心理学报 ›› 2024, Vol. 56 ›› Issue (2): 239-254.doi: 10.3724/SP.J.1041.2024.00239
• “数智时代的道德伦理”特刊 • 上一篇
赵立1,#(), 郑怡2,#, 赵均榜3, 张芮1,4, 方方5, 傅根跃1, 李康6()
收稿日期:
2022-07-14
发布日期:
2023-12-01
出版日期:
2024-02-25
通讯作者:
赵立, E-mail: zhaoli@hznu.edu.cn;李康, E-mail: kang.lee@utoronto.ca
作者简介:
#赵立和郑怡为共同第一作者
基金资助:
ZHAO Li1,#(), ZHENG Yi2,#, ZHAO Junbang3, ZHANG Rui1,4, FANG Fang5, FU Genyue1, KANG Lee6()
Received:
2022-07-14
Online:
2023-12-01
Published:
2024-02-25
摘要:
小学生作业作弊是心理学领域忽略已久的研究重点, 机器学习是数智时代新兴的人工智能科学。笔者对2, 098名2至6年级小学生进行问卷调查, 采用机器学习法, 考察个体认知、道德判断、同伴行为, 及性别、年级、成绩等因素对小学生作业作弊行为的影响。结果表明:集成机器学习模型对小学生作业作弊预测准确率(AUC均值)达80.46%; 对作业作弊预测效应最强的4个因素依次为个体对作业作弊的接受程度、观察到同伴作弊的普遍性和频率, 及其自身成绩。
中图分类号:
赵立, 郑怡, 赵均榜, 张芮, 方方, 傅根跃, 李康. (2024). 人工智能方法在探究小学生作业作弊行为及其关键预测因子中的应用. 心理学报, 56(2), 239-254.
ZHAO Li, ZHENG Yi, ZHAO Junbang, ZHANG Rui, FANG Fang, FU Genyue, KANG Lee. (2024). The application of artificial intelligence methods in examining elementary school students' academic cheating on homework and its key predictors. Acta Psychologica Sinica, 56(2), 239-254.
年级 | 年龄(岁) | 性别 | 学校 | 合计 | ||||
---|---|---|---|---|---|---|---|---|
均值 | 标准差 | 男 | 女 | 普通公办 | 民工子弟小学 | 民办小学 | ||
2年级 | 7.86 | 0.60 | 205 | 192 | 210 | 83 | 104 | 397 |
3年级 | 8.79 | 0.40 | 209 | 189 | 200 | 84 | 114 | 398 |
4年级 | 9.79 | 0.33 | 209 | 176 | 186 | 85 | 114 | 385 |
5年级 | 10.74 | 0.33 | 240 | 211 | 183 | 131 | 137 | 451 |
6年级 | 11.75 | 0.34 | 253 | 214 | 155 | 173 | 139 | 467 |
表1 2098名有效被试的部分人口统计学信息情况
年级 | 年龄(岁) | 性别 | 学校 | 合计 | ||||
---|---|---|---|---|---|---|---|---|
均值 | 标准差 | 男 | 女 | 普通公办 | 民工子弟小学 | 民办小学 | ||
2年级 | 7.86 | 0.60 | 205 | 192 | 210 | 83 | 104 | 397 |
3年级 | 8.79 | 0.40 | 209 | 189 | 200 | 84 | 114 | 398 |
4年级 | 9.79 | 0.33 | 209 | 176 | 186 | 85 | 114 | 385 |
5年级 | 10.74 | 0.33 | 240 | 211 | 183 | 131 | 137 | 451 |
6年级 | 11.75 | 0.34 | 253 | 214 | 155 | 173 | 139 | 467 |
Item | Mean | SD |
---|---|---|
Q2. 后果严重性, 1~5 | ||
1. 受老师批评 | 3.05 | 1.22 |
2. 受老师惩罚 | 3.65 | 1.31 |
3. 受父母批评 | 3.24 | 1.25 |
4. 受父母惩罚 | 3.36 | 1.30 |
5. 受周围同学的批评或嘲笑 | 3.33 | 1.48 |
Q3. 自我可接受性 | 1.81 | 1.12 |
Q4. 同伴可接受性 | 2.13 | 1.17 |
Q5. 策略有效性, 1~9 | ||
1. 增加作弊后的惩罚力度 | 2.89 | 1.45 |
2. 老师批改作业更仔细 | 2.88 | 1.36 |
3. 加强课堂练习, 在课堂上把知识弄懂 | 3.28 | 1.50 |
4. 老师加强教育, 多强调作业作弊属于不良行为 | 2.47 | 1.39 |
5. 降低作业难度 | 2.12 | 1.39 |
6. 老师批评或惩罚 | 2.98 | 1.34 |
7. 给予独立完成作业的同学以表扬和奖励 | 2.88 | 1.42 |
8. 家长批评或惩罚 | 2.93 | 1.43 |
9. 做作业时父母监督 | 2.84 | 1.45 |
Q6. 同伴作弊−普遍性 | 2.02 | 0.88 |
Q7. 同伴作弊−总体频率 | 2.08 | 0.96 |
Q8. 同伴作弊−具体频率, 1~3 | ||
1. 抄他人的作业 | 2.01 | 1.05 |
2. 做作业时抄答案 | 1.91 | 1.04 |
3. 让他人帮写作业 | 1.24 | 0.61 |
