[1] Adolphs, R. (2002). Neural systems for recognizing emotion.Current Opinion in Neurobiology, 12(2), 169-177. [2] Atkinson, J. (1984). Human visual development over the first 6 months of life. A review and a hypothesis.Human Neurobiology, 3(2), 61-74. [3] Barbey A. K., Koenigs M., & Grafman J. (2013). Dorsolateral prefrontal contributions to human working memory.Cortex, 49(5), 1195-1205. [4] Baum G. L., Ciric R., Roalf D. R., Betzel R. F., Moore T. M., Shinohara R. T.,.. Satterthwaite T. D. (2017). Modular segregation of structural brain networks supports the development of executive function in youth.Current Biology, 27(11), 1561-1572. [5] Baum G. L., Cui Z., Roalf D. R., Ciric R., Betzel R. F., Larsen B.,.. Satterthwaite T. D. (2020). Development of structure-function coupling in human brain networks during youth.Proceedings of the National Academy of Sciences, 117(1), 771-778. [6] Behzadi Y., Restom K., Liau J., & Liu T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI.Neuroimage, 37(1), 90-101. [7] Camilleri J. A., Müller V. I., Fox P., Laird A. R., Hoffstaedter F., Kalenscher T., & Eickhoff S. B. (2018). Definition and characterization of an extended multiple-demand network.Neuroimage, 165, 138-147. [8] Cole M. W., Etzel J. A., Zacks J. M., Schneider W., & Braver T. S. (2011). Rapid transfer of abstract rules to novel contexts in human lateral prefrontal cortex.Frontiers in Human Neuroscience, 5, 142. [9] Cole M. W., Laurent P., & Stocco A. (2013). Rapid instructed task learning: A new window into the human brain’s unique capacity for flexible cognitive control.Cognitive, Affective, &behavioral Neuroscience, 13(1), 1-22. [10] Cole M. W., Reynolds J. R., Power J. D., Repovs G., Anticevic A., & Braver T. S. (2013). Multi-task connectivity reveals flexible hubs for adaptive task control.Nature Neuroscience, 16(9), 1348-1355. [11] Cole, M. W., & Schneider, W. (2007). The cognitive control network: Integrated cortical regions with dissociable functions.Neuroimage, 37(1), 343-360. [12] Cox, R. W., & Hyde, J. S. (1997). Software tools for analysis and visualization of fMRI data.NMR in Biomedicine, 10(4‐5), 171-178. [13] Diamond, A., & Goldman-Rakic, P. S. (1989). Comparison of human infants and rhesus monkeys on Piaget’s AB task: Evidence for dependence on dorsolateral prefrontal cortex.Experimental Brain Research, 74(1), 24-40. [14] Dosenbach N. U., Visscher K. M., Palmer E. D., Miezin F. M., Wenger K. K., Kang H. C.,.. Petersen S. E. (2006). A core system for the implementation of task sets.Neuron, 50(5), 799-812. [15] Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: Mental programs for intelligent behaviour.Trends in Cognitive Sciences, 14(4), 172-179. [16] Duncan, J. (2013). The structure of cognition: Attentional episodes in mind and brain.Neuron, 80(1), 35-50. [17] Duncan, J., & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands.Trends in Neurosciences, 23(10), 475-483. [18] Esteban O., Ciric R., Finc K., Blair R. W., Markiewicz C. J., Moodie C. A.,.. Gorgolewski K. J. (2020). Analysis of task-based functional MRI data preprocessed with fMRIPrep.Nature Protocols, 15(7), 2186-2202. [19] Esteban O., Markiewicz C. J., Blair R. W., Moodie C. A., Isik A. I., Erramuzpe A.,.. Gorgolewski K. J. (2019). fMRIPrep: A robust preprocessing pipeline for functional MRI.Nature Methods, 16(1), 111-116. [20] Fair D. A., Cohen A. L., Power J. D., Dosenbach N. U., Church J. A., Miezin F. M., Schlaggar B. L., & Petersen S. E. (2009). Functional brain networks develop from a “local to distributed” organization.PLoS Computational Biology, 5(5), e1000381. [21] Fedorenko E., Duncan J., & Kanwisher N. (2013). Broad domain generality in focal regions of frontal and parietal cortex.Proceedings of the National Academy of Sciences, 110(41), 16616-16621. [22] Filipek, P. A. (1999). Neuroimaging in the developmental disorders: The state of the science.The Journal of Child Psychology and Psychiatry and Allied Disciplines, 40(1), 113-128. [23] Friston, K. J., & Price, C. J. (2001). Dynamic representations and generative models of brain function.Brain Research Bulletin, 54(3), 275-285. [24] Gazzaniga M. S.