心理学报 ›› 2024, Vol. 56 ›› Issue (12): 1706-1717.doi: 10.3724/SP.J.1041.2024.01706 cstr: 32110.14.2024.01706
王铖铖1,2,3, 赵宇飞1, 盛缨莹2,3, 赵庆柏2,3, 肖梦施1(), 韩磊1(
)
收稿日期:
2023-06-09
发布日期:
2024-11-04
出版日期:
2024-12-25
通讯作者:
肖梦施, E-mail: mengshi_x@163.com,基金资助:
WANG Chengcheng1,2,3, ZHAO Yufei1, SHENG Yingying2,3, ZHAO Qingbai2,3, XIAO Mengshi1(), HAN Lei1(
)
Received:
2023-06-09
Online:
2024-11-04
Published:
2024-12-25
摘要:
目前关于数字SNARC效应发生在早期的刺激表征阶段还是晚期的反应选择阶段的结果不一。本研究通过3个实验探究了其发生阶段。采用整体−局部范式, 构建了一种复合实验刺激——由数字构成的箭头, 并以此为实验材料, 分别要求被试比较数字大小(箭头方向的整体优先表征干扰数字的空间表征)和判断箭头方向(箭头方向判断任务在反应选择阶段与数字加工产生反应竞争)。 结果发现,水平方向干扰数字的空间表征阻碍了数字SNARC效应产生(实验1a); 垂直方向干扰数字的空间表征对数字SNARC效应没有影响(实验1b); 干扰反应选择阶段阻碍了数字SNARC效应产生(实验2)。实验结果表明干扰数字加工的刺激表征阶段和反应选择阶段都会影响数字SNARC效应的产生, 支持数字SNARC效应的双阶段加工模型。
中图分类号:
王铖铖, 赵宇飞, 盛缨莹, 赵庆柏, 肖梦施, 韩磊. (2024). 数字SNARC效应的发生阶段. 心理学报, 56(12), 1706-1717.
WANG Chengcheng, ZHAO Yufei, SHENG Yingying, ZHAO Qingbai, XIAO Mengshi, HAN Lei. (2024). Occurrence stage of SNARC effect. Acta Psychologica Sinica, 56(12), 1706-1717.
反应手 | 左箭头 | 右箭头 | 双向箭头 | |||
---|---|---|---|---|---|---|
小数 | 大数 | 小数 | 大数 | 小数 | 大数 | |
左手 | 99.06 ± 2.00 | 98.75 ± 3.56 | 96.56 ± 4.89 | 96.25 ± 4.60 | 98.54 ± 2.01 | 99.17 ± 2.35 |
右手 | 95.73 ± 5.04 | 96.67 ± 3.68 | 98.75 ± 2.35 | 99.27 ± 1.60 | 98.23 ± 2.29 | 98.65 ± 3.32 |
表1 实验1a各水平下的正确率 (M ± SD; %)
反应手 | 左箭头 | 右箭头 | 双向箭头 | |||
---|---|---|---|---|---|---|
小数 | 大数 | 小数 | 大数 | 小数 | 大数 | |
左手 | 99.06 ± 2.00 | 98.75 ± 3.56 | 96.56 ± 4.89 | 96.25 ± 4.60 | 98.54 ± 2.01 | 99.17 ± 2.35 |
右手 | 95.73 ± 5.04 | 96.67 ± 3.68 | 98.75 ± 2.35 | 99.27 ± 1.60 | 98.23 ± 2.29 | 98.65 ± 3.32 |
反应手 | 左箭头 | 右箭头 | 双向箭头 | |||
---|---|---|---|---|---|---|
小数 | 大数 | 小数 | 大数 | 小数 | 大数 | |
左手 | 490 ± 61 | 505 ± 67 | 540 ± 67 | 548 ± 64 | 525 ± 71 | 520 ± 67 |
右手 | 533 ± 68 | 543 ± 72 | 507 ± 66 | 501 ± 76 | 520 ± 75 | 516 ± 78 |
表2 实验1a各水平下的反应时 (M ± SD; ms)
反应手 | 左箭头 | 右箭头 | 双向箭头 | |||
---|---|---|---|---|---|---|
小数 | 大数 | 小数 | 大数 | 小数 | 大数 | |
左手 | 490 ± 61 | 505 ± 67 | 540 ± 67 | 548 ± 64 | 525 ± 71 | 520 ± 67 |
右手 | 533 ± 68 | 543 ± 72 | 507 ± 66 | 501 ± 76 | 520 ± 75 | 516 ± 78 |
反应手 | 上箭头 | 下箭头 | 双向箭头 | |||
---|---|---|---|---|---|---|
小数 | 大数 | 小数 | 大数 | 小数 | 大数 | |
左手 | 98.33 ± 2.80 | 98.13 ± 4.11 | 97.60 ± 3.25 | 97.81 ± 3.77 | 98.13 ± 2.98 | 98.23 ± 3.25 |
右手 | 97.08 ± 4.74 | 98.65 ± 3.18 | 98.13 ± 3.40 | 98.23 ± 2.97 | 97.19 ± 3.70 | 98.44 ± 2.62 |
表3 实验1b各水平下的正确率 (M ± SD; %)
反应手 | 上箭头 | 下箭头 | 双向箭头 | |||
---|---|---|---|---|---|---|
