心理学报 ›› 2023, Vol. 55 ›› Issue (8): 1220-1233.doi: 10.3724/SP.J.1041.2023.01220
祖光耀1, 李舒淇1, 张天阳2(), 王爱君1(), 张明1
收稿日期:
2022-09-27
发布日期:
2023-05-12
出版日期:
2023-08-25
通讯作者:
王爱君, E-mail: 作者简介:
第一联系人:李舒淇和祖光耀同为第一作者
基金资助:
ZU Guangyao1, LI Shuqi1, ZHANG Tianyang2(), WANG Aijun1(), ZHANG Ming1
Received:
2022-09-27
Online:
2023-05-12
Published:
2023-08-25
摘要:
视听跨通道对应(audiovisual crossmodal correspondence)在不同类型的视、听刺激之间被广泛发现, 但其发生阶段尚不明确。研究采用线索-靶子范式, 探究返回抑制(inhibition of return, IOR)对于视听跨通道对应的影响。实验1操纵线索和目标之间的空间位置一致性和听觉音调与视觉目标位置之间的跨通道对应一致性, 结果发现IOR效应和视听跨通道对应存在交互作用, 线索化位置存在稳定的视听跨通道对应效应, 而非线索化位置的视听跨通道对应效应消失。实验2操纵无关听觉刺激是否出现, 发现IOR效应与单独的声音出现与否不存在交互作用, 排除了警觉效应对于结果的混淆。实验3通过延长线索和目标的间隔时间(stimulus onset asynchronies, SOA), 发现伴随着IOR效应减弱, 线索化位置的视听跨通道对应效应也相应减弱, 且IOR效应对于视听跨通道对应的调节作用减弱。研究表明, 仅当听觉刺激与视觉空间位置之间发生跨通道对应时, 才会与同样发生在知觉水平的IOR效应产生交互, 支持了视听跨通道对应发生在知觉阶段。同时研究结果支持视听跨通道对应的发生符合反比效应原则。
中图分类号:
祖光耀, 李舒淇, 张天阳, 王爱君, 张明. (2023). 返回抑制对视听跨通道对应的影响. 心理学报, 55(8), 1220-1233.
ZU Guangyao, LI Shuqi, ZHANG Tianyang, WANG Aijun, ZHANG Ming. (2023). Effect of inhibition of return on audiovisual cross-modal correspondence. Acta Psychologica Sinica, 55(8), 1220-1233.
SOA | 线索有效条件 | 线索无效条件 | |||
---|---|---|---|---|---|
对应一致 | 对应不一致 | 对应一致 | 对应不一致 | ||
600 ms | 350 ± 52 | 361 ± 51 | 334 ± 55 | 335 ± 53 | |
1300 ms | 352 ± 53 | 357 ± 56 | 336 ± 57 | 341 ± 57 |
表1 实验3中不同条件下的平均反应时(M ± SD)
SOA | 线索有效条件 | 线索无效条件 | |||
---|---|---|---|---|---|
对应一致 | 对应不一致 | 对应一致 | 对应不一致 | ||
600 ms | 350 ± 52 | 361 ± 51 | 334 ± 55 | 335 ± 53 | |
1300 ms | 352 ± 53 | 357 ± 56 | 336 ± 57 | 341 ± 57 |
[1] |
Berdica, E., Gerdes, A. B. M., & Alpers, G. W. (2017). A comprehensive look at phobic fear in inhibition of return: Phobia-related spiders as cues and targets. Journal of Behavior Therapy and Experimental Psychiatry, 54, 158-164.
doi: S0005-7916(16)30032-5 pmid: 27517673 |
[2] |
Botta, F., Lupiáñez, J., & Chica, A. B. (2014). When endogenous spatial attention improves conscious perception: Effects of alerting and bottom-up activation. Consciousness and Cognition, 23, 63-73.
doi: 10.1016/j.concog.2013.12.003 pmid: 24368166 |
[3] |
Botta, F., Ródenas, E., & Chica, A. B. (2017). Target bottom-up strength determines the extent of attentional modulations on conscious perception. Experimental Brain Research, 235(7), 2109-2124.
