心理学报 ›› 2023, Vol. 55 ›› Issue (8): 1207-1219.doi: 10.3724/SP.J.1041.2023.01207
• 研究报告 • 下一篇
收稿日期:
2022-06-15
发布日期:
2023-05-12
出版日期:
2023-08-25
通讯作者:
王小娟, E-mail: 基金资助:
CAI Wenqi, ZHANG Xiangyang, WANG Xiaojuan(), YANG Jianfeng()
Received:
2022-06-15
Online:
2023-05-12
Published:
2023-08-25
摘要:
研究表明语素意义会自动激活并影响整词语义加工。但是, 汉语复合词识别中语素意义何时被激活以及如何参与并影响复合词语义整合的时间进程还缺乏清晰的认识。研究采用事件相关电位(ERP)技术, 构建了三类双字词材料: 语素意义与词义相关的透明复合词(如炽热)、语素意义与词义不相关的不透明复合词(如风流)、以及作为控制条件的单语素词汇(如伶俐), 对比考察双字词的首词素和尾词素语义参与复合词语义加工的时间进程。结果发现, 首字加工的早期(300~400 ms)和晚期(460~700 ms)都表现出语素效应, 即两类复合词要比单语素词诱发更负的波幅。在尾字加工的早期阶段(260~420 ms)不仅发现了语素效应, 还发现了语义透明度效应, 即不透明复合词比透明复合词诱发了更负的波幅。而在尾字加工的晚期(480~700 ms), 出现了反转的语素效应, 即两类复合词比单语素词诱发更正的波幅。结果表明了语素作为独立表征单元, 在早期加工阶段就得到了自动激活; 语义透明度在复合词早期加工过程发挥了重要作用, 透明复合词语素整合加工能够顺利获取整词语义, 而不透明复合词语素整合加工则会阻碍整词语义获取。
中图分类号:
蔡文琦, 张向阳, 王小娟, 杨剑峰. (2023). 汉语复合词语素意义与整词语义整合加工的时间进程. 心理学报, 55(8), 1207-1219.
CAI Wenqi, ZHANG Xiangyang, WANG Xiaojuan, YANG Jianfeng. (2023). Time course of the integration of the morpho-semantics and the meaning of two-character Chinese compound words. Acta Psychologica Sinica, 55(8), 1207-1219.
特征属性 | 词汇类型 | ||
---|---|---|---|
透明复合词 | 不透明复合词 | 单语素词 | |
首字透明度 | 5.59 (0.59) | 2.58 (0.64) | / |
尾字透明度 | 5.66 (0.72) | 2.76 (0.75) | / |
整词透明度 | 11.25 (1.21) | 5.34 (0.98) | / |
首字部件数 | 2.97 (1.00) | 2.87 (1.01) | 3.23 (0.82) |
尾字部件数 | 3.03 (0.72) | 3.00 (0.98) | 3.13 (0.78) |
整词部件数 | 6.00 (1.08) | 5.87 (1.31) | 6.37 (0.96) |
首字笔画数 | 9.57 (2.99) | 9.07 (3.05) | 9.70 (2.26) |
尾字笔画数 | 9.80 (2.44) | 9.70 (2.84) | 10.07 (2.21) |
整词笔画数 | 19.37 (3.58) | 18.77 (4.17) | 19.77 (2.82) |
整词 频率 | 3.17 (3.35) | 4.66 (9.43) | 1.90 (2.01) |
表1 实验材料的相关属性信息
特征属性 | 词汇类型 | ||
---|---|---|---|
透明复合词 | 不透明复合词 | 单语素词 | |
首字透明度 | 5.59 (0.59) | 2.58 (0.64) | / |
尾字透明度 | 5.66 (0.72) | 2.76 (0.75) | / |
整词透明度 | 11.25 (1.21) | 5.34 (0.98) | / |
首字部件数 | 2.97 (1.00) | 2.87 (1.01) | 3.23 (0.82) |
尾字部件数 | 3.03 (0.72) | 3.00 (0.98) | 3.13 (0.78) |
整词部件数 | 6.00 (1.08) | 5.87 (1.31) | 6.37 (0.96) |
首字笔画数 | 9.57 (2.99) | 9.07 (3.05) | 9.70 (2.26) |
尾字笔画数 | 9.80 (2.44) | 9.70 (2.84) | 10.07 (2.21) |
整词笔画数 | 19.37 (3.58) | 18.77 (4.17) | 19.77 (2.82) |
整词 频率 | 3.17 (3.35) | 4.66 (9.43) | 1.90 (2.01) |
变异来源 | 300~400 ms | 460~700 ms | ||||
---|---|---|---|---|---|---|
F | p | η2 | F | p | η2 | |
词汇类型(2, 62) | 5.12 | 0.009 | 0.142 | 8.91 | 0.000 | 0.223 |
分区(2, 62) | 0.01 | 0.951 | 0.000 | 5.58 | 0.016 | 0.153 |
半球(2, 62) | 4.51 | 0.015 | 0.127 | 5.51 | 0.006 | 0.151 |
分区×半球(4, 124) | 5.38 | 0.002 | 0.148 | 11.45 | 0.000 | 0.270 |
词汇类型×分区(4, 124) | 1.80 | 0.154 | 0.055 | 3.13 | 0.036 | 0.092 |
词汇类型×半球(4, 124) | 2.00 | 0.123 | 0.061 | 1.83 | 0.150 | 0.056 |