(2004). The cognitive neurosciences. MIT Press. [25] Gee D. G., Humphreys K. L., Flannery J., Goff B., Telzer E. H., Shapiro M.,.. Tottenham N. (2013). A developmental shift from positive to negative connectivity in human amygdala-prefrontal circuitry.Journal of Neuroscience, 33(10), 4584-4593. [26] Glasser M. F., Sotiropoulos S. N., Wilson J. A., Coalson T. S., Fischl B., Andersson J. L.,.. Polimeni J. R. (2013). The minimal preprocessing pipelines for the Human Connectome Project.Neuroimage, 80, 105-124. [27] Gorgolewski K., Burns C. D., Madison C., Clark D., Halchenko Y. O., Waskom M. L., & Ghosh S. S. (2011). Nipype: A flexible, lightweight and extensible neuroimaging data processing framework in python.Frontiers in Neuroinformatics, 5, 13. [28] Greve, D. N., & Fischl, B. (2009). Accurate and robust brain image alignment using boundary-based registration.Neuroimage, 48(1), 63-72. [29] Hao L., Li L., Chen M., Xu J., Jiang M., Wang Y.,.. Qin S. (2021). Mapping domain-and age-specific functional brain activity for children’s cognitive and affective development.Neuroscience Bulletin, 37(6), 763-776. [30] Hao L., Peng S., Zhou Y., Chen X., Qiu J., Luo W.,.. Qin S. Z. (2024). Neural specialization with generalizable representations underlies children’s cognitive development of attention.American Psychologist, doi: 10.1037/amp0001283. [31] Hugdahl K., Raichle M. E., Mitra A., & Specht K. (2015). On the existence of a generalized non-specific task-dependent network.Frontiers in Human Neuroscience, 9, 430. [32] Jenkinson M., Bannister P., Brady M., & Smith S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images.Neuroimage, 17(2), 825-841. [33] Jenkinson, M., & Smith, S. (2001). A global optimisation method for robust affine registration of brain images.Medical Image Analysis, 5(2), 143-156. [34] Johnson, M. H. (1990). Cortical maturation and the development of visual attention in early infancy.Journal of Cognitive Neuroscience, 2(2), 81-95. [35] Johnson, M. H. (2000). Functional brain development in infants: Elements of an interactive specialization framework.Child Development, 71(1), 75-81. [36] Johnson, M. H. (2001). Functional brain development in humans.Nature Reviews Neuroscience, 2(7), 475-483. [37] Johnson, M. H. (2011). Interactive specialization: A domain-general framework for human functional brain development? Developmental Cognitive Neuroscience, 1(1), 7-21. [38] Kanwisher, N. (2010). Functional specificity in the human brain: A window into the functional architecture of the mind.Proceedings of the National Academy of Sciences, 107(25), 11163-11170. [39] Kanwisher N., McDermott J., & Chun M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception.Journal of Neuroscience, 17(11), 4302-4311. [40] Kragel P. A., Kano M., Van Oudenhove L., Ly H. G., Dupont P., Rubio A.,.. Wager, T. D. (2018). Generalizable representations of pain, cognitive control, and negative emotion in medial frontal cortex.Nature Neuroscience, 21(2), 283-289. [41] Lanczos, C. (1964). Evaluation of noisy data.Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis, 1(1), 76-85. [42] Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function.Annual Review of Neuroscience, 24(1), 167-202. [43] Missana, M., & Grossmann, T. (2015). Infants’ emerging sensitivity to emotional body expressions: Insights from asymmetrical frontal brain activity.Developmental Psychology, 51(2), 151-160. [44] Morton, J., & Frith, U. (1995). Causal modeling: A structural approach to developmental psychopathology. In D. Cicchetti & D. J. Cohen (Eds.), Developmental psychopathology, Vol. 1. Theory and methods(pp. 357-390). John Wiley & Sons. [45] Paus, T. (2005). Mapping brain maturation and cognitive development during adolescence.Trends in Cognitive Sciences, 9(2), 60-68. [46] Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35(1), 73-89. https://doi.org/10.1146/annurev-neuro-062111-150525 [47] Power J. D., Mitra A., Laumann T. O., Snyder A. Z., Schlaggar B. L., & Petersen S. E. (2014). Methods to detect, characterize, and remove motion artifact in resting state fMRI.Neuroimage, 84, 320-341. [48] Pruim R. H., Mennes M., van Rooij D., Llera A., Buitelaar J. K., & Beckmann C. F. (2015). ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data.Neuroimage, 112, 267-277. [49] Qin S., Cho S., Chen T., Rosenberg-Lee M., Geary D. C., & Menon V. (2014). Hippocampal-neocortical functional reorganization underlies children’s cognitive development.Nature Neuroscience, 17(9), 1263-1269. [50] Qin S., Young C. B., Supekar K., Uddin L. Q., & Menon V. (2012). Immature integration and segregation of emotion-related brain circuitry in young children.Proceedings of the National Academy of Sciences, 109(20), 7941-7946. [51] Reverberi C., Görgen K., & Haynes J. -D. (2012). Compositionality of rule representations in human prefrontal cortex.Cerebral Cortex, 22(6), 1237-1246. [52] Richards, J. E. (2001). Cortical indexes of saccade planning in infants.Infancy, 2(2), 123-133. [53] Rumsey, J. M., & Ernst, M. (2000). Functional neuroimaging of autistic disorders.Mental Retardation and Developmental Disabilities Research Reviews, 6(3), 171-179. [54] Sakai, K. (2008). Task set and prefrontal cortex.Annual Review of Neuroscience, 31, 219-245. [55] Schiller, P. H. (1996). On the specificity of neurons and visual areas.Behavioural Brain Research, 76(1-2), 21-35. [56] Stuss D. T.,& Knight, R. T. (2013). Principles of frontal lobe function. Oxford University Press, USA. [57] Sugiura M., Katayori Y., Muratsubaki T., Shiratori M., Hanawa S., Nejad K. K.,.. Fukudo S. (2023). Automatic adaptive emotion regulation is associated with lower emotion-related activation in the frontoparietal cortex and other cortical regions with multi-componential organization.Frontiers in Behavioral Neuroscience, 17, 1059158. [58] Toga A. W., Thompson P. M., & Sowell E. R. (2006). Mapping brain maturation.Trends in Neurosciences, 29(3), 148-159. [59] Tschentscher N., Mitchell D., & Duncan J. (2017). Fluid intelligence predicts novel rule implementation in a distributed frontoparietal control network.Journal of Neuroscience, 37(18), 4841-4847. [60] Uddin L. Q., Nomi J. S., Hébert-Seropian B., Ghaziri J., & Boucher O. (2017). Structure and function of the human insula.Journal of Clinical Neurophysiology, 34(4), 300-306. [61] Wallis J. D., Anderson K. C., & Miller E. K. (2001). Single neurons in prefrontal cortex encode abstract rules.Nature, 411(6840), 953-956. [62] Yang G. R., Joglekar M. R., Song H. F., Newsome W. T., & Wang X. -J. (2019). Task representations in neural networks trained to perform many cognitive tasks.Nature Neuroscience, 22(2), 297-306. [63] Zhang Y., Padmanabhan A., Gross J. J., & Menon V. (2019). Development of human emotion circuits investigated using a big-data analytic approach: Stability, reliability, and robustness.Journal of Neuroscience, 39(36), 7155-7172. |