doi: 10.1007/s00221-017-4954-z pmid: 28396907 |
[4] |
Bourgeois, A., Chica, A. B., Migliaccio, R., Thiebaut de Schotten, M., & Bartolomeo, P. (2012). Cortical control of inhibition of return: Evidence from patients with inferior parietal damage and visual neglect. Neuropsychologia, 50(5), 800-809.
doi: 10.1016/j.neuropsychologia.2012.01.014 pmid: 22285795 |
[5] |
Brunel, L., Carvalho, P. F., & Goldstone, R. L. (2015). It does belong together: Cross-modal correspondences influence cross-modal integration during perceptual learning. Frontiers in Psychology, 6, 358.
doi: 10.3389/fpsyg.2015.00358 pmid: 25914653 |
[6] |
Brunetti, R., Indraccolo, A., Del Gatto, C., Spence, C., & Santangelo, V. (2018). Are crossmodal correspondences relative or absolute? Sequential effects on speeded classification. Attention, Perception & Psychophysics, 80(2), 527-534.
doi: 10.3758/s13414-017-1445-z |
[7] |
Chica, A. B., Bayle, D. J., Botta, F., Bartolomeo, P., & Paz- Alonso, P. M. (2016). Interactions between phasic alerting and consciousness in the fronto-striatal network. Scientific Reports, 6, 31868.
doi: 10.1038/srep31868 pmid: 27555378 |
[8] |
Chica, A. B., Lasaponara, S., Chanes, L., Valero-Cabré, A., Doricchi, F., Lupiáñez, J., & Bartolomeo, P. (2011). Spatial attention and conscious perception: The role of endogenous and exogenous orienting. Attention, Perception & Psychophysics, 73(4), 1065-1081.
doi: 10.3758/s13414-010-0082-6 URL |
[9] |
Chiou, R., & Rich, A. N. (2012). Cross-modality correspondence between pitch and spatial location modulates attentional orienting. Perception, 41(3), 339-353.
pmid: 22808586 |
[10] |
Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155-159.
doi: 10.1037//0033-2909.112.1.155 pmid: 19565683 |
[11] |
Dolscheid, S., Hunnius, S., Casasanto, D., & Majid, A. (2014). Prelinguistic infants are sensitive to space-pitch associations found across cultures. Psychological Science, 25(6), 1256-1261.
doi: 10.1177/0956797614528521 pmid: 24899170 |
[12] | Erdfelder, E., Auer, T. S., Hilbig, B. E., Aßfalg, A., Moshagen, M., & Nadarevic, L. (2009). Multinomial processing tree models: A review of the literature. Natural Science Journal of Harbin Normal University, 217(3), 108-124. |
[13] | Evans, K. K., & Treisman, A. (2010). Natural cross-modal mappings between visual and auditory features. Journal of Vision, 10(1), 1-12. |
[14] |
Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191.
doi: 10.3758/bf03193146 pmid: 17695343 |
[15] |
Fischer, T., Langner, R., Birbaumer, N., & Brocke, B. (2008). Arousal and attention: Self-chosen stimulation optimizes cortical excitability and minimizes compensatory effort. Journal of Cognitive Neuroscience, 20(8), 1443-1453.
doi: 10.1162/jocn.2008.20101 pmid: 18303981 |
[16] |
Frassinetti, F., Bolognini, N., & Làdavas, E. (2002). Enhancement of visual perception by crossmodal visuo-auditory interaction. Experimental Brain Research, 147(3), 332-343.
doi: 10.1007/s00221-002-1262-y pmid: 12428141 |
[17] |
Gallace, A., & Spence, C. (2006). Multisensory synesthetic interactions in the speeded classification of visual size. Perception & Psychophysics, 68(7), 1191-1203.
doi: 10.3758/BF03193720 URL |
[18] |
Getz, L. M., & Kubovy, M. (2018). Questioning the automaticity of audiovisual correspondences. Cognition, 175, 101-108.