小数 | 大数 | 小数 | 大数 | 小数 | 大数 | |
左手 | 98.33 ± 2.80 | 98.13 ± 4.11 | 97.60 ± 3.25 | 97.81 ± 3.77 | 98.13 ± 2.98 | 98.23 ± 3.25 |
右手 | 97.08 ± 4.74 | 98.65 ± 3.18 | 98.13 ± 3.40 | 98.23 ± 2.97 | 97.19 ± 3.70 | 98.44 ± 2.62 |
反应手 | 上箭头 | 下箭头 | 双向箭头 | |||
---|---|---|---|---|---|---|
小数 | 大数 | 小数 | 大数 | 小数 | 大数 | |
左手 | 489 ± 74 | 513 ± 87 | 492 ± 81 | 518 ± 85 | 489 ± 77 | 511 ± 81 |
右手 | 505 ± 80 | 486 ± 81 | 495 ± 80 | 477 ± 78 | 505 ± 75 | 483 ± 79 |
表4 实验1b各水平下的反应时 (M ± SD; %)
反应手 | 上箭头 | 下箭头 | 双向箭头 | |||
---|---|---|---|---|---|---|
小数 | 大数 | 小数 | 大数 | 小数 | 大数 | |
左手 | 489 ± 74 | 513 ± 87 | 492 ± 81 | 518 ± 85 | 489 ± 77 | 511 ± 81 |
右手 | 505 ± 80 | 486 ± 81 | 495 ± 80 | 477 ± 78 | 505 ± 75 | 483 ± 79 |
反应手 | 小数 | 大数 | 特殊字符 | |||
---|---|---|---|---|---|---|
左箭头 | 右箭头 | 左箭头 | 右箭头 | 左箭头 | 右箭头 | |
左手 | 99.25 ± 2.13 | 99.13 ± 2.75 | 99.00 ± 2.58 | 97.38 ± 3.92 | 98.50 ± 3.24 | 98.00 ± 2.95 |
右手 | 98.88 ± 2.11 | 98.25 ± 3.11 | 98.75 ± 2.72 | 99.25 ± 2.13 | 98.63 ± 2.99 | 99.13 ± 1.92 |
表5 实验2各水平下的正确率 (M ± SD; %)
反应手 | 小数 | 大数 | 特殊字符 | |||
---|---|---|---|---|---|---|
左箭头 | 右箭头 | 左箭头 | 右箭头 | 左箭头 | 右箭头 | |
左手 | 99.25 ± 2.13 | 99.13 ± 2.75 | 99.00 ± 2.58 | 97.38 ± 3.92 | 98.50 ± 3.24 | 98.00 ± 2.95 |
右手 | 98.88 ± 2.11 | 98.25 ± 3.11 | 98.75 ± 2.72 | 99.25 ± 2.13 | 98.63 ± 2.99 | 99.13 ± 1.92 |
反应手 | 小数 | 大数 | 特殊字符 | |||
---|---|---|---|---|---|---|
左箭头 | 右箭头 | 左箭头 | 右箭头 | 左箭头 | 右箭头 | |
左手 | 388 ± 47 | 452 ± 78 | 383 ± 45 | 443 ± 69 | 383 ± 44 | 447 ± 76 |
右手 | 437 ± 73 | 385 ± 48 | 433 ± 71 | 381 ± 51 | 440 ± 79 | 382 ± 50 |
表6 实验2各水平下的反应时 (M ± SD; ms)
反应手 | 小数 | 大数 | 特殊字符 | |||
---|---|---|---|---|---|---|
左箭头 | 右箭头 | 左箭头 | 右箭头 | 左箭头 | 右箭头 | |
左手 | 388 ± 47 | 452 ± 78 | 383 ± 45 | 443 ± 69 | 383 ± 44 | 447 ± 76 |
右手 | 437 ± 73 | 385 ± 48 | 433 ± 71 | 381 ± 51 | 440 ± 79 | 382 ± 50 |
图8 双阶段加工模型(颜丽珠, 2022) 注:大小比较任务和奇偶判断任务中SNARC效应的双阶段加工模型。实线表示任务相关信息的加工通路, 虚线表示任务无关信息的加工通路, 闪电箭头表示SNARC效应产生链路的任一环节施加不同形式的干扰因素都会影响效应的产生。图A表示大小比较任务, 数量信息为任务相关信息输人, 奇偶信息为任务无关信息输人; 图B表示奇偶判断任务, 奇偶信息为任务相关信息输入, 大小信息为任务无关信息输入。
[1] |
Casarotti, M., Michielin, M., Zorzi, M., & Umiltà, C. (2007). Temporal order judgment reveals how number magnitude affects visuospatial attention. Cognition, 102(1), 101-117.
pmid: 17046735 |
[2] |
Craft, J. L., & Simon, J. R. (1970). Processing symbolic information from a visual display: Interference from an irrelevant directional cue. Journal of Experimental Psychology, 83(3), 415-420.
pmid: 4098174 |