词汇类型×分区×半球(8, 248) | 1.62 | 0.120 | 0.050 | 1.42 | 0.223 | 0.044 |
表2 首字诱发的平均波幅方差分析结果
变异来源 | 300~400 ms | 460~700 ms | ||||
---|---|---|---|---|---|---|
F | p | η2 | F | p | η2 | |
词汇类型(2, 62) | 5.12 | 0.009 | 0.142 | 8.91 | 0.000 | 0.223 |
分区(2, 62) | 0.01 | 0.951 | 0.000 | 5.58 | 0.016 | 0.153 |
半球(2, 62) | 4.51 | 0.015 | 0.127 | 5.51 | 0.006 | 0.151 |
分区×半球(4, 124) | 5.38 | 0.002 | 0.148 | 11.45 | 0.000 | 0.270 |
词汇类型×分区(4, 124) | 1.80 | 0.154 | 0.055 | 3.13 | 0.036 | 0.092 |
词汇类型×半球(4, 124) | 2.00 | 0.123 | 0.061 | 1.83 | 0.150 | 0.056 |
词汇类型×分区×半球(8, 248) | 1.62 | 0.120 | 0.050 | 1.42 | 0.223 | 0.044 |
变异来源 | 260~420 ms | 480~700 ms | ||||
---|---|---|---|---|---|---|
F | p | η2 | F | p | η2 | |
词汇类型(2, 62) | 17.00 | 0.000 | 0.354 | 14.04 | 0.000 | 0.312 |
分区(2, 62) | 33.25 | 0.000 | 0.517 | 40.00 | 0.000 | 0.563 |
半球(2, 62) | 16.09 | 0.000 | 0.342 | 11.27 | 0.000 | 0.267 |
分区×半球(4, 124) | 3.18 | 0.030 | 0.093 | 2.13 | 0.111 | 0.064 |
词汇类型×分区(4, 124) | 8.37 | 0.000 | 0.213 | 7.40 | 0.000 | 0.193 |
词汇类型×半球(4, 124) | 2.03 | 0.095 | 0.061 | 5.49 | 0.000 | 0.150 |
词汇类型×分区×半球(8, 248) | 0.95 | 0.449 | 0.030 | 0.51 | 0.746 | 0.016 |
表3 尾字诱发的平均波幅方差分析结果
变异来源 | 260~420 ms | 480~700 ms | ||||
---|---|---|---|---|---|---|
F | p | η2 | F | p | η2 | |
词汇类型(2, 62) | 17.00 | 0.000 | 0.354 | 14.04 | 0.000 | 0.312 |
分区(2, 62) | 33.25 | 0.000 | 0.517 | 40.00 | 0.000 | 0.563 |
半球(2, 62) | 16.09 | 0.000 | 0.342 | 11.27 | 0.000 | 0.267 |
分区×半球(4, 124) | 3.18 | 0.030 | 0.093 | 2.13 | 0.111 | 0.064 |
词汇类型×分区(4, 124) | 8.37 | 0.000 | 0.213 | 7.40 | 0.000 | 0.193 |
词汇类型×半球(4, 124) | 2.03 | 0.095 | 0.061 | 5.49 | 0.000 | 0.150 |
词汇类型×分区×半球(8, 248) | 0.95 | 0.449 | 0.030 | 0.51 | 0.746 | 0.016 |
主效应 | 事后检验 | 300~400 ms | 460~700 ms | ||||
---|---|---|---|---|---|---|---|
t | p | Cohen’s d | t | p | Cohen’s d | ||
分区 | 前−后 | / | / | / | 0.30 | 1.000 | 0.053 |
前−中央 | / | / | / | −4.02 | 0.001 | −0.726 | |
后−中央 | / | / | / | −3.26 | 0.008 | −0.579 | |
半球 | 左−右 | −2.57 | 0.046 | −0.454 | −2.22 | 0.102 | −0.392 |
左−中线 | 0.12 | 1.000 | 0.022 | −3.31 | 0.007 | −0.604 | |
中线−右 | −2.79 | 0.027 | −0.523 | 0.83 | 1.000 | 0.150 |
附表1 首字加工中分区、半球主效应显著下的事后检验分析结果
主效应 | 事后检验 | 300~400 ms | 460~700 ms | ||||
---|---|---|---|---|---|---|---|
t | p | Cohen’s d | t | p | Cohen’s d | ||
分区 | 前−后 | / | / | / | 0.30 | 1.000 | 0.053 |
前−中央 | / | / | / | −4.02 | 0.001 | −0.726 | |
后−中央 | / | / | / | −3.26 | 0.008 | −0.579 | |
半球 | 左−右 | −2.57 | 0.046 | −0.454 | −2.22 | 0.102 | −0.392 |
左−中线 | 0.12 | 1.000 | 0.022 | −3.31 | 0.007 | −0.604 | |
中线−右 | −2.79 | 0.027 | −0.523 | 0.83 | 1.000 | 0.150 |
