[1] |
Alexander, L., & Martray, C. (1989). The development of an abbreviated version of the Mathematics Anxiety Rating Scale. Measurement and Evaluation in Counseling and Development, 22(3), 143-150.
|
[2] |
Ashcraft, M. H. (2002). Math anxiety: Personal, educational, and cognitive consequences. Current Directions in Psychological Science, 11 (5), 181-185.
|
[3] |
Ashcraft, M. H., & Kirk, E. P. (2001). The relationships among working memory, math anxiety, and performance. Journal of Experimental Psychology: General, 130(2), 224-237.
|
[4] |
Ashcraft, M. H., & Krause, J. A. (2007). Working memory, math performance, and math anxiety. Psychonomic Bulletin & Review, 14(2), 243-248.
doi: 10.3758/bf03194059
URL
pmid: 17694908
|
[5] |
Bates, M. E., & Lemay, E. P. (2004). The d2 test of attention: construct validity and extensions in scoring techniques. Journal of the International Neuropsychological Society, 10(3), 392-400.
URL
pmid: 15147597
|
[6] |
Brannon, E. M. (2006). The representation of numerical magnitude. Current Opinion in Neurobiology, 16(2), 222-229.
doi: 10.1016/j.conb.2006.03.002
URL
pmid: 16546373
|
[7] |
Brannon, E. M., Jordan, K. E., & Jones, S. M., (2010). Behavioral signatures of numerical cognition. In M. L. Platt, A. A. Ghazanfa (Eds.).Primate neuroethology (pp.144-159), Oxford University Press.
|
[8] |
Carey, E., Hill, F., Devine, A., & Szücs, D. (2016). The chicken or the egg? The direction of the relationship between mathematics anxiety and mathematics performance. Frontiers in Psychology, 6, 1987.
doi: 10.3389/fpsyg.2015.01987
URL
pmid: 26779093
|
[9] |
Cohen, M. X. (2014). Analyzing neural time series data: Theory and practice. Cambrige, Massachusetts, the MIT press.
|
[10] |
Colomé, À. (2019). Representation of numerical magnitude in math-anxious individuals. Quarterly Journal of Experimental Psychology, 72(3), 424-435.
|
[11] |
Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21.
doi: 10.1016/j.jneumeth.2003.10.009
URL
pmid: 15102499
|
[12] |
Dietrich, J. F., Huber, S., Moeller, K., & Klein, E. (2015). The influence of math anxiety on symbolic and non-symbolic magnitude processing. Frontiers in Psychology, 6, 1621.
doi: 10.3389/fpsyg.2015.01621
URL
pmid: 26579012
|
[13] |
Di Russo, F., Martínez, A., Sereno, M. I., Pitzalis, S., & Hillyard, S. A. (2002). Cortical sources of the early components of the visual evoked potential. Human Brain Mapping, 15 (2), 95-111.
doi: 10.1002/hbm.10010
URL
pmid: 11835601
|
[14] |
Ekstrom, R. B., Dermen, D., & Harman, H. H. (1976). Manual for kit of factor-referenced cognitive tests (Vol. 102). Princeton, NJ: Educational Testing Service.
|
[15] |
Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top-down processing. Nature Reviews Neuroscience, 2 (10), 704-716.
doi: 10.1038/35094565
URL
pmid: 11584308
|
[16] |
Engel, A. K., & Fries, P. (2010). Beta-band oscillations-signalling the status quo? Current Opinion in Neurobiology, 20(2), 156-165.
doi: 10.1016/j.conb.2010.02.015
URL
pmid: 20359884
|
[17] |
Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191.
doi: 10.3758/BF03193146
URL
|
[18] |
Fornaciai, M., Brannon, E. M., Woldorff, M. G., & Park, J. (2017). Numerosity processing in early visual cortex. NeuroImage, 157, 429-438.
doi: 10.1016/j.neuroimage.2017.05.069
URL
pmid: 28583882
|
[19] |
Halberda, J., Mazzocco, M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665-668.
doi: 10.1038/nature07246
URL
pmid: 18776888
|
[20] |
Hauser, M. D., Tsao, F., Garcia, P., & Spelke, E. S. (2003). Evolutionary foundations of number: spontaneous representation of numerical magnitudes by cotton-top tamarins. Proceedings of the Royal Society of London B: Biological Sciences, 270(1523), 1441-1446.
|
[21] |
Hyde, D. C., & Spelke, E. S. (2009). All numbers are not equal: an electrophysiological investigation of small and large number representations. Journal of Cognitive Neuroscience, 21(6), 1039-1053.
doi: 10.1162/jocn.2009.21090
URL
pmid: 18752403
|
[22] |
Hyde, D. C., & Spelke, E. S. (2012). Spatiotemporal dynamics of processing nonsymbolic number: An event‐related potential source localization study. Human Brain Mapping, 33(9), 2189-2203.
doi: 10.1002/hbm.21352
URL
|
[23] |
Hyde, D. C., & Wood, J. N. (2011). Spatial attention determines the nature of nonverbal number representation. Journal of Cognitive Neuroscience, 23 (9), 2336-2351.
doi: 10.1162/jocn.2010.21581
URL
pmid: 20961170
|
[24] |
Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences, 106(25), 10382-10385.
|
[25] |
Libertus, M. E., & Brannon, E. M. (2009). Behavioral and neural basis of number sense in infancy. Current Directions in Psychological Science, 18(6), 346-351.
doi: 10.1111/j.1467-8721.2009.01665.x
URL
pmid: 20419075
|
[26] |
Libertus, M. E., Woldorff, M. G., & Brannon, E. M. (2007). Electrophysiological evidence for notation independence in numerical processing. Behavioral and Brain Functions, 3(1), 1.
|
[27] |
Lindskog, M., Winman, A., & Poom, L. (2017). Individual differences in nonverbal number skills predict math anxiety. Cognition, 159, 156-162.