doi: S0010-0277(18)30045-3 pmid: 29486377 |
[19] | Hopfinger, J. B., & Mangun, G. R. (2001). Tracking the influence of reflexive attention on sensory and cognitive processing. Cognitive, Affective & Behavioral Neuroscience, 1(1), 56-65. |
[20] |
Jia, L., Wang, J., Zhang, K., Ma, H., & Sun, H. J. (2019). Do emotional faces affect inhibition of return? An ERP study. Frontiers in Psychology, 10(721), 1-8.
doi: 10.3389/fpsyg.2019.00001 URL |
[21] |
Klein, R. M. (2000). Inhibition of return. Trends in Cognitive Science, 4(4), 138-147.
doi: 10.1016/S1364-6613(00)01452-2 URL |
[22] |
Ković, V., Plunkett, K., & Westermann, G. (2010). The shape of words in the brain. Cognition, 114(1), 19-28.
doi: 10.1016/j.cognition.2009.08.016 pmid: 19828141 |
[23] |
Kusnir, F., Chica, A. B., Mitsumasu, M. A., & Bartolomeo, P. (2011). Phasic auditory alerting improves visual conscious perception. Consciousness and Cognition, 20(4), 1201-1210.
doi: 10.1016/j.concog.2011.01.012 pmid: 21349743 |
[24] |
Lupiáñez, J., Milán, E. G., Tornay, F. J., Madrid, E., & Tudela, P. (1997). Does IOR occur in discrimination tasks? Yes, it does, but later. Perception & Psychophysics, 59(8), 1241-1254.
doi: 10.3758/BF03214211 URL |
[25] |
Maeda, F., Kanai, R., & Shimojo, S. (2004). Changing pitch induced visual motion illusion. Current Biology, 14(23), 990-991.
pmid: 15589145 |
[26] |
Maimon, N. B., Lamy, D., & Eitan, Z. (2020). Crossmodal correspondence between tonal hierarchy and visual brightness: Associating syntactic structure and perceptual dimensions across modalities. Multisensory Research, 33(8), 805-836.
doi: 10.1163/22134808-bja10006 pmid: 33706266 |
[27] |
Marks, L. E., Ben-Artzi, E., & Lakatos, S. (2003). Cross-modal interactions in auditory and visual discrimination. International Journal of Psychophysiology, 50(1-2), 125-145.
pmid: 14511841 |
[28] |
Martino, G., & Marks, L. E. (1999). Perceptual and linguistic interactions in speeded classification: Tests of the semantic coding hypothesis. Perception, 28(7), 903-923.
pmid: 10664781 |
[29] |
McCormick, K., Lacey, S., Stilla, R., Nygaard, L. C., & Sathian, K. (2018). Neural basis of the crossmodal correspondence between auditory pitch and visuospatial elevation. Neuropsychologia, 112, 19-30.
doi: S0028-3932(18)30086-1 pmid: 29501792 |
[30] |
McCracken, H. S., Murphy, B. A., Glazebrook, C. M., Burkitt, J. J., Karellas, A. M., & Yielder, P. C. (2019). Audiovisual multisensory integration and evoked potentials in young adults with and without attention-deficit/hyperactivity disorder. Frontiers in Human Neuroscience, 13, 95.
doi: 10.3389/fnhum.2019.00095 pmid: 30941026 |
[31] |
Meredith, M. A., & Stein, B. E. (1983). Interactions among converging sensory inputs in the superior colliculus. Science, 221(4608), 389-391.
pmid: 6867718 |
[32] |
Noesselt, T., Rieger, J. W., Schoenfeld, M. A., Kanowski, M., Hinrichs, H., Heinze, H. J., & Driver, J. (2007). Audiovisual temporal correspondence modulates human multisensory superior temporal sulcus plus primary sensory cortices. Journal of Neuroscience, 27(42), 11431-11441.
doi: 10.1523/JNEUROSCI.2252-07.2007 pmid: 17942738 |
[33] |
Otto, T. U., Dassy, B., & Mamassian, P. (2013). Principles of multisensory behavior. Journal of Neuroscience, 33(17), 7463-7474.
doi: 10.1523/JNEUROSCI.4678-12.2013 pmid: 23616552 |
[34] |
Parise, C., & Spence, C. (2008). Synesthetic congruency modulates the temporal ventriloquism effect. Neuroscience Letters, 442(3), 257-261.
