心理学报 ›› 2024, Vol. 56 ›› Issue (12): 1718-1733.doi: 10.3724/SP.J.1041.2024.01718
李想1, 贾丽娜2, 魏士琳3,4, 陈俊涛6, 夏尧远7, 王芹3,4,5, 金花3,4,5()
收稿日期:
2023-09-22
发布日期:
2024-11-04
出版日期:
2024-12-25
通讯作者:
金花, E-mail: jinhua@tjnu.edu.cnLI Xiang1, JIA Lina2, WEI Shilin3,4, CHEN Juntao6, XIA Yaoyuan7, WANG Qin3,4,5, JIN Hua3,4,5()
Received:
2023-09-22
Online:
2024-11-04
Published:
2024-12-25
摘要:
本研究将学习−测试范式与功能磁共振成像技术(fMRI)以及肌电图技术(EMG)相结合, 探讨了运动特征与抽象动词具身表征之间的因果联系, 旨在证明词语的运动特征可能是以往研究结果不一致的关键因素, 为抽象概念表征的具身认知观点提供支持证据。任务态功能磁共振成像研究(实验1)发现, 运动特征增加后, 新造词在后测加工中引发的运动相关脑区(如左侧中央前回)的活动强度显著高于前测中的; 且运动相关脑区(右侧中央前后回、左侧中央前回等)在新造抽象动词加工中的参与度受到词语运动特征值的调节。肌电图研究(实验2)发现, 运动特征增加后的新造词加工也引发了手臂指伸肌肌电活动的增强。这表明, 词语的运动特征在抽象动词具身表征中发挥因果性作用, 运动特征对中枢运动系统的影响能够延伸至外周肌肉运动系统。结果为具身认知语言理解观提供了新的证据及重要完善和补充。
中图分类号:
李想, 贾丽娜, 魏士琳, 陈俊涛, 夏尧远, 王芹, 金花. (2024). 运动特征对抽象动词具身表征的影响:来自fMRI及EMG的证据. 心理学报, 56(12), 1718-1733.
LI Xiang, JIA Lina, WEI Shilin, CHEN Juntao, XIA Yaoyuan, WANG Qin, JIN Hua. (2024). Motor features of abstract verbs determine their representations in the motor system: An fMRI and EMG study. Acta Psychologica Sinica, 56(12), 1718-1733.
脑区 | 团块大小 | 峰值坐标 MNI | F值 | ||
---|---|---|---|---|---|
x | y | z | |||
左侧楔前叶、后扣带回 | 3630 | −3 | −72 | 30 | 107.90 |
右侧楔前叶 | 12 | −42 | 27 | 65.30 | |
左侧眶内额上回 | 2966 | −9 | 54 | −3 | 39.97 |
左侧额上回、额中回 | −18 | 18 | 54 | 37.51 | |
左侧角回 | 1570 | −39 | −63 | 36 | 73.17 |
右侧角回 | 923 | 39 | −66 | 39 | 35.53 |
右侧脑岛 | 528 | 39 | 24 | −3 | 31.21 |
右侧颞中回、颞下回 | 448 | 63 | −6 | −15 | 28.47 |
左侧颞中回、颞下回 | 347 | −60 | −24 | −18 | 40.38 |
左侧梭状回 | 135 | −39 | −90 | −15 | 15.93 |
右侧小脑 | 133 | 39 | −66 | −48 | 30.23 |
右侧辅助运动区 | 128 | 9 | 15 | 45 | 15.23 |
左侧三角部额下回 | 72 | −39 | 24 | 3 | 18.67 |
右侧小脑 | 66 | 9 | −57 | −57 | 19.11 |
左侧中央后回、中央前回 | 59 | −57 | −6 | 45 | 17.05 |
表1 测试时间×词语类型交互作用获得的显著激活脑区
脑区 | 团块大小 | 峰值坐标 MNI | F值 | ||
---|---|---|---|---|---|
x | y | z | |||
左侧楔前叶、后扣带回 | 3630 | −3 | −72 | 30 | 107.90 |
右侧楔前叶 | 12 | −42 | 27 | 65.30 | |
左侧眶内额上回 | 2966 | −9 | 54 | −3 | 39.97 |
左侧额上回、额中回 | −18 | 18 | 54 | 37.51 | |
左侧角回 | 1570 | −39 | −63 | 36 | 73.17 |
右侧角回 | 923 | 39 | −66 | 39 | 35.53 |
右侧脑岛 | 528 | 39 | 24 | −3 | 31.21 |
右侧颞中回、颞下回 | 448 | 63 | −6 | −15 | 28.47 |