URL
pmid: 27960118
|
[28] |
Liu, J., Li, J., Peng, W., Feng, M., & Luo, Y. (2019). EEG correlates of math anxiety during arithmetic problem solving: Implication for attention deficits. Neuroscience Letters, 703, 191-197.
doi: 10.1016/j.neulet.2019.03.047
URL
pmid: 30928479
|
[29] |
Lyons, I. M., & Beilock, S. L. (2011). Mathematics anxiety: separating the math from the anxiety. Cerebral Cortex, 22 (9), 2102-2110.
doi: 10.1093/cercor/bhr289
URL
pmid: 22016480
|
[30] |
Maloney, E. A., Ansari, D., & Fugelsang, J. A. (2011). Rapid communication: the effect of mathematics anxiety on the processing of numerical magnitude. Quarterly Journal of Experimental Psychology, 64(1), 10-16.
|
[31] |
Maloney, E. A., Risko, E. F., Ansari, D., & Fugelsang, J. (2010). Mathematics anxiety affects counting but not subitizing during visual enumeration. Cognition, 114 (2), 293-297.
doi: 10.1016/j.cognition.2009.09.013
URL
pmid: 19896124
|
[32] |
Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG and MEG data. Journal of Neuroscience Methods, 164 (1), 177-190.
doi: 10.1016/j.jneumeth.2007.03.024
URL
pmid: 17517438
|
[33] |
Núñez-Peña, M. I., & Suárez-Pellicioni, M. (2014). Less precise representation of numerical magnitude in high math-anxious individuals: An ERP study of the size and distance effects. Biological Psychology, 103, 1767-183.
|
[34] |
Núñez-Peña, M. I., & Suárez-Pellicioni, M. (2015). Processing of multi-digit additions in high math-anxious individuals: psychophysiological evidence. Frontiers in Psychology, 6, 1268.
doi: 10.3389/fpsyg.2015.01268
URL
pmid: 26347705
|
[35] |
OECD, . (2013). PISA 2012 Results: Ready to learn: Students' engagement drive and self-beliefs (Volume III). PISA, OECD Publishing.
|
[36] |
Park, J. (2018). A neural basis for the visual sense of number and its development: A steady-state visual evoked potential study in children and adults. Developmental Cognitive Neuroscience, 30, 333-343.
doi: 10.1016/j.dcn.2017.02.011
URL
pmid: 28342780
|
[37] |
Park, J., DeWind, N. K., Woldorff, M. G., & Brannon, E. M. (2015). Rapid and direct encoding of numerosity in the visual stream. Cerebral Cortex, 26(2), 748-763.
doi: 10.1093/cercor/bhv017
URL
pmid: 25715283
|
[38] |
Raven, J., Raven, J. C., & Court, J. H. (1998). Manual for Raven's Progressive Matrices and Vocabulary Scales. Section 3, The Standard Progressive Matrices. Oxford, England: Oxford Psychologists Press/San Antonio, TX: The Psychological Corporation.
|
[39] |
Sorvo, R., Koponen, T., Viholainen, H., Aro, T., Räikkönen, E., Peura, P., … Aro, M. (2019). Development of math anxiety and its longitudinal relationships with arithmetic achievement among primary school children. Learning and Individual Differences, 69, 173-181.
|
[40] |
Spielberger, C. D., Gorsuch, R. L., Lushene, R., Vagg, P. R., & Jacobs, G. A. (1983) Manual for the state-trait anxiety scale. CA: Consulting Psychologists Press.
|
[41] |
Sullivan, J., Frank, M. C., & Barner, D. (2016). Intensive math training does not affect approximate number acuity: Evidence from a three-year longitudinal curriculum intervention. Journal of Numerical Cognition, 2 (2), 57-76.
|
[42] |
Wang, Z., Hart, S. A., Kovas, Y., Lukowski, S., Soden, B., Thompson, L. A., … Petrill, S. A. (2014). Who is afraid of math? Two sources of genetic variance for mathematical anxiety. Journal of Child Psychology and Psychiatry, 55 (9), 1056-1064.
doi: 10.1111/jcpp.12224
URL
pmid: 24611799
|
[43] |
Xu, F., Spelke, E. S., & Goddard, S. (2005). Number sense in human infants. Developmental Science, 8(1), 88-101.
doi: 10.1111/j.1467-7687.2005.00395.x
URL
pmid: 15647069
|
[44] |
Young, C. B., Wu, S. S., & Menon, V. (2012). The neurodevelopmental basis of math anxiety. Psychological Science, 23(5), 492-501.
doi: 10.1177/0956797611429134
URL
pmid: 22434239
|
[45] |
Zhang, Z. G., Hu, L., Hung, Y. S., Mouraux, A., & Iannetti, G. D. (2012). Gamma-band oscillations in the primary somatosensory cortex—a direct and obligatory correlate of subjective pain intensity. Journal of Neuroscience, 32 (22), 7429-7438.
doi: 10.1523/JNEUROSCI.5877-11.2012
URL
pmid: 22649223
|
[46] |
Zhou, X., Wei, W., Zhang, Y., Cui, J., & Chen, C. (2015). Visual perception can account for the close relation between numerosity processing and computational fluency. Frontiers in Psychology, 6, 1364.
doi: 10.3389/fpsyg.2015.01364
URL
pmid: 26441740
|