表2 作弊行为预测变量的描述统计结果
Item | Mean | SD |
---|---|---|
Q2. 后果严重性, 1~5 | ||
1. 受老师批评 | 3.05 | 1.22 |
2. 受老师惩罚 | 3.65 | 1.31 |
3. 受父母批评 | 3.24 | 1.25 |
4. 受父母惩罚 | 3.36 | 1.30 |
5. 受周围同学的批评或嘲笑 | 3.33 | 1.48 |
Q3. 自我可接受性 | 1.81 | 1.12 |
Q4. 同伴可接受性 | 2.13 | 1.17 |
Q5. 策略有效性, 1~9 | ||
1. 增加作弊后的惩罚力度 | 2.89 | 1.45 |
2. 老师批改作业更仔细 | 2.88 | 1.36 |
3. 加强课堂练习, 在课堂上把知识弄懂 | 3.28 | 1.50 |
4. 老师加强教育, 多强调作业作弊属于不良行为 | 2.47 | 1.39 |
5. 降低作业难度 | 2.12 | 1.39 |
6. 老师批评或惩罚 | 2.98 | 1.34 |
7. 给予独立完成作业的同学以表扬和奖励 | 2.88 | 1.42 |
8. 家长批评或惩罚 | 2.93 | 1.43 |
9. 做作业时父母监督 | 2.84 | 1.45 |
Q6. 同伴作弊−普遍性 | 2.02 | 0.88 |
Q7. 同伴作弊−总体频率 | 2.08 | 0.96 |
Q8. 同伴作弊−具体频率, 1~3 | ||
1. 抄他人的作业 | 2.01 | 1.05 |
2. 做作业时抄答案 | 1.91 | 1.04 |
3. 让他人帮写作业 | 1.24 | 0.61 |
模型 | 均值(%) | 标准差 | 95% 置信区间 | |
---|---|---|---|---|
Lower | Upper | |||
逻辑回归 | 77.87 | 1.50 | 77.72 | 78.01 |
XGBoost | 77.82 | 1.69 | 77.63 | 78.02 |
MLP | 78.25 | 1.70 | 78.01 | 78.48 |
随机森林 | 79.47 | 0.95 | 79.28 | 79.66 |
集成学习 | 80.46 | 0.80 | 80.30 | 80.62 |
表3 四种机器学习算法及集成学习法下留出集验证所产生的100个模型的AUC (%)均值和标准差
模型 | 均值(%) | 标准差 | 95% 置信区间 | |
---|---|---|---|---|
Lower | Upper | |||
逻辑回归 | 77.87 | 1.50 | 77.72 | 78.01 |
XGBoost | 77.82 | 1.69 | 77.63 | 78.02 |
MLP | 78.25 | 1.70 | 78.01 | 78.48 |
随机森林 | 79.47 | 0.95 | 79.28 | 79.66 |
集成学习 | 80.46 | 0.80 | 80.30 | 80.62 |
预测变量 | 均值 | 标准差 | 95% CI | |
---|---|---|---|---|
Lower | Upper | |||
民办小学与普通公办小学的对比 | 0.91 | 1.38 | 0.76 | 1.06 |
对“受周围同学的批评或嘲笑”这一作弊可能后果的严重性的评价 | 0.87 | 0.71 | 0.79 | 0.95 |
年级对比 (3年级 vs 2年级) | 0.80 | 1.84 | 0.61 | 1.00 |
对“降低作业难度”这一减少作弊的策略的有效性评价 | 0.70 | 0.80 | 0.62 | 0.79 |
对“给予独立完成作业的同学以表扬和奖励”这一减少作弊的策略的有效性评价 | 0.68 | 0.60 | 0.61 | 0.74 |
对“做作业时父母监督”这一减少作弊的策略的有效性评价 | 0.63 | 0.59 | 0.56 | 0.69 |
对“老师加强教育, 多强调作业作弊属于不良行为”这一减少作弊的策略的有效性评价 | 0.59 | 0.60 | 0.53 | 0.66 |
对“老师批改作业更仔细”这一减少作弊的策略的有效性评价 | 0.58 | 0.52 | 0.52 | 0.64 |
对“受老师批评”这一作弊可能后果的严重性的评价 | 0.54 | 0.58 | 0.48 | 0.61 |
年级对比 (5年级 vs 2年级) | 0.49 | 0.91 | 0.39 | 0.59 |
对“增加作弊后的惩罚力度”这一减少作弊的策略的有效性评价 | 0.47 | 0.52 | 0.42 | 0.53 |
对“老师批评或惩罚”这一减少作弊的策略的有效性评价 | 0.47 | 0.46 | 0.42 | 0.52 |
对“加强课堂练习, 在课堂上把知识弄懂”这一减少作弊的策略的有效性评价 | 0.46 | 0.49 | 0.41 | 0.52 |
对“家长批评或惩罚”这一减少作弊的策略的有效性评价 | 0.45 | 0.38 | 0.41 | 0.49 |
性别对比 (女生 vs 男生) | 0.40 | 0.36 | 0.36 | 0.44 |
有弟弟/妹妹者与独生子女的对比 | 0.38 | 0.71 | 0.30 | 0.45 |
有哥哥/姐姐者与独生子女的对比 | 0.22 | 0.55 | 0.16 | 0.28 |
周围同学让他人帮写作业这一行为的频繁性 | 0.13 | 0.41 | 0.09 | 0.18 |
既有哥哥/姐姐又有弟弟/妹妹者与独生子女的对比 | 0.06 | 0.34 | 0.02 | 0.10 |
表4 次要预测变量在预测作业作弊行为时的Shapley值(%)的均值和标准差及其95%置信区间
预测变量 | 均值 | 标准差 | 95% CI | |
---|---|---|---|---|
Lower | Upper | |||
民办小学与普通公办小学的对比 | 0.91 | 1.38 | 0.76 | 1.06 |
