work and Stress, 19(3), 238-255.
doi: 10.1080/02678370500270453 URL |
[38] |
Toppinen-Tanner, S., Kalimo, R., & Mutanen, P. (2002). The process of burnout in white-collar and blue-collar jobs: Eight-year prospective study of exhaustion. Journal of Organizational Behavior, 23(5), 555-570.
doi: 10.1002/(ISSN)1099-1379 URL |
[39] |
van Dierendonck, D., Schaufeli, W. B., & Buunk, B. P. (2001). Toward a process model of burnout: Results from a secondary analysis. European Journal of Work and Organizational Psychology, 10(1), 41-52
doi: 10.1080/13594320042000025 URL |
[40] |
Voelkle, M. C., Oud, J. H. L., Davidov, E., & Schmidt, P. (2012). An SEM approach to continuous time modeling of panel data: Relating authoritarianism and anomia. Psychological Methods, 17(2), 176-192.
doi: 10.1037/a0027543 pmid: 22486576 |
[41] | Wang, F. (2006). Job burnout in university teachers: The causes and the internal relationship of the three dimensions (Unpublished doctoral dissertation). Beijing Normal University. |
[ 王芳. (2006). 重点高校教师职业枯竭的产生机制及发展过程 (博士学位论文). 北京师范大学.] | |
[42] | Wang, F., & Xu, Y. (2004). Job burnout in elementary and high school teachers: Characteristics and relationship with social support. Acta Psychologica Sinica, 36(5), 568-574. |
[ 王芳, 许燕. (2004). 中小学教师职业枯竭状况及其与社会支持的关系. 心理学报, 36(5), 568-574.] | |
[43] | Wu, X. C., Qi, Y. J., & Zang, W. W. (2019). Overall features and influencing factors of primary and secondary school teachers’ job burnout in China. Journal of South China Normal University (Social Science Edition), (1), 37-42. |
[ 伍新春, 齐亚静, 臧伟伟. (2019). 中国中小学教师职业倦怠的总体特点与差异表现. 华南师范大学学报(社会科学版), (1), 37-42.] | |
[44] | Wu, X. C., Zeng, L. J., Qin, X. G., & Zheng, Q. (2003). The current situation and related factors of Chinese teacher’s burnout. Studies of Psychology and Behavior, 1(4), 262-267. |
[ 伍新春, 曾玲娟, 秦宪刚, 郑秋. (2003). 中小学教师职业倦怠的现状及相关因素研究. 心理与行为研究, 1(4), 262-267.] | |
[45] | Zang, W. W. (2007). The research on the relationship among occupational stress, job burnout and coping style of elementary and high school teachers (Unpublished master’s thesis). Beijing Normal University. |
[ 臧伟伟. (2007). 中小学教师职业倦怠与工作压力、应对方式的关系研究 (硕士学位论文). 北京师范大学.] |
[1] | 祝孝亮, 赵鑫. 执行功能在不同年级儿童数学能力中的作用[J]. 心理学报, 2023, 55(5): 696-710. |
[2] | 孙启武, 吴才智, 于丽霞, 王巍欣, 沈国成. 阅读进度反馈信息对工作同盟和咨询效果的影响[J]. 心理学报, 2021, 53(4): 349-361. |
[3] | 任志洪, 赵春晓, 卞诚, 朱文臻, 江光荣, 祝卓宏. 接纳承诺疗法的作用机制——基于元分析结构方程模型[J]. 心理学报, 2019, 51(6): 662-676. |
[4] | 温红博;梁凯丽;刘先伟. 家庭环境对中学生阅读能力的影响:阅读投入、阅读兴趣的中介作用[J]. 心理学报, 2016, 48(3): 248-257. |
[5] | 陈帅. 团队断裂带对团队绩效的影响:团队交互记忆系统的作用[J]. 心理学报, 2016, 48(1): 84-94. |
[6] | 郭庆科,李芳,陈雪霞,王炜丽,孟庆茂. 不同条件下拟合指数的表现及临界值的选择 [J]. 心理学报, 2008, 40(01): 109-118. |
[7] | 张锋,沈模卫,徐梅,朱海燕,周宁. 互联网使用动机、行为与其社会-心理健康的模型构建[J]. 心理学报, 2006, 38(03): 407-413. |
[8] | 甘怡群,王晓春,张轶文,张莹. 工作特征对农村中学教师职业倦怠的影响[J]. 心理学报, 2006, 38(01): 92-98. |
[9] | 陆奇斌,赵平,王高,黄劲松. 消费者满意度测量中的光环效应[J]. 心理学报, 2005, 37(04): 524-534. |
[10] | 王芳,许燕. 中小学教师职业枯竭状况及其与社会支持的关系[J]. 心理学报, 2004, 36(05): 568-574. |
[11] | 童辉杰. “非典(SARS)”应激反应模式及其特征[J]. 心理学报, 2004, 36(01): 103-109. |
[12] | 连榕. 新手—熟手—专家型教师心理特征的比较[J]. 心理学报, 2004, 36(01): 44-52. |
[13] | 张爱卿,刘华山. 责任、情感及帮助行为的归因结构模型[J]. 心理学报, 2003, 35(04): 535-540. |
[14] | 张建新,张妙清,梁觉. 殊化信任与泛化信任在人际信任行为路径模型中的作用[J]. 心理学报, 2000, 32(3): 311-316. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||