条件 | 300~400 ms | 460~700 ms | |||||
---|---|---|---|---|---|---|---|
t | p | Cohen’s d | t | p | Cohen’s d | ||
前 | 左−右 | / | / | / | / | / | / |
左−中线 | / | / | / | / | / | / | |
中线−右 | / | / | / | / | / | / | |
中央 | 左−右 | −3.28 | 0.008 | −0.581 | −3.90 | 0.001 | −0.690 |
左−中线 | 1.17 | 0.755 | 0.208 | −1.46 | 0.460 | −0.260 | |
中线−右 | −5.24 | 0.000 | −0.581 | −2.43 | 0.063 | −0.434 | |
后 | 左−右 | / | / | / | −0.86 | 1.000 | −0.953 |
左−中线 | / | / | / | −5.23 | 0.000 | −0.155 | |
右−中线 | / | / | / | −3.90 | 0.001 | −0.690 |
附表2 首字加工中不同分区下左侧、中线、右侧脑区的两两对比结果
条件 | 300~400 ms | 460~700 ms | |||||
---|---|---|---|---|---|---|---|
t | p | Cohen’s d | t | p | Cohen’s d | ||
前 | 左−右 | / | / | / | / | / | / |
左−中线 | / | / | / | / | / | / | |
中线−右 | / | / | / | / | / | / | |
中央 | 左−右 | −3.28 | 0.008 | −0.581 | −3.90 | 0.001 | −0.690 |
左−中线 | 1.17 | 0.755 | 0.208 | −1.46 | 0.460 | −0.260 | |
中线−右 | −5.24 | 0.000 | −0.581 | −2.43 | 0.063 | −0.434 | |
后 | 左−右 | / | / | / | −0.86 | 1.000 | −0.953 |
左−中线 | / | / | / | −5.23 | 0.000 | −0.155 | |
右−中线 | / | / | / | −3.90 | 0.001 | −0.690 |
主效应 | 事后检验 | 260~420 ms | 480~700 ms | ||||
---|---|---|---|---|---|---|---|
t | p | Cohen’s d | t | p | Cohen’s d | ||
分区 | 前−后 | −6.25 | 0.000 | −1.106 | −7.02 | 0.000 | −1.270 |
前−中央 | −6.75 | 0.000 | −1.204 | −7.98 | 0.000 | −1.410 | |
中央−后 | −3.76 | 0.002 | −0.665 | −1.90 | 0.199 | −0.353 | |
半球 | 左−右 | −4.81 | 0.000 | −0.850 | −2.47 | 0.058 | −0.437 |
左−中线 | −5.09 | 0.000 | −0.996 | −4.39 | 0.000 | −0.790 | |
中线−右 | −0.14 | 1.000 | −0.026 | 2.50 | 0.053 | 0.470 |
附表3 尾字加工中分区、半球主效应显著下的事后检验分析结果
主效应 | 事后检验 | 260~420 ms | 480~700 ms | ||||
---|---|---|---|---|---|---|---|
t | p | Cohen’s d | t | p | Cohen’s d | ||
分区 | 前−后 | −6.25 | 0.000 | −1.106 | −7.02 | 0.000 | −1.270 |
前−中央 | −6.75 | 0.000 | −1.204 | −7.98 | 0.000 | −1.410 | |
中央−后 | −3.76 | 0.002 | −0.665 | −1.90 | 0.199 | −0.353 | |
半球 | 左−右 | −4.81 | 0.000 | −0.850 | −2.47 | 0.058 | −0.437 |
左−中线 | −5.09 | 0.000 | −0.996 | −4.39 | 0.000 | −0.790 | |
中线−右 | −0.14 | 1.000 | −0.026 | 2.50 | 0.053 | 0.470 |
条件 | 260~420 ms | |||
---|---|---|---|---|
t | p | Cohen’s d | ||
前 | 左−右 | −2.21 | 0.105 | −0.390 |
左−中线 | −5.02 | 0.000 | −0.920 | |
中线−右 | 1.17 | 0.756 | 0.208 | |
中央 | 左−右 | −5.13 | 0.000 | −0.909 |
左−中线 | −3.15 | 0.011 | −0.581 | |
中线−右 | −1.96 | 0.177 | −0.389 | |
后 | 左−右 | −3.43 | 0.005 | −0.614 |
左−中线 | −4.42 | 0.000 | −0.850 | |
中线−右 | 0.78 | 1.000 | 0.142 |
附表4 尾字加工中不同分区下左侧、中线、右侧脑区的两两对比结果
条件 | 260~420 ms | |||
---|---|---|---|---|
t | p | Cohen’s d | ||
前 | 左−右 | −2.21 | 0.105 | −0.390 |
左−中线 | −5.02 | 0.000 | −0.920 | |