对“受周围同学的批评或嘲笑”这一作弊可能后果的严重性的评价 | 0.87 | 0.71 | 0.79 | 0.95 |
年级对比 (3年级 vs 2年级) | 0.80 | 1.84 | 0.61 | 1.00 |
对“降低作业难度”这一减少作弊的策略的有效性评价 | 0.70 | 0.80 | 0.62 | 0.79 |
对“给予独立完成作业的同学以表扬和奖励”这一减少作弊的策略的有效性评价 | 0.68 | 0.60 | 0.61 | 0.74 |
对“做作业时父母监督”这一减少作弊的策略的有效性评价 | 0.63 | 0.59 | 0.56 | 0.69 |
对“老师加强教育, 多强调作业作弊属于不良行为”这一减少作弊的策略的有效性评价 | 0.59 | 0.60 | 0.53 | 0.66 |
对“老师批改作业更仔细”这一减少作弊的策略的有效性评价 | 0.58 | 0.52 | 0.52 | 0.64 |
对“受老师批评”这一作弊可能后果的严重性的评价 | 0.54 | 0.58 | 0.48 | 0.61 |
年级对比 (5年级 vs 2年级) | 0.49 | 0.91 | 0.39 | 0.59 |
对“增加作弊后的惩罚力度”这一减少作弊的策略的有效性评价 | 0.47 | 0.52 | 0.42 | 0.53 |
对“老师批评或惩罚”这一减少作弊的策略的有效性评价 | 0.47 | 0.46 | 0.42 | 0.52 |
对“加强课堂练习, 在课堂上把知识弄懂”这一减少作弊的策略的有效性评价 | 0.46 | 0.49 | 0.41 | 0.52 |
对“家长批评或惩罚”这一减少作弊的策略的有效性评价 | 0.45 | 0.38 | 0.41 | 0.49 |
性别对比 (女生 vs 男生) | 0.40 | 0.36 | 0.36 | 0.44 |
有弟弟/妹妹者与独生子女的对比 | 0.38 | 0.71 | 0.30 | 0.45 |
有哥哥/姐姐者与独生子女的对比 | 0.22 | 0.55 | 0.16 | 0.28 |
周围同学让他人帮写作业这一行为的频繁性 | 0.13 | 0.41 | 0.09 | 0.18 |
既有哥哥/姐姐又有弟弟/妹妹者与独生子女的对比 | 0.06 | 0.34 | 0.02 | 0.10 |
[1] | Abaraogu, U. O., Henning, M. A., Okpara, M. C., & Rajput, V. (2016). Disclosing academic dishonesty: Perspectives from Nigerian and New Zealand health professional students. Ethics & Behavior, 26(5), 431-447. https://doi.org/10.1080/10508422.2015.1055494 |
[2] |
Anderman, E. M., & Midgley, C. (2004). Changes in self-reported academic cheating across the transition from middle school to high school. Contemporary Educational Psychology, 29(4), 499-517. https://doi.org/10.1016/j.cedpsych.2004.02.002
doi: 10.1016/j.cedpsych.2004.02.002 URL |
[3] |
Bartlett, M. S., Littlewort, G., Frank, M., & Lee, K. (2014). Automatic decoding of facial movements reveals deceptive pain expressions. Current Biology, 24(7), 738-743. https://doi.org/10.1016/j.cub.2014.02.009
doi: 10.1016/j.cub.2014.02.009 URL pmid: 24656830 |
[4] |
Błachnio, A. (2019). Don’t cheat, be happy. Self-control, self-beliefs, and satisfaction with life in academic honesty: A cross-sectional study in Poland. Scandinavian Journal of Psychology, 60(3), 261-266. https://doi.org/10.1111/sjop.12534
doi: 10.1111/sjop.12534 URL pmid: 30861574 |
[5] |
Bong, M. (2008). Effects of parent-child relationships and classroom goal structures on motivation, help-seeking avoidance, and cheating. Journal of Experimental Education, 76(2), 191-217. https://doi.org/10.3200/JEXE.76.2.191-217
doi: 10.3200/JEXE.76.2.191-217 URL |
[6] |
Bretag, T., Mahmud, S., Wallace, M., Walker, R., McGowan, U., East, J.,... James, C. (2014). ‘Teach us how to do it properly!’ An Australian academic integrity student survey. Studies in higher education, 39(7), 1150-1169. https://doi.org/10.1080/03075079.2013.777406