[3] | Dehaene, S., & Akhavein, R. (1995). Attention, automaticity, and levels of representation in number processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(2), 314-326. |
[4] | Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology General, 122(3), 371-396. |
[5] | Dehaene, S., Dupoux, E., & Mehler, J. (1990). Is numerical comparison digital? Analogical and symbolic effects in two-digit number comparison. Journal of Experimental Psychology: Human Perception and Performance, 16(3), 626-641. |
[6] | Dodd, M. D., van der Stigchel, S., Leghari, M. A., Fung, G., & Kingstone, A. (2008). Attentional SNARC: There’s something special about numbers (let us count the ways). Cognition, 108(3), 810-818. |
[7] |
Fias, W., Lauwereyns, J., & Lammertyn, J. (2001). Irrelevant digits affect feature-based attention depending on the overlap of neural circuits. Cognitive Brain Research, 12(3), 415-423.
pmid: 11689301 |
[8] |
Fischer, M. H., Warlop, N., Hill, R. L., & Fias, W. (2004). Oculomotor bias induced by number perception. Experimental Psychology, 51(2), 91-97.
pmid: 15114901 |
[9] | Gevers, W., Caessens, B., & Fias, W. (2005). Towards a common processing architecture underlying Simon and SNARC effects. European Journal of Cognitive Psychology, 17(5), 659-673. |
[10] |
Gevers, W., Ratinckx, E., De Baene, W., & Fias, W. (2006). Further evidence that the SNARC effect is processed along a dual-route architecture: Evidence from the lateralized readiness potential. Experimental Psychology, 53(1), 58-68.
pmid: 16610273 |
[11] | Gevers, W., Verguts, T., Reynvoet, B., Caessens, B., & Fias, W. (2006). Numbers and space: A computational model of the SNARC effect. Journal of Experimental Psychology: Human Perception and Performance, 32(1), 32-44. |
[12] | He, H., Yu, H. H., & Liu, J. P. (2015). Study on number processing with global-local aspects of compound visual stimulations. Psychological Exploration, 35(6), 499-501. |
[何华, 俞华华, 刘建平. (2015). 整体-局部条件下的数字加工研究. 心理学探新, 35(6), 499-501.] | |
[13] | Hedge, A., & Marsh, N. W. A. (1975). The effect of irrelevant spatial correspondences on two-choice response-time. Act Psychologica, 39(6), 427-439. |
[14] | Hu, C. P., Kong, X. Z., Wagenmakers, E.-J., Ly, A., & Peng, K. P. (2018). The Bayes factor and its implementation in JASP: A practical primer. Advances in Psychological Science, 26(6), 951-965. |
[胡传鹏, 孔祥祯, Wagenmakers, E.-J., Ly, A., 彭凯平. (2018). 贝叶斯因子及其在JASP中的实现. 心理科学进展, 26(6), 951-965.]