doi: 10.1016/j.neulet.2008.07.010 pmid: 18638522 |
[35] |
Parise, C., & Spence, C. (2012). Audiovisual crossmodal correspondences and sound symbolism: A study using the implicit association test. Experimental Brain Research, 220(3-4), 319-333.
doi: 10.1007/s00221-012-3140-6 pmid: 22706551 |
[36] |
Parkinson, C., Kohler, P. J., Sievers, B., & Wheatley, T. (2012). Associations between auditory pitch and visual elevation do not depend on language: Evidence from a remote population. Perception, 41(7), 854-861.
pmid: 23155736 |
[37] |
Peng, X., Chang, R., Li, Q., Wang, A., & Tang, X. (2019). Visually induced inhibition of return affects the audiovisual integration under different SOA conditions. Acta Psychologica Sinica, 51(7), 759-771.
doi: 10.3724/SP.J.1041.2019.00759 |
[ 彭姓, 常若松, 李奇, 王爱君, 唐晓雨. (2019). 不同SOA下视觉返回抑制对视听觉整合的调节作用. 心理学报, 51(7), 759-771.]
doi: 10.3724/SP.J.1041.2019.00759 |
|
[38] |
Portas, C. M., Rees, G., Howseman, A. M., Josephs, O., Turner, R., & Frith, C. D. (1998). A specific role for the thalamus in mediating the interaction of attention and arousal in humans. The Journal of Neuroscience, 18(21), 8979-8989.
doi: 10.1523/JNEUROSCI.18-21-08979.1998 URL |
[39] | Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. In H.Bouma & D. G.Bowhuis (Eds.), Attention and performance X: Control of language processes (pp. 531-556). Erlbaum. |
[40] |
Prime, D. J., & Jolicoeur, P. (2009). On the relationship between occipital cortex activity and inhibition of return. Psychophysiology, 46(6), 1278-1287.
doi: 10.1111/j.1469-8986.2009.00858.x pmid: 19572908 |
[41] |
Rach, S., Diederich, A., & Colonius, H. (2011). On quantifying multisensory interaction effects in reaction time and detection rate. Psychological Research, 75(2), 77-94.
doi: 10.1007/s00426-010-0289-0 pmid: 20512352 |
[42] |
Redden, R. S., Maclnnes, W. J., & Klein, R. M. (2021). Inhibition of return: An information processing theory of its natures and significance. Cortex, 135, 30-48.
doi: 10.1016/j.cortex.2020.11.009 pmid: 33360759 |
[43] |
Santangelo, V., Ho, C., & Spence, C. (2008). Capturing spatial attention with multisensory cues. Psychonomic Bulletin & Review, 15(2), 398-403.
doi: 10.3758/PBR.15.2.398 URL |
[44] |
Satel, J., Hilchey, M. D., Wang, Z. G., Story, R., & Klein, R. M. (2013). The effects of ignored versus foveated cues upon inhibition of return: An event-related potential study. Attention, Perception, & Psychophysics, 75(1), 29-40.
doi: 10.3758/s13414-012-0381-1 URL |
[45] |
Senkowski, D., Saint-Amour, D., Höfle, M., & Foxe, J. J. (2011). Multisensory interactions in early evoked brain activity follow the principle of inverse effectiveness. Neuroimage, 56(4), 2200-2208.
doi: 10.1016/j.neuroimage.2011.03.075 pmid: 21497200 |
[46] |
Slagter, H. A., Prinssen, S., Reteig, L. C., & Mazaheri, A. (2016). Facilitation and inhibition in attention: Functional dissociation of pre-stimulus alpha activity, P1, and N1 components. Neuroimage, 125(6), 25-35.
doi: 10.1016/j.neuroimage.2015.09.058 URL |
[47] |
Spence, C. (2011). Crossmodal correspondences: A tutorial review. Attention, Perception, & Psychophysics, 73(4), 971-995.