左侧颞中回、颞下回 | 347 | −60 | −24 | −18 | 40.38 |
左侧梭状回 | 135 | −39 | −90 | −15 | 15.93 |
右侧小脑 | 133 | 39 | −66 | −48 | 30.23 |
右侧辅助运动区 | 128 | 9 | 15 | 45 | 15.23 |
左侧三角部额下回 | 72 | −39 | 24 | 3 | 18.67 |
右侧小脑 | 66 | 9 | −57 | −57 | 19.11 |
左侧中央后回、中央前回 | 59 | −57 | −6 | 45 | 17.05 |
脑区 | 团块大小 | 峰值坐标MNI | t值 | ||
---|---|---|---|---|---|
x | y | z | |||
后测 > 前测 | |||||
左侧楔前叶 | 1742 | −9 | −69 | 24 | 12.92 |
左侧后扣带回 | −3 | −36 | 27 | 9.32 | |
右侧楔前叶 | 6 | −66 | 24 | 7.75 | |
左侧角回 | 688 | −36 | −63 | 36 | 8.74 |
左侧额上回 | 187 | −21 | 66 | 0 | 6.57 |
右侧枕中回 | 183 | 36 | −72 | 33 | 5.68 |
左侧中央前回 | 130 | −42 | 9 | 39 | 4.56 |
前测 > 后测 | |||||
左侧颞上回 | 215 | −57 | −39 | 12 | 6.15 |
表2 学习新造词在前后测比较中的显著激活脑区
脑区 | 团块大小 | 峰值坐标MNI | t值 | ||
---|---|---|---|---|---|
x | y | z | |||
后测 > 前测 | |||||
左侧楔前叶 | 1742 | −9 | −69 | 24 | 12.92 |
左侧后扣带回 | −3 | −36 | 27 | 9.32 | |
右侧楔前叶 | 6 | −66 | 24 | 7.75 | |
左侧角回 | 688 | −36 | −63 | 36 | 8.74 |
左侧额上回 | 187 | −21 | 66 | 0 | 6.57 |
右侧枕中回 | 183 | 36 | −72 | 33 | 5.68 |
左侧中央前回 | 130 | −42 | 9 | 39 | 4.56 |
前测 > 后测 | |||||
左侧颞上回 | 215 | −57 | −39 | 12 | 6.15 |
脑区 | 团块大小 | 峰值坐标MNI | t值 | ||
---|---|---|---|---|---|
x | y | z | |||
后测 > 前测 | |||||
无 | |||||
前测 > 后测 | |||||
右侧颞中回、颞上回 | 1690 | 60 | −9 | −15 | 6.23 |
左侧顶下回 | 1220 | −60 | −42 | 39 | 5.75 |
右内侧额上回 | 611 | 12 | 48 | 36 | 6.77 |
表3 非学习新造词在前后测比较中的显著激活脑区
脑区 | 团块大小 | 峰值坐标MNI | t值 | ||
---|---|---|---|---|---|
x | y | z | |||
后测 > 前测 | |||||
无 | |||||
前测 > 后测 | |||||
右侧颞中回、颞上回 | 1690 | 60 | −9 | −15 | 6.23 |
左侧顶下回 | 1220 | −60 | −42 | 39 | 5.75 |
右内侧额上回 | 611 | 12 | 48 | 36 | 6.77 |
脑区 | 团块 大小 | 峰值坐标MNI | t值 | ||
---|---|---|---|---|---|
x | y | z | |||
高 > 低运动特征抽象动词 | |||||
左侧枕下回 | 454 | −33 | −87 | −9 | 7.01 |
右侧梭状回 | 223 | 27 | −87 | −3 | 6.49 |
右侧中央前回 | 22 | 42 | −15 | 42 | 4.17 |
左侧中央前回 | 12 | −51 | −6 | 45 | 4.09 |
左侧中央后回 | 10 | −42 | −27 | 60 | 4.70 |
低 > 高运动特征抽象动词 | |||||
无 |
表4 高和低运动特征抽象动词比较中的显著激活脑区
脑区 | 团块 大小 | 峰值坐标MNI | t值 | ||
---|---|---|---|---|---|
x | y | z | |||
高 > 低运动特征抽象动词 | |||||
左侧枕下回 | 454 | −33 | −87 | −9 | 7.01 |
右侧梭状回 | 223 | 27 | −87 | −3 | 6.49 |
右侧中央前回 | 22 | 42 | −15 | 42 | 4.17 |
左侧中央前回 | 12 | −51 | −6 | 45 | 4.09 |
左侧中央后回 | 10 | −42 | −27 | 60 | 4.70 |