中线−右 | 1.17 | 0.756 | 0.208 | |
中央 | 左−右 | −5.13 | 0.000 | −0.909 |
左−中线 | −3.15 | 0.011 | −0.581 | |
中线−右 | −1.96 | 0.177 | −0.389 | |
后 | 左−右 | −3.43 | 0.005 | −0.614 |
左−中线 | −4.42 | 0.000 | −0.850 | |
中线−右 | 0.78 | 1.000 | 0.142 |
[1] |
Bai, C., Bornkessel-Schlesewsky, I., Wang, L. M., Hung, Y., C, Schlesewsky, M., & Burkhardt, P. (2008). Semantic composition engenders an N400: Evidence from Chinese compounds. Neuroreport, 19(6), 695-699.
doi: 10.1097/WNR.0b013e3282fc1eb7 pmid: 18382290 |
[2] |
Bemis, D. K., & Pylkkänen, L. (2011). Simple composition: A magnetoencephalography investigation into the comprehension of minimal linguistic phrases. Journal of Neuroscience, 31(8), 2801-2814.
doi: 10.1523/JNEUROSCI.5003-10.2011 pmid: 21414902 |
[3] |
Beyersmann, E., Iakimova, G., Ziegler, J. C., & Colé, P. (2014). Semantic processing during morphological priming: An ERP study. Brain Research, 1579, 45-55.
doi: 10.1016/j.brainres.2014.07.010 pmid: 25020124 |
[4] |
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? a critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 2767-2796.
doi: 10.1093/cercor/bhp055 URL |
[5] |
Boylan, C., Trueswell, J. C., & Thompson-Schill, S. L. (2017). Relational vs. attributive interpretation of nominal compounds differentially engages angular gyrus and anterior temporal lobe. Brain and Language, 169, 8-21.
doi: S0093-934X(15)30147-4 pmid: 28236762 |
[6] |
Brooks, T. L., & Cid de Garcia, D. (2015). Evidence for morphological composition in compound words using MEG. Frontiers in Human Neuroscience, 9, 215.
doi: 10.3389/fnhum.2015.00215 pmid: 25972798 |
[7] |
Cavalli, E., Colé, P., Badier, J.-M., Zielinski, C., Chanoine, V., & Ziegler, J. C. (2016). Spatiotemporal dynamics of morphological processing in visual word recognition. Journal of Cognitive Neuroscience, 28(8), 1228-1242.
doi: 10.1162/jocn_a_00959 pmid: 27027543 |
[8] | Chinese Linguistic Data Consortium. (2003). 现代汉语通用词表[Chinese lexicon] (CLDC-LAC 2003-001). Beijing, China: Tsinghua University, State Key Laboratory of Intelligent Technology and Systems, and Chinese Academy of Sciences, Institute of Automation. |
[9] | Coch, D., Bares, J., & Landers, A. (2012). ERPs and morphological processing: The N400 and semantic composition. Cognitive, Affective, & Behavioral Neuroscience, 13(2), 355-370. |
[10] |
Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155-159.
doi: 10.1037//0033-2909.112.1.155 pmid: 19565683 |
[11] |
El-Bialy, R., Gagné, C. L., & Spalding, T. L. (2013). Processing of English compounds is sensitive to the constituents’ semantic transparency. The Mental Lexicon, 8(1), 75-95.