doi: 10.3758/s13414-010-0073-7 URL |
[48] | Spence, C. (2013). Just how important is spatial coincidence to multisensory integration? Evaluating the spatial rule. Annals of the New York Academy of Sciences, 1296(1), 31-49. |
[49] |
Spence, C. (2019). On the Relative nature of (pitch-based) crossmodal correspondences. Multisensory Research, 32(3), 235-265.
doi: 10.1163/22134808-20191407 |
[50] |
Starke, J., Ball, F., Heinze, H. J., & Noesselt, T. (2017). The spatio-temporal profile of multisensory integration. The European Journal of Neuroscience, 51(5), 1210-1223.
doi: 10.1111/ejn.v51.5 URL |
[51] |
Stein, B. E., & Meredith, M. A. (1993). The merging of the senses. Journal of Cognitive Neuroscience, 5(3), 373-374.
doi: 10.1162/jocn.1993.5.3.373 pmid: 23972225 |
[52] |
Stein, B. E., Meredith, M. A., Huneycutt, W. S., & McDade, L. (1989). Behavioral indices of multisensory integration: Orientation to visual cues is affected by auditory stimuli. Journal of Cognitive Neuroscience, 1(1), 12-24.
doi: 10.1162/jocn.1989.1.1.12 pmid: 23968407 |
[53] |
Stein, B. E., & Stanford, T. R. (2008). Multisensory integration: Current issues from the perspective of the single neuron. Nature Reviews Neuroscience, 9(4), 255-266.
doi: 10.1038/nrn2331 pmid: 18354398 |
[54] |
Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders' method. Acta Psychologica, 30, 276-315.
doi: 10.1016/0001-6918(69)90055-9 URL |
[55] |
Talsma, D., & Woldorff, M. G. (2005). Selective attention and multisensory integration: Multiple phases of effects on the evoked brain activity. Journal of Cognitive Neuroscience, 17(7), 1098-1114.
pmid: 16102239 |
[56] |
Tang, X., Gao, Y., Yang, W., Ren, Y., Wu, J., Zhang, M., & Wu, Q. (2019). Bimodal-divided attention attenuates visually induced inhibition of return with audiovisual targets. Experimental Brain Research, 237(4), 1093-1107.
doi: 10.1007/s00221-019-05488-0 pmid: 30770958 |
[57] |
Tang, X., Sun, J., & Peng, X. (2020). The effect of bimodal divided attention on inhibition of return with audiovisual targets. Acta Psychologica Sinica, 52(3), 257-268.
doi: 10.3724/SP.J.1041.2020.00257 |
[ 唐晓雨, 孙佳影, 彭姓. (2020). 双通道分配性注意对视听觉返回抑制的影响. 心理学报, 52(3), 257-268.]
doi: 10.3724/SP.J.1041.2020.00257 |
|
[58] |
Tang, X., Wu, J., & Shen, Y. (2016). The interactions of multisensory integration with endogenous and exogenous attention. Neuroscience and Biobehavioral Reviews, 61, 208-224.
doi: 10.1016/j.neubiorev.2015.11.002 pmid: 26546734 |
[59] |
van de Rijt, L. P. H., Roye, A., Mylanus, E. A. M., van Opstal, A. J., & van Wanrooij, M. M. (2019). The principle of inverse effectiveness in audiovisual speech perception. Frontiers in Human Neuroscience, 13, 335.
doi: 10.3389/fnhum.2019.00335 pmid: 31611780 |
[60] |
van der Stoep, N., Spence, C., Nijboer, T. C., & van der Stigchel, S. (2015). On the relative contributions of multisensory integration and crossmodal exogenous spatial attention to multisensory response enhancement. Acta Psychologica, 162, 20-28.
doi: 10.1016/j.actpsy.2015.09.010 pmid: 26436587 |
[61] |
van der Stoep, N., van der Stigchel, S., & Nijboer, T. C. W. (2015). Exogenous spatial attention decreases audiovisual integration. Attention Perception & Psychophysics, 77(1), 464-482.
doi: 10.3758/s13414-014-0785-1 URL |
[62] |
van der Stoep, N., van der Stigchel, S., Nijboer, T. C. W., & Spence, C. (2016). Visually induced inhibition of return affects the integration of auditory and visual information. Perception, 46(1), 6-17.