低 > 高运动特征抽象动词 | |||||
无 |
脑区 | 团块 大小 | 峰值坐标MNI | t值 | ||
---|---|---|---|---|---|
x | y | z | |||
左侧后扣带回 | 22536 | −3 | −36 | 27 | 14.20 |
左侧楔前叶、距状皮层 | −6 | −45 | 6 | 12.06 | |
左侧顶下回、角回 | −36 | −69 | 42 | 11.49 | |
右侧枕中回、角回 | 36 | −69 | 39 | 10.37 | |
左侧额上回、眶内额上回 | −12 | 72 | −3 | 8.87 | |
左侧中央前回 | −36 | 6 | 47 | 6.50 | |
右侧中央前回、中央后回 | 154 | 60 | 3 | 21 | 3.88 |
表5 词语运动特征对全脑神经激活的参数调节分析结果
脑区 | 团块 大小 | 峰值坐标MNI | t值 | ||
---|---|---|---|---|---|
x | y | z | |||
左侧后扣带回 | 22536 | −3 | −36 | 27 | 14.20 |
左侧楔前叶、距状皮层 | −6 | −45 | 6 | 12.06 | |
左侧顶下回、角回 | −36 | −69 | 42 | 11.49 | |
右侧枕中回、角回 | 36 | −69 | 39 | 10.37 | |
左侧额上回、眶内额上回 | −12 | 72 | −3 | 8.87 | |
左侧中央前回 | −36 | 6 | 47 | 6.50 | |
右侧中央前回、中央后回 | 154 | 60 | 3 | 21 | 3.88 |
序号 | 学习新造词 | 学习新造词的释义 | 隐含的运动方向 |
---|---|---|---|
1 | 本绪 | 把责任推出去 | 远离身体 |
2 | 在份 | 知道或得到消息 | 靠近身体 |
3 | 格从 | 丢掉抛弃(旧观念等) | 远离身体 |
4 | 席律 | 把事情记在脑中 | 靠近身体 |
实验1和实验2中的学习材料样例
序号 | 学习新造词 | 学习新造词的释义 | 隐含的运动方向 |
---|---|---|---|
1 | 本绪 | 把责任推出去 | 远离身体 |
2 | 在份 | 知道或得到消息 | 靠近身体 |
3 | 格从 | 丢掉抛弃(旧观念等) | 远离身体 |
4 | 席律 | 把事情记在脑中 | 靠近身体 |
[1] |
Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617-645.
pmid: 17705682 |
[2] | Barsalou, L. W., Simmons, W. K., Barbey, A. K., & Wilson, C. D. (2003). Grounding conceptual knowledge in modality- specific systems. Trends in Cognitive Sciences, 7(2), 84-91. |
[3] | Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 2767-2796. |
[4] | Bird, H., Franklin, S., & Howard, D. (2001). Age of acquisition and imageability ratings for a large set of words, including verbs and function words. Behavior Research Methods, Instruments, & Computers, 33(1), 73-79. |
[5] |
Bonner, M. F., Peelle, J. E., Cook, P. A., & Grossman, M. (2013). Heteromodal conceptual processing in the angular gyrus. NeuroImage, 71, 175-186.
doi: 10.1016/j.neuroimage.2013.01.006 pmid: 23333416 |
[6] | Borghi, A. M., & Binkofski, F. (2014). Words as social tools: An embodied view on abstract concepts. Berlin, Germany: Springer. |
[7] |
Borghi, A. M., Binkofski, F., Castelfranchi, C., Cimatti, F., Scorolli, C., & Tummolini, L. (2017). The challenge of abstract concepts. Psychological Bulletin, 143(3), 263-292.