doi: 10.1080/03075079.2013.777406 URL |
[7] | Bruer, K. C., Zanette, S., Ding, X. P., Lyon, T. D., & Lee, K. (2019). Identifying liars through automatic decoding of children’s facial expressions. Child Development, 91(4), e995-e1011. https://doi.org/10.1111/cdev.13336 |
[8] | Bucciol, A., Cicognani, S., & Montinari, N. (2017). Cheating in academia: The relevance of social factors. Working Papers 15/2017, University of Verona, Department of Economics. |
[9] | Campbell, D. T. (1986). Relabeling internal and external validity for applied social scientists. New Directions for Program Evaluation, 31, 67-77. https://doi.org/10.1002/ev.1434 |
[10] | Cizek, G. J. (1999). Handbook of educational policy. Academic Press, San Diego, CA. |
[11] |
Cochran, J. K. (2015). The effects of life domains, constraints, and motivations on academic dishonesty: A partial test and extension of Agnew’s general theory. International Journal of Offender Therapy and Comparative Criminology, 61(11), 1288. https://doi.org/10.1177/0306624X15618689
doi: 10.1177/0306624X15618689 URL |
[12] | Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum. |
[13] | Davy, J. A., Kincaid, J. F., Smith, K. J., & Trawick, M. A. (2007). An examination of the role of attitudinal characteristics and motivation on the cheating behavior of business students. Ethics & Behavior, 17(3), 281-302. https://doi.org/10.1080/10508420701519304 |
[14] | Freire, C. (2014). Academic misconduct among Portuguese economics and business undergraduate students-A comparative analysis with other major students. Journal of Academic Ethics, 12(1), 43-63. https://doi.org/10.1007/s10805-013-9199-2 |
[15] | Galloway, M. K. (2012). Cheating in advantaged high schools: Prevalence, justifications, and possibilities for change. Ethics & Behavior, 22(5), 378-399. https://doi.org/10.1080/10508422.2012.679143 |
[16] |
Ghanem, C. M., & Mozahem, N. A. (2019). A study of cheating beliefs, engagement, and perception-The case of business and engineering students. Journal of Academic Ethics, 17, 291-312. https://doi.org/10.1007/s10805-019-9325-x
doi: 10.1007/s10805-019-9325-x URL |
[17] |
Cheung, H. Y., Wu, J., & Huang, Y. (2016). Why do Chinese students cheat? Initial findings based on the self-reports of high school students in China. The Australian Educational Researcher, 43(2), 245-271. https://doi.org/10.1007/s13384-016-0201-z
doi: 10.1007/s13384-016-0201-z URL |