doi: 10.3724/SP.J.1042.2018.00951 |
|
[15] | Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford, UK: Oxford University Press. |
[16] | Kang, W., Yang, M., & Wang, L. (2013). SNARC effect: Current research, theories and suggestions. Journal of Psychological Science, 36(5), 1242-1248. |
[康武, 杨敏, 王丽. (2013). SNARC效应: 现状、理论及建议. 心理科学, 36(5), 1242-1248.] | |
[17] |
Keus, I. M., Jenks, K. M., & Schwarz, W. (2005). Psychophysiological evidence that the SNARC effect has its functional locus in a response selection stage. Cognitive Brain Research, 24(1), 48-56.
pmid: 15922157 |
[18] | Keus, I. M., & Schwarz, W. (2005). Searching for the functional locus of the SNARC effect: Evidence for a response-related origin. Memory and Cognition, 33(4), 681-695. |
[19] |
Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus-response compatibility- a model and taxonomy. Psychological Review, 97(2), 253-270.
doi: 10.1037/0033-295x.97.2.253 pmid: 2186425 |
[20] | Li, Q., Nan, W., Wang, K., & Liu, X. (2014). Independent processing of stimulus-stimulus and stimulus-response conflicts. PLoS ONE, 9(2), e89249. |
[21] | Luo, T., Qiu, R. Y., Chen, B., & Fu, S. M. (2018). The stimulus representation of unconscious information and its temporal characteristics. Acta Psychologica Sinica, 50(5), 473-482. |
[罗婷, 邱茹依, 陈斌, 傅世敏. (2018). 无意识信息的刺激表征及其时间特性. 心理学报, 50(5), 473-482.] | |
[22] | Luo, C., & Proctor, R. W. (2021). Word-and arrow-based Simon effects emerge for eccentrically presented location words and arrows. Psychological Research, 85(2), 816-827. |
[23] |
Nan, W. Z., Yan, L. Z., Yang, G. C., Liu, X., & Fu, S. M. (2021). Two processing stages of the SNARC effect. Psychological Research, 86(2), 375-385.
doi: 10.1007/s00426-021-01506-5 pmid: 33847782 |
[24] | Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. Cognitive Psychology, 9(3), 353-383. |
[25] | Restle, F. (1970). Speed of adding and comparing numbers. Journal of Experimental Psychology, 83(2), 274-278. |
[26] |
Salillas, E., El Yagoubi, R., & Semenza, C. (2008). Sensory and cognitive processes of shifts of spatial attention induced by numbers: An ERP study. Cortex, 44(4), 406-413.
doi: 10.1016/j.cortex.2007.08.006 pmid: 18387572 |
[27] | Scerrati, E., Lugli, L., Nicoletti, R., & Umilta, C. (2017). Comparing Stroop-like and Simon effects on perceptual features. Scientific Reports, 7(1), 17815. |
[28] |
Schwarz, W., & Keus, I. M. (2004). Moving the eyes along the mental number line: Comparing SNARC effects with saccadic and manual responses. Perception and Psychophysics, 66(4), 651-664.
pmid: 15311664 |
[29] | Shi, X. L. (2010). Spatial representations of numbers in paradigm of Global-Local processing [Unpublished master’s thesis]. Soochow University, China. |
[时秀兰. (2010). 整体-局部加工范式下的数字空间效应 (硕士学位论文). 苏州大学.] | |
[30] |
Simon, J. R. (1968). Effect of ear stimulated on reaction time and movement time. Journal of Experimental Psychology, 78(2), 344-346.
pmid: 5722451 |
[31] |
Simon, J. R., & Rudell, A. P. (1967). Auditory S-R compatibility: The effect of an irrelevant cue on information processing. Journal of Applied Psychology, 51(3), 300-304.