doi: 10.1037/bul0000089 pmid: 28095000 |
[8] | Bucur, M., & Papagno, C. (2021). An ALE meta-analytical review of the neural correlates of abstract and concrete words. Scientific Reports, 11(1), 15727. |
[9] | Cai, Q., & Brysbaert, M. (2010). SUBTLEX-CH: Chinese word and character frequencies based on film subtitles. PloS ONE, 5(6), e10729. |
[10] |
Clark, D., & Wagner, A. D. (2003). Assembling and encoding word representations: fMRI subsequent memory effects implicate a role for phonological control. Neuropsychologia, 41(3), 304-317.
pmid: 12457756 |
[11] |
Courson, M., Macoir, J., & Tremblay, P. (2018). A facilitating role for the primary motor cortex in action sentence processing. Behavioural Brain Research, 336, 244-249.
doi: S0166-4328(17)31066-5 pmid: 28899820 |
[12] |
Davis, M. H., Di Betta, A. M., Macdonald, M. J., & Gaskell, M. G. (2009). Learning and consolidation of novel spoken words. Journal of Cognitive Neuroscience, 21(4), 803-820.
doi: 10.1162/jocn.2009.21059 pmid: 18578598 |
[13] | Del Maschio, N., Fedeli, D., Garofalo, G., & Buccino, G. (2021). Evidence for the concreteness of abstract language: A meta-analysis of neuroimaging studies. Brain Sciences, 12(1), 32. |
[14] | Desai, R. H., Reilly, M., & van Dam, W. (2018). The multifaceted abstract brain. Philosophical Transactions of the Royal Society of London, 373(1752), 20170122. |
[15] |
Dreyer, F. R., & Pulvermüller, F. (2018). Abstract semantics in the motor system?-An event-related fMRI study on passive reading of semantic word categories carrying abstract emotional and mental meaning. Cortex, 100, 52-70.
doi: S0010-9452(17)30369-6 pmid: 29455946 |
[16] | Fernandino, L., Tong, J. Q., Conant, L. L., Humphries, C. J., & Binder, J. R. (2022). Decoding the information structure underlying the neural representation of concepts. Proceedings of the National Academy of Sciences of the United States of America, 119(6), e2108091119. |
[17] |
Foroni, F., & Semin, G. R. (2009). Language that puts you in touch with your bodily feelings: The multimodal responsiveness of affective expressions. Psychological Science, 20(8), 974-980.
doi: 10.1111/j.1467-9280.2009.02400.x pmid: 19594858 |
[18] | Fukuda, T. Y., Echeimberg, J. O., Pompéu, J. E., Lucareli, P. R. G., Garbelotti, S., Gimenes, R. O., & Apolinário, A. (2010). Root mean square value of the electromyographic signal in the isometric torque of the quadriceps, hamstrings and brachial biceps muscles in female subjects. The Journal of Applied Research, 10(1), 32-39. |
[19] | Gallese, V., & Lakoff, G. (2005). The brain's concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22(3-4), 455-479. |
[20] | Gálvez-García, G., Aldunate, N., Bascour-Sandoval, C., Martínez- Molina, A., Peña, J., & Barramuño, M. (2020). Muscle activation in semantic processing: An electromyography approach. Biological Psychology, 152, 107881. |
[21] | Glenberg, A. M., & Kaschak, M. P. (2002). Grounding language in action. Psychonomic Bulletin & Review, 9(3), 558-565. |
[22] | Granito, C., Scorolli, C., & Borghi, A. M. (2015). Naming a lego world. The role of language in the acquisition of abstract concepts. PloS ONE, 10(1), e0114615. |
[23] | Günther, F., Dudschig, C., & Kaup, B. (2018). Symbol grounding without direct experience: Do words inherit sensorimotor activation from purely linguistic context?. Cognitive Science, 42 (Suppl 2), 336-374. |
[24] |
Harpaintner, M., Sim, E. J., Trumpp, N. M., Ulrich, M., & Kiefer, M. (2020). The grounding of abstract concepts in the motor and visual system: An fMRI study. Cortex, 124, 1-22.
doi: S0010-9452(19)30368-5 pmid: 31821905 |
[25] |
Hauk, O., Johnsrude, I., & Pulvermüller, F. (2004). Somatotopic representation of action words in human motor and premotor cortex. Neuron, 41(2), 301-307.