doi: 10.1075/ml URL |
[12] |
El Yagoubi, R., Chiarelli, V., Mondini, S., Perrone, G., Danieli, M., & Semenza, C. (2008). Neural correlates of Italian nominal compounds and potential impact of headedness effect: An ERP study. Cognitive Neuropsychology, 25(4), 559-581.
doi: 10.1080/02643290801900941 pmid: 19086202 |
[13] |
Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149-1160.
doi: 10.3758/BRM.41.4.1149 pmid: 19897823 |
[14] |
Flick, G., Oseki, Y., Kaczmarek, A. R., Al Kaabi, M., Marantz, A., & Pylkkänen, L. (2018). Building words and phrases in the left temporal lobe. Cortex, 106, 213-236
doi: S0010-9452(18)30190-4 pmid: 30007863 |
[15] |
Fiorentino, R., Naito-Billen, Y., Bost, J., & Fund-Reznicek, E. (2014). Electrophysiological evidence for the morpheme- based combinatoric processing of English compounds. Cognitive Neuropsychology, 31(1-2), 123-146.
doi: 10.1080/02643294.2013.855633 pmid: 24279696 |
[16] |
Fiorentino, R., & Poeppel, D. (2007). Processing of compound words: An MEG study. Brain and Language, 103(1), 18-19.
doi: 10.1016/j.bandl.2007.07.009 URL |
[17] |
Forgács, B., Bohrn, I., Baudewig, J., Hofmann, M. J., Pléh, C., & Jacobs, A. M. (2012). Neural correlates of combinatorial semantic processing of literal and figurative noun noun compound words. Neuroimage, 63(3), 1432-1442.
doi: 10.1016/j.neuroimage.2012.07.029 pmid: 22836179 |
[18] |
Frisson, S., Niswander-Klement, E., & Pollatsek, A. (2008). The role of semantic transparency in the processing of English compound words. British Journal of Psychology, 99(1), 87-107.
doi: 10.1348/000712607X181304 URL |
[19] |
Gagné, C. L., & Spalding, T. L. (2016). Effects of morphology and semantic transparency on typing latencies in English compound and pseudocompound words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(9), 1489-1495.
doi: 10.1037/xlm0000258 URL |
[20] |
Gao, F., Wang, R., Armada-da-Silva, P., Wang, M., Lu, H., Leong, C., & Yuan, Z. (2022). How the brain encodes morphological constraints during Chinese word reading: An EEG-fNIRS study. Cortex, 154, 184-196.
doi: 10.1016/j.cortex.2022.05.016 pmid: 35780754 |
[21] |
Han, Y.-J., Huang, S., Lee, C.-Y., Kuo, W.-J., & Cheng, S. (2014). The modulation of semantic transparency on the recognition memory for two-character Chinese words. Memory & Cognition, 42(8), 1315-1324.
doi: 10.3758/s13421-014-0430-1 URL |
[22] |
Huang, H. W., Lee, C. Y., Tsai, J. L., & Tzeng, O. J. (2011). Sublexical ambiguity effect in reading Chinese disyllabic compounds. Brain and Language, 117(2), 77-87.
doi: 10.1016/j.bandl.2011.01.003 URL |
[23] |
Hsu, C.-H., Pylkkänen, L., & Lee, C.-Y. (2019). Effects of morphological complexity in left temporal cortex: An MEG study of reading Chinese disyllabic words. Journal of Neurolinguistics, 49, 168-177.
doi: 10.1016/j.jneuroling.2018.06.004 URL |
[24] |
Ji, H., Gagné, C. L., & Spalding, T. L. (2011). Benefits and costs of lexical decomposition and semantic integration during the processing of transparent and opaque English compounds. Journal of Memory and Language, 65(4), 406-430.
doi: 10.1016/j.jml.2011.07.003 URL |
[25] |
Kim, J., Kang, J., Kim, J., & Nam, K. (2022). Temporal dynamics of form and meaning in morphologically complex word processing: An ERP study on Korean inflected verbs. Journal of Neurolinguistics, 64, 101098.
doi: 10.1016/j.jneuroling.2022.101098 URL |
[26] |
Kim, S., & Pylkkänen, L. (2019). Composition of event concepts: Evidence for distinct roles for the left and right anterior temporal lobes. Brain and Language, 188, 18-27.
doi: S0093-934X(18)30133-0 pmid: 30530286 |
[27] |
Koester, D., & Schiller, N. O. (2008). Morphological priming in overt language production: Electrophysiological evidence from Dutch. Neuroimage, 42(4), 1622-1630.
doi: 10.1016/j.neuroimage.2008.06.043 pmid: 18674626 |
[28] |
Koester, D., & Schiller, N. O. (2011). The functional neuroanatomy of morphology in language production. Neuroimage, 55(2), 732-741.