[18] | Ghorbani, A., & Zou, J. (2019). Data shapley: Equitable valuation of data for machine learning. Working Paper |
[19] |
Golino, H. F., Gomes, C. M. A., & Andrade, D. (2014). Predicting academic achievement of high-school students using machine learning. Psychology, 5(18), 2046-2057. https://doi.org/10.4236/psych.2014.518207
doi: 10.4236/psych.2014.518207 URL |
[20] |
Gullifer, J. M., & Tyson, G. A. (2014). Who has read the policy on plagiarism? Unpacking students’ understanding of plagiarism. Studies in Higher Education, 39(7), 1202-1218. http://dx.doi.org/10.1080/03075079.2013.777412
doi: 10.1080/03075079.2013.777412 URL |
[21] | Hartshorne, H., & May, M. A. (1928). Studies in deceit. New York: McMillan. |
[22] |
Hrabak, M., Vujaklija, A., Vodopivec, I., Hren, D., Marušić, M., & Marušić, A. (2004). Academic misconduct among medical students in a post-communist country. Medical Education, 38(3), 276-285. https://doi.org/10.1111/j.1365-2923.2004.01766.x
URL pmid: 14996337 |
[23] |
Ives, B., Alama, M., Mosora, L. C., Mosora, M., Grosu-Radulescu, L., & Clinciu, A. I.,... Dutu, A. (2017). Patterns and predictors of academic dishonesty in Romanian university students. Higher Education, 74, 815-831. https://doi.org/10.1007/s10734-016-0079-8
doi: 10.1007/s10734-016-0079-8 URL |
[24] |
Ives, B., & Giukin, L. (2020). Patterns and predictors of academic dishonesty in Moldovan university students. Journal of Academic Ethics, 18(1), 71-88. https://doi.org/10.1007/s10805-019-09347-z
doi: 10.1007/s10805-019-09347-z URL |
[25] | Jurdi, R., Hage, H. S., & Chow, H. P. H. (2011). Academic dishonesty in the Canadian classroom: Behaviours of a sample of university students. Canadian Journal of Higher Education, 41(3), 1-35. https://doi.org/10.47678/cjhe.v41i3.2488 |
[26] |
Just, M. A., Pan, L., Cherkassky, V. L., McMakin, D. L., Cha, C., Nock, M. K., & Brent, D. (2017). Machine learning of neural representations of suicide and emotion concepts identifies suicidal youth. Nature Human Behaviour, 1(12), 911-919. https://doi.org/10.1038/s41562-017-0234-y
doi: 10.1038/s41562-017-0234-y URL |
[27] | Kam, C. C. S., Hue, M., & Cheung, H. Y. (2017). Plagiarism of Chinese secondary school students in Hong Kong. Ethics & Behavior, 28(4), 316-335. https://doi.org/10.1080/10508422.2017.1333909 |
[28] |
Lee, K. (2013). Little liars: Development of verbal deception in children. Child Development Perspectives, 7(2), 91-96. https://doi.org/10.1111/cdep.12023
URL pmid: 23687515 |
[29] |