doi: 10.1016/s0896-6273(03)00838-9 pmid: 14741110 |
[26] |
Innocenti, A., De Stefani, E., Sestito, M., & Gentilucci, M. (2014). Understanding of action-related and abstract verbs in comparison: A behavioral and TMS study. Cognitive Processing, 15(1), 85-92.
doi: 10.1007/s10339-013-0583-z pmid: 24113915 |
[27] | Jin, H., & Li, X. (2022). The embodied representation of abstract verbs: The effect of motor features. Journal of Psychological Science, 45, 614-619. |
[金花, 李想. (2022). 抽象动词的具身表征: 运动特征的影响. 心理科学, 45(3), 614-619.] | |
[28] | Kaschak, M. P., & Madden, J. (2021). Embodiment in the lab:Theory, measurement, and reproducibility. In Robinson, M. D., & Thomas, L. E, (Eds.), Handbook of embodied psychology: Thinking, feeling, and acting (pp:619-635). Switzerland: Springer. |
[29] | Kemmerer, D. (2015). Are the motor features of verb meanings represented in the precentral motor cortices? Yes, but within the context of a flexible, multilevel architecture for conceptual knowledge. Psychonomic Bulletin & Review, 22(4), 1068-1075. |
[30] | Khatin-Zadeh, O., Farsani, D., Hu, J., Eskandari, Z., Zhu, Y., & Banaruee, H. (2023). A review of studies supporting metaphorical embodiment. Behavioral Sciences, 13(7), 585. |
[31] | Kiefer, M., & Harpaintner, M. (2020). Varieties of abstract concepts and their grounding in perception or action. Open Psychology, 2(1), 119-137. |
[32] | Kiefer, M., Pielke, L., & Trumpp, N. M. (2022). Differential temporo-spatial pattern of electrical brain activity during the processing of abstract concepts related to mental states and verbal associations. NeuroImage, 252, 119036. |
[33] |
Kiefer, M., & Pulvermüller, F. (2012). Conceptual representations in mind and brain: Theoretical developments, current evidence and future directions. Cortex, 48(7), 805-825.
doi: 10.1016/j.cortex.2011.04.006 pmid: 21621764 |
[34] |
Klepp, A., Weissler, H., Niccolai, V., Terhalle, A., Geisler, H., Schnitzler, A., & Biermann-Ruben, K. (2014). Neuromagnetic hand and foot motor sources recruited during action verb processing. Brain and Language, 128(1), 41-52.
doi: 10.1016/j.bandl.2013.12.001 pmid: 24412808 |
[35] | Li, M. Y., Xu, Y. W., Luo, X. Q., Zeng, J. H., & Han, Z. Z. (2020). Linguistic experience acquisition for novel stimuli selectively activates the neural network of the visual word form area. NeuroImage, 215, 116838. |
[36] | Li, X., Luo, D., Wang, C., Xia, Y. Y., & Jin, H. (2022). Motor features of abstract verbs determine their representations in the motor system. Frontiers in Psychology, 13, 957426. |
[37] | Morey, R. D., Kaschak, M. P., Díez-Álamo, A. M., Glenberg, A. M., Zwaan, R. A., Lakens, D., ... Ziv-Crispel, N. (2021). A pre-registered, multi-lab non-replication of the action- sentence compatibility effect (ACE). Psychonomic Bulletin & Review. 29(2), 613-626. |
[38] | Moseley, R., Carota, F., Hauk, O., Mohr, B., & Pulvermüller, F. (2012). A role for the motor system in binding abstract emotional meaning. Cerebral Cortex, 22(7), 1634-1647. |
[39] |
Newman, S. D., & Twieg, D. (2001). Differences in auditory processing of words and pseudowords: An fMRI study. Human Brain Mapping, 14(1), 39-47.
pmid: 11500989 |
[40] |
Ostarek, M., & Huettig, F. (2019). Six challenges for embodiment research. Current Directions in Psychological Science, 28(6), 593-599.
doi: 10.1177/0963721419866441 |
[41] | Öttl, B., Dudschig, C., & Kaup, B. (2017). Forming associations between language and sensorimotor traces during novel word learning. Language and Cognition, 9(1), 156-171. |
[42] |
Popp, M., Trumpp, N. M., Sim, E. J., & Kiefer, M. (2019). Brain activation during conceptual processing of action and sound verbs. Advances in Cognitive Psychology, 15(4), 236-255.