doi: 10.1177/0301006616661934 URL |
[63] |
Walker, P. (2012). Cross-sensory correspondences and cross talk between dimensions of connotative meaning: Visual angularity is hard, high-pitched, and bright. Attention, Perception & Psychophysics, 74(8), 1792-1809.
doi: 10.3758/s13414-012-0341-9 URL |
[64] |
Walker, P., Bremner, J. G., Mason, U., Spring, J., Mattock, K., Slater, A., & Johnson, S. P. (2010). Preverbal infants' sensitivity to synaesthetic cross-modality correspondences. Psychological Science, 21(1), 21-25.
doi: 10.1177/0956797609354734 pmid: 20424017 |
[65] |
Wiegand, I., & Sander, M. C. (2019). Cue-related processing accounts for age differences in phasic alerting. Neurobiology of Aging, 79, 93-100.
doi: S0197-4580(19)30102-2 pmid: 31029020 |
[66] |
Zeljko, M., Kritikos, A., & Grove, P. M. (2019). Lightness/ pitch and elevation/pitch crossmodal correspondences are low-level sensory effects. Attention, Perception & Psychophysics, 81(5), 1609-1623.
doi: 10.3758/s13414-019-01668-w |
[1] | 张明, 王婷婷, 吴晓刚, 张月娥, 王爱君. 面孔表情和声音情绪信息整合对返回抑制的影响[J]. 心理学报, 2022, 54(4): 331-342. |
[2] | 张明, 桑汉斌, 鲁柯, 王爱君. 试次历史对跨通道非空间返回抑制的影响[J]. 心理学报, 2021, 53(7): 681-693. |
[3] | 唐晓雨, 吴英楠, 彭姓, 王爱君, 李奇. 内源性空间线索有效性对视听觉整合的影响[J]. 心理学报, 2020, 52(7): 835-846. |
[4] | 唐晓雨, 孙佳影, 彭姓. 双通道分配性注意对视听觉返回抑制的影响[J]. 心理学报, 2020, 52(3): 257-268. |
[5] | 彭姓, 常若松, 李奇, 王爱君, 唐晓雨. 不同SOA下视觉返回抑制对视听觉整合的调节作用[J]. 心理学报, 2019, 51(7): 759-771. |
[6] | 王爱君, 刘晓乐, 唐晓雨, 张 明. 三维空间中不同视野深度位置上的返回抑制[J]. 心理学报, 2017, 49(6): 723-732. |
[7] | 徐菊;胡媛艳;王双; 李艾苏;张明;张阳. 返回抑制训练效应的认知神经机制 ——来自ERP研究的证据[J]. 心理学报, 2016, 48(6): 658-670. |
[8] | 徐菊;马方圆;张明;张阳. 返回抑制和抑制标签在长时训练下的分离[J]. 心理学报, 2015, 47(8): 981-991. |
[9] | 王爱君;李毕琴;张明. 三维空间深度位置上基于空间的返回抑制[J]. 心理学报, 2015, 47(7): 859-868. |
[10] | 范海楠;许百华. 动态情景中颜色特征和身份特征在返回抑制中的作用[J]. 心理学报, 2014, 46(11): 1628-1638. |
[11] | 张瑜;郑希付;黄珊珊;李悦;杜晓芬;周薇. 不同线索下特质焦虑个体的返回抑制[J]. 心理学报, 2013, 45(4): 446-452. |
[12] | 徐丹妮;张佳悦;李先春. 面孔性别辨认中返回抑制效应的性别差异[J]. 心理学报, 2013, 45(2): 161-168. |
[13] | 王敬欣;贾丽萍;白学军;罗跃嘉. 返回抑制过程中情绪面孔加工优先:ERPs研究[J]. 心理学报, 2013, 45(1): 1-10. |
[14] | 刘盼,谢宁,吴艳红. 认知老化中有意控制对自动抑制的调节作用[J]. 心理学报, 2010, 42(10): 981-987. |
[15] | 邓晓红,张德玄,黄诗雪,袁,雯,周晓林. 阈上和阈下不同情绪线索对返回抑制的影响[J]. 心理学报, 2010, 42(03): 325-333. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||