Lee, S. D., Kuncel, N. R., & Gau, J. (2020). Personality, attitude, and demographic correlates of academic dishonesty: A meta-analysis. Psychological Bulletin, 146(11), 1042-1058. https://doi.org/10.1037/bul0000300
doi: 10.1037/bul0000300 URL |
[30] | Lim, V. K. G., & See, S. K. B. (2001). Attitudes toward, and intentions to report, academic cheating among students in Singapore. Ethics & Behavior, 11(3), 261-274. https://doi.org/10.1207/S15327019EB1103_5 |
[31] |
Livieris, I. E., Kotsilieris, T., Dimopoulos, I., & Pintelas, P. (2018). Decision support software for forecasting patient’s length of stay. Algorithms, 11(12), 199. https://doi.org/10.3390/a11120199
doi: 10.3390/a11120199 URL |
[32] | Lundberg, S. M., & Lee, S. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 4765-4774.https://doi.org/10.48550/arXiv.1705.07874 |
[33] |
McCabe, D. L., Feghali, T., & Abdallah, F. H. (2008). Academic dishonesty in the Middle East: Individual and contextual factors. Research in Higher Education, 49(5), 451-467. https://doi.org/10.1007/s11162-008-9092-9
doi: 10.1007/s11162-008-9092-9 URL |
[34] | McCabe, D. L., Butterfield, K. D., & Trevino, L. K. (2012). Cheating in college: Why students do it and what educators can do about it. Baltimore, MD: John Hopkins University Press. |
[35] | McCabe, D. L., & Treviño, L. K. (1993). Academic dishonesty: Honor codes and other contextual influences. The Journal of Higher Education, 64(5), 522-538. |
[36] |
McCabe, D. L., & Treviño, L. K. (1997). Individual and contextual influences on academic dishonesty: A multicampus investigation. Research in Higher Education, 38(3), 379-396. https://doi.org/10.1023/A:1024954224675
doi: 10.1023/A:1024954224675 URL |
[37] |
Misselbrook, D. (2014). Is honesty the best policy? Why trustworthiness is no easy answer. British Journal of General Practice, 64(628), 558-559. https://doi.org/10.3399/bjgp14X682129
doi: 10.3399/bjgp14X682129 URL |
[38] |
Molnar, K. K., & Kletke, M. G. (2012). Does the type of cheating influence undergraduate students’ perceptions of cheating? Journal of Academic Ethics, 10(3), 201-212. https://doi.org/10.1007/s10805-012-9164-5
doi: 10.1007/s10805-012-9164-5 URL |
[39] |
Murdock, T. B., & Anderman, E. M. (2006). Motivational perspectives on student cheating: Toward an integrated model of academic dishonesty. Educational Psychologist, 41(3), 129-145. http://dx.doi.org/10.1207/s15326985ep4103_1
doi: 10.1207/s15326985ep4103_1 URL |
[40] |
Newstead, S. E., Franklyn-Stokes, A., & Armstead, P. (1996). Individual differences in student cheating. Journal of Educational Psychology, 88(2), 229-241.