doi: 10.5709/acp-0272-4 pmid: 32494311 |
[43] | Qu, F. B., Yin, R., Zhong, Y., Ye, H. S. (2012). Motor perception in language comprehension: Perspective from embodied cognition. Advances in Psychological Science, 20(6), 834-842. |
[曲方炳, 殷融, 钟元, 叶浩生. (2012). 语言理解中的动作知觉:基于具身认知的视角. 心理科学进展, 20(6), 834-842.] | |
[44] |
Raposo, A., Moss, H. E., Stamatakis, E. A., & Tyler, L. K. (2009). Modulation of motor and premotor cortices by actions, action words and action sentences. Neuropsychologia, 47(2), 388-396.
doi: 10.1016/j.neuropsychologia.2008.09.017 pmid: 18930749 |
[45] |
Repetto, C., Colombo, B., Cipresso, P., & Riva, G. (2013). The effects of rTMS over the primary motor cortex: The link between action and language. Neuropsychologia, 51(1), 8-13.
doi: 10.1016/j.neuropsychologia.2012.11.001 pmid: 23142706 |
[46] | Repetto, C., Mathias, B., Weichselbaum, O., & Macedonia, M. (2021). Visual recognition of words learned with gestures induces motor resonance in the forearm muscles. Scientific Reports, 11(1), 17278. |
[47] |
Rodríguez-Ferreiro, J., Gennari, S. P., Davies, R., & Cuetos, F. (2011). Neural correlates of abstract verb processing. Journal of Cognitive Neuroscience, 23(1), 106-118.
doi: 10.1162/jocn.2010.21414 pmid: 20044889 |
[48] | San Miguel Abella, R. A., & González-Nosti, M. (2019). Motor content norms for 4, 565 verbs in Spanish. Behavior Research Methods, 52(2), 447-454. |
[49] | Sui, X., & Zhang, X. L. (2012). Review about the research of recognition of Chinese 2-character words. Journal of Liaoning Normal University (Social Science Edition), 35(6), 768-771. |
[隋雪, 张晓利. (2012). 汉语双字词识别研究进展. 辽宁师范大学学报:社会科学版, 35(6), 768-771.] | |
[50] | Tan, L. H., & Perfetti, C. A. (1999). Phonological activation in visual identification of Chinese two-character words. Journal of Experimental Psychology Learning Memory & Cognition, 25(2), 382-393. |
[51] | Tomasino, B., & Gremese, M. (2016). The cognitive side of M1. Frontiers in Human Neuroscience, 10, 298. |
[52] |
Tomasino, B., Nobile, M., Re, M., Bellina, M., Garzitto, M., Arrigoni, F., ... Brambilla, P. (2018). The mental simulation of state/psychological verbs in the adolescent brain: An fMRI study. Brain and Cognition, 123, 34-46.
doi: S0278-2626(17)30437-2 pmid: 29505944 |
[53] |
Villani, C., Lugli, L., Liuzza, M. T., & Borghi, A. M. (2019). Varieties of abstract concepts and their multiple dimensions. Language and Cognition, 11(3), 403-430.
doi: 10.1017/langcog.2019.23 |
[54] |
Wang, J., Conder, J. A., Blitzer, D. N., & Shinkareva, S. V. (2010). Neural representation of abstract and concrete concepts: A meta-analysis of neuroimaging studies. Human Brain Mapping, 31(10), 1459-1468.
doi: 10.1002/hbm.20950 pmid: 20108224 |
[55] | Wang, J. Y., Ye, H. S., & Su, D. Q. (2018). The correlativity of action and sematic processing: Perspect of embodied metaphor. Psychological Exploration, 38(1), 15-19. |
[王继瑛, 叶浩生, 苏得权. (2018). 身体动作与语义加工: 具身隐喻的视角. 心理学探新, 38(1), 15-19.] | |
[56] | Wenderoth, N., Debaere, F., Sunaert, S., & Swinnen, S. P. (2005). The role of anterior cingulate cortex and precuneus in the coordination of motor behaviour. The European Journal of Neuroscience, 22(1), 235-246. |
[57] | Yan, C. G., Wang, X. D., Zuo, X. N., & Zang, Y. F. (2016). DPABI: Data processing & analysis for (resting-state) brain imaging. Neuroinformatics, 14(3), 339-351. |
[58] | Yu, X., Law, S. P., Han, Z. Z., Zhu, C. Z., & Bi, Y. C. (2011). Dissociative neural correlates of semantic processing of nouns and verbs in Chinese-A language with minimal inflectional morphology. NeuroImage, 58(3), 912922. |
[59] |
Zhang, K., & Du, X. M. (2024). Creative thinking from the perspective of embodied cognition. Advances in Psychological Science, 32(7), 1126-1137.