doi: 10.1016/j.neuroimage.2010.11.044 pmid: 21109010 |
[29] |
Kuo, L., & Anderson, R. C. (2006). Morphological awareness and learning to read: A cross-language perspective. Educational Psychologist, 41, 161-180.
doi: 10.1207/s15326985ep4103_3 URL |
[30] |
Kwon, Y., Nam, K., & Lee, Y. (2012). ERP index of the morphological family size effect during word recognition. Neuropsychologia, 50(14), 3385-3391.
doi: 10.1016/j.neuropsychologia.2012.09.041 pmid: 23036281 |
[31] |
Lavric, A., Clapp, A., & Rastle, K. (2007). ERP evidence of morphological analysis from orthography: A masked priming study. Journal of Cognitive Neuroscience, 19(5), 866-877.
pmid: 17488210 |
[32] |
Lee, H.-J., Cheng, S., Lee, C.-Y., & Kuo, W.-J. (2021). The neural basis of compound word processing revealed by varying semantic transparency and morphemic neighborhood size. Brain and Language, 221, 104985.
doi: 10.1016/j.bandl.2021.104985 URL |
[33] |
Leminen, A., Smolka, E., Duñabeitia, J. A., Pliatsikas, C. (2019). Morphological processing in the brain: The good (inflection), the bad (derivation) and the ugly (compounding). Cortex, 116, 4-44.
doi: S0010-9452(18)30266-1 pmid: 30268324 |
[34] | Libben, G., Gagné, C. L., & Dressler, W. U. (2020). The representation and processing of compounds words. In V.Pirrelli, I.Plag & W.Dressler (Eds.), Word knowledge and word usage: A cross-disciplinary guide to the mental lexicon (pp. 336-352). Berlin, Boston: De Gruyter Mouton. |
[35] |
Liu, P. D., & Mcbride-Chang, C. (2010). Morphological processing of Chinese compounds from a grammatical view. Applied PsychoLinguistics, 31(4), 605-617.
doi: 10.1017/S0142716410000159 URL |
[36] |
Lo, J. C. M., McBride, C., Ho, C. S., & Maurer, U. (2019). Event-related potentials during Chinese single-character and two-character word reading in children. Brain and Cognition, 136, 103589.
doi: 10.1016/j.bandc.2019.103589 URL |
[37] |
Maurer, U., Schulz, E., Brem, S., der Mark, S. van, Bucher, K., Martin, E., & Brandeis, D. (2011). The development of print tuning in children with dyslexia: Evidence from longitudinal ERP data supported by fMRI. Neuroimage, 57(3), 714-722.
doi: 10.1016/j.neuroimage.2010.10.055 pmid: 21040695 |
[38] |
Momenian, M., Radman, N., Rafipoor, H., Barzegar, M., & Weekes, B. (2021). Compound words are decomposed regardless of semantic transparency and grammatical class: An fMRI study in Persian. Lingua, 259, 103120.
doi: 10.1016/j.lingua.2021.103120 URL |
[39] | Peng, D., Ding, G., Wang, C., Taft, M., & Zhu, X. (1999). The processing of Chinese reversible words——the role of morphemes in lexical access. Acta Psychologica Sinica, 31(1), 36-46. |
[ 彭聃龄, 丁国盛, 王春茂, Marcus, Taft, 朱晓平. (1999). 汉语逆序词的加工——词素在词加工中的作用. 心理学报, 31(1), 36-46.] | |
[40] | Pollatsek, A., Hyönä, J., & Bertram, R. (2000). The role of morphological constituents in reading Finnish compound words. Journal of Experimental Psychology Human Perception & Performance, 26(2), 820-833. |
[41] |
Rastle, K., Davis, M. H., & New, B. (2004). The broth in my brother’s brothel: Morpho-orthographic segmentation in visual word recognition. Psychonomic Bulletin & Review, 11(6), 1090-1098.
doi: 10.3758/BF03196742 URL |
[42] |
Seghier, M. L. (2013). The angular gyrus: Multiple functions and multiple subdivisions. Neuroscientist, 19(1), 43-61.
doi: 10.1177/1073858412440596 pmid: 22547530 |
[43] | Taft, M. (2003). Morphological representation as a correlation between form and meaning. In E.Assink & D.Sandra (Eds.), Reading complex words (pp. 113-137). Amsterdam: Kluwer. |
[44] |
Taft, M. (2004). Morphological decomposition and the reverse base frequency effect. The Quarterly Journal of Experimental Psychology Section A, 57(4), 745-765.
doi: 10.1080/02724980343000477 URL |
[45] |
Taft, M., & Nguyen-Hoan, M. (2010). A sticky stick? The locus of morphological representation in the lexicon. Language and Cognitive Processes, 25(2), 277-296.