doi: 10.1037/0022-0663.88.2.229 URL |
[41] |
Oran, N. T., Can, H. Ö., Senol, S., & Hadımlı, A. P. (2016). Academic dishonesty among health science school students. Nursing Ethics, 23(8), 919-931. https://doi.org/10.1177/0969733015583929
doi: 10.1177/0969733015583929 URL pmid: 26002938 |
[42] |
Özcan, M., Yeniçeri, N., & Çekiç, E. G. (2019). The impact of gender and academic achievement on the violation of academic integrity for medical faculty students, a descriptive cross-sectional survey study. BMC Medical Education, 19(1), 427. https://doi.org/10.1186/s12909-019-1865-7
doi: 10.1186/s12909-019-1865-7 URL pmid: 31747906 |
[43] | Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., & Grisel, O.... Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825-2830. https://doi.org/10.1524/auto.2011.0951 |
[44] |
Putarek, V., & Pavlin-Bernardic, N. (2020). The role of self-efficacy for self-regulated learning, achievement goals, and engagement in academic cheating. European Journal of Psychology of Education, 35(3), 647-671. https://doi.org/10.1007/s10212-019-00443-7
doi: 10.1007/s10212-019-00443-7 URL |
[45] |
Ramberg, J., & Modin, B. (2019). School effectiveness and student cheating: Do students’ grades and moral standards matter for this relationship? Social Psychology of Education, 22(3), 517-538. https://doi.org/10.1007/s11218-019-09486-6
doi: 10.1007/s11218-019-09486-6 URL |
[46] | Shapley, L. S. (1953). A value for n-person games. Contributions to the Theory of Games, 2, 307-317. |
[47] | Shu, S. L., Sang, Q. S., Guo, Y. Y., & Huang, X. T. (2018). Why cheating Is contagious: The mediating effect of social loss and attitude toward cheating. Psychological Development and Education, 34(6), 664-671. https://doi.org/10.16187/j.cnki.issn1001-4918.2018.06.04 |
[舒首立, 桑青松, 郭永玉, 黄希庭. (2018). 作弊为什么会传染?社会损失和作弊态度的中介作用. 心理发展与教育, 34(6), 664-671.] | |
[48] | Siev, S., & Kliger, D. (2019). Cheating in academic exams: A field study. Dishonesty in Behavioral Economics, 111-140. https://doi.org/10.1016/B978-0-12-815857-9.00008-X |
[49] |
Smith, M., & Alvarez, F. (2021). Identifying mortality factors from machine learning using Shapley values - A case of COVID19. Expert Systems with Applications, 176, 114832. https://doi.org/10.1016/j.eswa.2021.114832
doi: 10.1016/j.eswa.2021.114832 URL |
[50] |
Tsui, A. P. Y., & Ngo, H. Y. (2016). Social predictors of business student cheating behaviour in Chinese societies. Journal of Academic Ethics, 14(4), 1-16. https://doi.org/10.1007/s10805-016-9266-6
doi: 10.1007/s10805-015-9250-6 URL |
[51] | Williams, M. W. M, & Williams, M. N. (2012). Academic dishonesty, self-control, and general criminality: A prospective and retrospective study of academic dishonesty in a New Zealand university. Ethics & Behavior, 22(2), 89-112. |
[52] |
Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science, 12(6), 1100-1122. https://doi.org/10.1177/1745691617693393
doi: 10.1177/1745691617693393 URL pmid: 28841086 |
[53] | Yi, X. M. (2021). University new students’ prognosis of being punished (PBP) for violation and the degree of fear of consequences (DFC) of violation and their influence on the possibility of truancy and cheating. Chinese Journal of Clinical Psychology, 29(3), 572-576. https://doi.org/10.16128/j.cnki.1005-3611.2021.03.026 |