doi: 10.3724/SP.J.1042.2024.01126 |
[张克, 杜秀敏. (2024). 具身认知视角下的创造性思维. 心理科学进展, 32(7), 1126-1137.]
doi: 10.3724/SP.J.1042.2024.01126 |
|
[60] | Zheng, X. L., Xu, R., Hou, W. S., Wu, X. Y., & Ma, L. (2009). Effect of handgrip force on the activation level of forearm muscles. Chinese Journal of Ergonomics, 15(4), 14-17. |
[郑小林, 许蓉, 侯文生, 吴小鹰, 马丽. (2009). 握力对前臂肌肉活动水平的影响. 人类工效学, 15(4), 14-17.] | |
[61] | Zwaan, R. A. (2021). Two challenges to "embodied cognition" research and how to overcome them. Journal of Cognition, 4(1), 14. |
[1] | 贾筱倩, 宋晓蕾. 追踪手势对视空间学习的增强作用[J]. 心理学报, 2022, 54(9): 1009-1020. |
[2] | 金花, 贾丽娜, 阴晓娟, 严世振, 魏士琳, 陈俊涛. 错误信息持续影响效应的神经基础[J]. 心理学报, 2022, 54(4): 343-354. |
[3] | 叶浩生, 苏佳佳, 苏得权. 身体的意义:生成论视域下的情绪理论[J]. 心理学报, 2021, 53(12): 1393-1404. |
[4] | 苏佳佳, 叶浩生. 中国神话中的具身心理学思想探索[J]. 心理学报, 2020, 52(3): 386-398. |
[5] | 王汉林, 蒋泽亮, 冯晓慧, 鲁忠义. 道德概念的空间形象性:语言因素和具身因素的共同作用[J]. 心理学报, 2020, 52(2): 128-138. |
[6] | 叶浩生, 曾红, 杨文登. 生成认知:理论基础与实践走向[J]. 心理学报, 2019, 51(11): 1270-1280. |
[7] | 黎晓丹, 丁道群, 叶浩生. 身体姿势启动的内隐权力感对公平决策的影响[J]. 心理学报, 2019, 51(1): 106-116. |
[8] | 宋晓蕾, 李洋洋, 杨倩, 游旭群. 反应手的不同状态对联合任务中观察学习的影响 *[J]. 心理学报, 2018, 50(9): 975-984. |
[9] | 易仲怡, 杨文登, 叶浩生. 具身认知视角下软硬触觉经验对性别角色认知的影响[J]. 心理学报, 2018, 50(7): 793-802. |
[10] | 叶浩生, 麻彦坤, 杨文登. 身体与认知表征:见解与分歧[J]. 心理学报, 2018, 50(4): 462-472. |
[11] | 黎晓丹; 杜建政; 叶浩生. 中国礼文化的具身隐喻效应:蜷缩的身体使人更卑微[J]. 心理学报, 2016, 48(6): 746-756. |
[12] | 刘文娟;沈曼琼;李莹;王瑞明. 情绪概念加工与情绪面孔知觉的相互影响[J]. 心理学报, 2016, 48(2): 163-173. |
[13] | 苏得权;曾红;陈骐; 叶浩生. 用药动作线索诱发海洛因戒断者的镜像神经活动:一项fMRI研究[J]. 心理学报, 2016, 48(12): 1499-1506. |
[14] | 刘思耘;周宗奎;李娜. 网络使用经验对动作动词加工的影响[J]. 心理学报, 2015, 47(8): 992-1003. |
[15] | 杨惠兰;何先友;赵雪汝;张维. 权力的概念隐喻表征:来自大小与颜色隐喻的证据[J]. 心理学报, 2015, 47(7): 939-949. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||