doi: 10.1080/01690960903043261 URL |
[46] | Tsai, C.-H. (1994). Effects of semantic transparency on the recognition of Chinese two-character words: Evidence for a dual-process model (Unpublished master's thesis). National Chung Cheng University, Taiwan, China. |
[47] |
Tsang, Y.-K., & Chen, H.-C. (2013). Early morphological processing is sensitive to morphemic meanings: Evidence from processing ambiguous morphemes. Journal of Memory and Language, 68(3), 223-239.
doi: 10.1016/j.jml.2012.11.003 URL |
[48] |
Tsang, Y.-K., & Chen, H.-C. (2014). Activation of morphemic meanings in processing opaque words. Psychonomic Bulletin & Review, 21(5), 1281-1286.
doi: 10.3758/s13423-014-0589-2 URL |
[49] | Tsang, Y. -K., & Zou, Y. (2022). An ERP megastudy of Chinese word recognition. Psychophysiology, 59(11), e14111. |
[50] |
Tsang, Y.-K., Zou, Y., & Tse, C.-Y. (2022). Semantic transparency in Chinese compound word processing: Evidence from mismatch negativity. Neuroscience, 490, 216-223.
doi: 10.1016/j.neuroscience.2022.03.007 URL |
[51] |
Wu, J., Chang, J., Qiu, Y., & Joseph, D. (2020). The temporal process of visual word recognition of Chinese compound: Behavioral and ERP evidences based on homographic morphemes. Acta Psychologica Sinica, 52(2), 113-127.
doi: 10.3724/SP.J.1041.2020.00113 |
[ 吴建设, 常嘉宝, 邱寅晨, Joseph, D. (2020). 汉语复合词视觉识别的时间进程: 基于同形语素的行为与ERP证据. 心理学报, 52(2), 113-127.]
doi: 10.3724/SP.J.1041.2020.00113 |
|
[52] |
Wu, Y., Duan, R., Zhao, S., & Tsang, Y.-K. (2020). Processing ambiguous morphemes in Chinese compound word recognition: Behavioral and ERP evidence. Neuroscience, 446, 249-260.
doi: S0306-4522(20)30511-X pmid: 32795558 |
[53] |
Wu, Y., Tsang, Y.-K., Wong, A. W.-K., & Chen, H.-C. (2017). The processing of homographic morphemes in Chinese: An ERP study. Language, Cognition and Neuroscience, 32(1), 102-116.
doi: 10.1080/23273798.2016.1227857 URL |
[54] |
Yen, M.-H., Tsai, J.-L., Tzeng, O. J.-L., & Huang, D. L. (2008). Eye movements and parafoveal word processing in reading Chinese. Memory & Cognition, 36(5), 1033-1045.
doi: 10.3758/MC.36.5.1033 URL |
[55] |
Zhang, L., & Pylkkänen, L. (2015). The interplay of composition and concept specificity in the left anterior temporal lobe: An MEG study. Neuroimage, 111, 228-240.
doi: 10.1016/j.neuroimage.2015.02.028 pmid: 25703829 |
[56] |
Zhang, R., Wang, Z., Wang, X., & Yang, J.,(2021). N170 adaptation effect of the sub-lexical phonological and semantic processing in Chinese character reading. Acta Psychologica Sinica, 53(8), 807-820.
doi: 10.3724/SP.J.1041.2021.00807 |
[ 张瑞, 王振华, 王小娟, 杨剑峰. (2021). 汉字识别中亚词汇语音和语义信息在N170上的神经适应. 心理学报, 53(8), 807-820.]
doi: 10.3724/SP.J.1041.2021.00807 |
|
[57] |
Zhao, S., Wu, Y., LI, T., & Guo, Q. (2017). Morpho-semantic processing in Chinese word recognition: An ERP study. Acta Psychologica Sinica, 49(3), 296-306.
doi: 10.3724/SP.J.1041.2017.00296 |
[ 赵思敏, 吴岩, 李天虹, 郭庆童. (2017). 词汇识别中歧义词素语义加工:ERP研究. 心理学报, 49(3), 296-306.] | |
[58] |
Zhao, S., Wu, Y., Tsang, Y.-K., Sui, X., & Zhu, Z. (2021). Morpho-semantic analysis of ambiguous morphemes in Chinese compound word recognition: An fMRI study. Neuropsychologia, 157, 107862.