[易晓明. (2021). 高校新生的违规被罚预期、违规后果恐惧感及其对旷课和作弊预期的影响. 中国临床心理学杂志, 29(3), 572-576 ] | |
[54] |
Ykhlef, H., & Bouchaffra, D. (2017). Induced subgraph game for ensemble selection. International Journal on Artificial Intelligence Tools, 26(1), 1760003. https://doi.org/10.1109/ICTAI.2015.97
doi: 10.1142/S021821301760003X URL |
[55] |
Zanette, S., Gao, X. Q., Brunet, M., Bartlett, M. S., & Lee, K. (2016). Automated decoding of facial expressions reveals marked differences in children when telling antisocial versus prosocial lies. Journal of Experimental Child Psychology, 150, 165-179. https://doi.org/10.1016/j.jecp.2016.05.007
doi: S0022-0965(16)30027-3 URL pmid: 27318957 |
[56] | Zhang, R. (2019). Academic dishonesty among primary school students and its correlates (Unpublished master’s thesis). Hangzhou Normal University, China. ://kns.cnki.net/ KCMS/detail/detail.aspx?dbname=CMFD201902&filename=1019921810.nh |
[张芮. (2019). 小学生学业不诚信行为及其影响因素研究 (硕士学位论文). 杭州师范大学.] | |
[57] |
Zhao, L., Mao, H. Y., Compton, B. J., Peng, J. J., Fu, G., Fang, F., Heyman, G. D., & Lee, K. (2022). Academic dishonesty and its relations to peer cheating and culture: A meta- analysis of the perceived peer cheating effect. Educational Research Review, 36, 100455. https://doi.org/10.1016/j.edurev.2022.100455
doi: 10.1016/j.edurev.2022.100455 URL |
[58] |
Zhao, L., Peng, J., Dong, L. D., Li, Y., Mao, H., Compton, B. J.,... Lee, K. (2022). Effects of test difficulty messaging on academic cheating among middle school children. Journal of Experimental Child Psychology, 220, 105417. https://doi.org/10.1016/j.jecp.2022.105417
doi: 10.1016/j.jecp.2022.105417 URL |
[59] | Zhao, L., Zheng, Y., Mao, H. Y., Zheng, J., Compton, B. J., Fu, G., Heyman, G. D., & Lee, K. (2021). Using environmental nudges to reduce academic cheating in young children. Developmental Science, e13108. https://doi.org/10.1111/desc.13108 |
[1] | 杨靖渊, 于晓, 张婧漪, 卢骊霏, 杨智辉. “双减”背景下小学生学习投入的潜在类别转变[J]. 心理学报, 2024, 56(3): 295-310. |
[2] | 陈沛琪, 张银玲, 胡馨木, 王静, 买晓琴. 10~12岁儿童社会价值取向对第三方利他行为的影响:情绪的作用[J]. 心理学报, 2023, 55(8): 1255-1269. |
[3] | 张弘弛, 成旋, 毛伟宾. 奖赏预测误差对时间顺序记忆和来源记忆的影响[J]. 心理学报, 2023, 55(7): 1049-1062. |
[4] | 龙翼婷, 姜英杰, 崔璨, 岳阳. 奖赏预测误差对项目和联结记忆影响的分离:元记忆的作用[J]. 心理学报, 2023, 55(6): 877-891. |
[5] | 邱天, 江南, 陆静怡. 切忌班门弄斧?低估在评价者擅长领域展现能力的好处[J]. 心理学报, 2023, 55(5): 766-780. |
[6] | 李为, 边子茗, 陈曦梅, 王俊杰, 罗一君, 刘永, 宋诗情, 高笑, 陈红. 9~12岁儿童应激与额颞区的关联: 来自多模态脑影像的证据[J]. 心理学报, 2023, 55(4): 572-587. |
[7] | 黄昕杰, 张弛, 万华根, 张灵聪. 情绪效价可预测性对时间捆绑效应的影响[J]. 心理学报, 2023, 55(1): 36-44. |
[8] | 张慢慢, 胡惠兰, 张志超, 李鑫, 汪强, 白学军, 臧传丽. 预测性对快速读者和慢速读者词汇加工的影响[J]. 心理学报, 2023, 55(1): 79-93. |
[9] | 孙芳, 宋巍, 温晓通, 李欢欢, 欧阳李晟, 魏诗洁. 痛苦逃避和自我参照惩罚条件下脑电特征对自杀意念的分类效能[J]. 心理学报, 2022, 54(9): 1031-1047. |
[10] | 布宇博, 李力红, 吕香玲, 国宏远, 安灿翎, 王凌云. 动作自主性与结果性质对不同预测性条件下施动感的影响[J]. 心理学报, 2022, 54(7): 789-798. |
[11] | 王文超, 原昊, 伍新春. 灾后中小学生创伤后应激障碍和抑郁症状的共存模式[J]. 心理学报, 2022, 54(12): 1503-1516. |
[12] | 尚雪松, 陈卓, 陆静怡. 帮忙失败后我会被差评吗?好心帮倒忙中的预测偏差[J]. 心理学报, 2021, 53(3): 291-305. |
[13] | 孙琳, 段涛, 刘伟, 陈宁. 特质正念对初中生学业情绪预测偏差的影响[J]. 心理学报, 2021, 53(11): 1203-1214. |
[14] | 刘志方, 仝文, 张智君, 赵亚军. 语境预测性对阅读中字词加工过程的影响:眼动证据[J]. 心理学报, 2020, 52(9): 1031-1047. |
[15] | 赵玉杰, 高扬, 周欣悦. 天气和空气污染对诚信行为的影响:一项校园丢钱包的现场实验[J]. 心理学报, 2020, 52(7): 909-920. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||