pmid: 6045637 |
[32] |
Simon, J. R., & Small, A. M.,Jr. (1969). Processing auditory information: Interference from an irrelevant cue. Journal of Applied Psychology, 53(5), 433-435.
pmid: 5366316 |
[33] | Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders’ method. Acta Psychologica, 30, 276-315. |
[34] | Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643-662. |
[35] | Tlauka, M. (2002). The processing of numbers in choice- reaction tasks. Australian Journal of Psychology, 54(2), 94-98. |
[36] | Wagenmakers, E.-J., Love, J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., ... Morey, R. D. (2017). Bayesian inference for psychology. Part II: Example applications with JASP. Psychonomic Bulletin & Review, 25(1), 58-76. |
[37] | Wang, Q. Q., Shi, W. D., & Ye, J. (2018). The impact effect of the task switch on the SNARC effect. Chinese Journal of Applied Psychology, 24(3), 271-279. |
[王强强, 石文典, 叶晶. (2018). 任务转换对SNARC效应的抑制. 应用心理学, 24(3), 271-279.] | |
[38] |
Wang, Q. Q., Zhang, Q., Shi, W. D., Wang, Z. W., & Zhang, P. C. (2022). Online construction of spatial representation of numbers: Evidence from the SNARC effect in number processing in interferential situations. Acta Psychologica Sinica, 54(7), 761-771.
doi: 10.3724/SP.J.1041.2022.00761 |
[王强强, 张琦, 石文典, 王志伟, 章鹏程. (2022). 数字空间表征的在线建构:来自干扰情境中数字SNARC效应的证据. 心理学报, 54(7), 761-771.]
doi: 10.3724/SP.J.1041.2022.00761 |
|
[39] | Wang, Y. H., Bergh, D., Aust, F., Ly, A., Wagenmakers, E.-J., & Hu, C. P. (2023). The Implementation of Bayesian ANOVA in JASP: A Practical Primer. Psychology: Techniques and Applications, 11(9), 528-541. |
[王允宏, Bergh, D., Aust, F., Ly, A., Wagenmakers, E.-J., 胡传鹏.(2023). 贝叶斯方差分析在JASP中的实现. 心理技术与应用, 11(9), 528-541.] | |
[40] | Wu, F., Gu, Q., Shi, Z. H., Gao, Z. F., & Shen, M. W. (2018). Striding over the “Classical Statistical Inference Trap”— Application of Bayes Factors in Psychological Studies. Chinese Journal of Applied Psychology, 24(3), 195-202. |
[吴凡, 顾全, 施壮华, 高在峰, 沈模卫. (2018). 跳出传统假设检验方法的陷阱——贝叶斯因子在心理学研究领域的应用. 应用心理学, 24(3), 195-202.] | |
[41] | Xiang, X. R., Yan, L. Z., Fu, S. M., & Nan, W. Z. (2022). Processing stage flexibility of the SNARC effect: Task relevance or magnitude relevance? Frontiers in psychology, 13, 1022999. |
[42] | Xu, X. D., & Liu, C. (2006). The spatial character of number. Advances in Psychological Science, 14(6), 851-858. |
[徐晓东, 刘昌. (2006). 数字的空间特性. 心理科学进展, 14(6), 851-858.] | |
[43] |
Yan, L. Z., Chen, Y. X., Liu, X., Fu, S. M., & Nan, W. Z. (2022). The flexibility of spatial-numerical associations and its internal mechanism. Advances in Psychological Science, 30(1), 51-64.
doi: 10.3724/SP.J.1042.2022.00051 |
[颜丽珠, 陈妍秀, 刘勋, 傅世敏, 南威治. (2022). 数字空间联结的灵活性及其内在机制. 心理科学进展, 30(1), 51-64.]
doi: 10.3724/SP.J.1042.2022.00051 |
|
[44] | Yan, L. Z., Yang, G. C., Nan, W. Z., Liu, X., & Fu, S. M. (2021). The SNARC effect occurs in the response-selection stage. Acta Psychologica, 215, 103292. |
[1] | 刘超,买晓琴,傅小兰. 不同注意条件下的空间-数字反应编码联合效应[J]. 心理学报, 2004, 36(06): 671-680. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 707
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 684
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||