doi: 10.1016/j.neuropsychologia.2021.107862 URL |
[59] | Zhou, X. L., & Marslen-Wilson, W. (1995). Morphological structure in the Chinese mental lexicon. Language, Cognition and Neuroscience, 10(6), 545-600 |
[60] |
Zhou, X. L., Marslen-Wilson, W., Taft, M., & Shu, H. (1999). Morphology, orthography, and phonology in reading Chinese compound words. Language and Cognitive Processes, 14(5-6), 525-565.
doi: 10.1080/016909699386185 URL |
[61] |
Ziegler, J., & Pylkkänen, L. (2016). Scalar adjectives and the temporal unfolding of semantic composition: An MEG investigation. Neuropsychologia, 89, 161-171.
doi: S0028-3932(16)30209-3 pmid: 27297726 |
[62] | Zou, L., Packard, J. L., Xia, Z., Liu, Y., & Shu, H. (2016). Neural correlates of morphological processing: Evidence from Chinese. Frontiers in Human Neuroscience, 9, 714. |
[63] |
Zou, L., Packard, J. L., Xia, Z., Liu, Y., & Shu, H. (2019). Morphological and whole-word semantic processing are distinct: Event related potentials evidence from spoken word recognition in Chinese. Frontiers in Human Neuroscience, 13, 133.
doi: 10.3389/fnhum.2019.00133 pmid: 31057382 |
[1] | 赵春宇, 郭春彦. 合体字与复合词中联结编码和项目编码的关系[J]. 心理学报, 2023, 55(4): 513-528. |
[2] | 钟毅平, 牛娜娜, 范伟, 任梦梦, 李梅. 动作自主性与社会距离对主动控制感的影响:来自行为与ERPs的证据[J]. 心理学报, 2023, 55(12): 1932-1948. |
[3] | 李梅, 李琎, 张冠斐, 钟毅平, 李红. 承诺水平与社会距离对信任投资的影响:来自行为与ERPs的证据[J]. 心理学报, 2023, 55(11): 1859-1871. |
[4] | 占友龙, 肖啸, 谭千保, 李琎, 钟毅平. 声誉关注与社会距离对伤害困境中道德决策的影响:来自行为与ERPs的证据[J]. 心理学报, 2022, 54(6): 613-627. |
[5] | 曾红, 郑志灵, 罗晓红, 王鹏飞, 王孟成, 苏得权, 杨文登, 黄海娇, 彭淑娜. 药物成瘾者相关线索反应的自动化用药行为特征及其消退[J]. 心理学报, 2022, 54(10): 1193-1205. |
[6] | 孙天义, 郝晓晓, 何安明, 王财玉, 许远理, 郭春彦, 周蔚. 神经重用假说的汉语情绪词汇加工证据[J]. 心理学报, 2021, 53(9): 933-943. |
[7] | 曹敏, 谢和平, 孙丽君, 张冬静, 孔繁昌, 周宗奎. 网络游戏中化身参照的加工优势:来自行为与ERPs的证据[J]. 心理学报, 2021, 53(6): 639-650. |
[8] | 周文洁, 邓丽群, 丁锦红. 物体颜色对情景记忆的影响[J]. 心理学报, 2021, 53(3): 229-243. |
[9] | 李琎, 孙宇, 杨子鹿, 钟毅平. 社会价值取向对自我社会奖赏加工的影响——来自ERPs的证据[J]. 心理学报, 2020, 52(6): 786-800. |
[10] | 郑志灵, 王鹏飞, 苏得权, 郭伟杰, 孙楠, 麻彦坤, 曾红. 不同相关线索下海洛因成瘾者的反应差异及反应抑制特征:来自ERP的证据[J]. 心理学报, 2020, 52(3): 317-328. |
[11] | 吴建设, 常嘉宝, 邱寅晨, Joseph Dien. 汉语复合词视觉识别的时间进程:基于同形语素的行为与ERP证据[J]. 心理学报, 2020, 52(2): 113-127. |
[12] | 章文佩, 沈群伦, 宋锦涛, 周仁来. 基于事件相关电位(ERPs)和机器学习的考试焦虑诊断 *[J]. 心理学报, 2019, 51(10): 1116-1127. |
[13] | 杨青青, 胡娜, 陈旭, 牛娟, 翟晶. 恋人亲密情景下的回避型与安全型 依恋个体情绪调节电生理差异[J]. 心理学报, 2018, 50(3): 306-316. |
[14] | 韩萌, 毛新瑞, 蔡梦彤, 贾茜, 郭春彦. 大小判断任务中正负号及其异同对 SNARC效应的影响[J]. 心理学报, 2017, 49(8): 995-1008. |
[15] | 赵思敏;吴岩;李天虹;郭庆童. 词汇识别中歧义词素语义加工:ERP研究[J]. 心理学报, 2017, 49(3): 296-306. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||