Acta Psychologica Sinica ›› 2025, Vol. 57 ›› Issue (2): 218-231.doi: 10.3724/SP.J.1041.2025.0218
• Reports of Empirical Studies • Previous Articles Next Articles
HAO Lei1,2, XU Tianwei3, ZHOU Wenlong3, YANG Jie3, PENG Siya2, LIU Minglan4, XU Jiahua5, WANG Yanpei2, TAN Shuping5, GAO Jiahong6, HE Yong2, TAO Sha2, DONG Qi2, QIN Shaozheng2
Received:
2024-03-10
Published:
2025-02-25
Online:
2024-12-20
HAO Lei, XU Tianwei, ZHOU Wenlong, YANG Jie, PENG Siya, LIU Minglan, XU Jiahua, WANG Yanpei, TAN Shuping, GAO Jiahong, HE Yong, TAO Sha, DONG Qi, QIN Shaozheng. (2025). Developmental differences in generalizable neural representations driven by multiple emotional and cognitive tasks. Acta Psychologica Sinica, 57(2), 218-231.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.psych.ac.cn/acps/EN/10.3724/SP.J.1041.2025.0218
[1] Adolphs, R. (2002). Neural systems for recognizing emotion. [2] Atkinson, J. (1984). Human visual development over the first 6 months of life. A review and a hypothesis. [3] Barbey A. K., Koenigs M., & Grafman J. (2013). Dorsolateral prefrontal contributions to human working memory. [4] Baum G. L., Ciric R., Roalf D. R., Betzel R. F., Moore T. M., Shinohara R. T.,.. Satterthwaite T. D. (2017). Modular segregation of structural brain networks supports the development of executive function in youth. [5] Baum G. L., Cui Z., Roalf D. R., Ciric R., Betzel R. F., Larsen B.,.. Satterthwaite T. D. (2020). Development of structure-function coupling in human brain networks during youth. [6] Behzadi Y., Restom K., Liau J., & Liu T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. [7] Camilleri J. A., Müller V. I., Fox P., Laird A. R., Hoffstaedter F., Kalenscher T., & Eickhoff S. B. (2018). Definition and characterization of an extended multiple-demand network. [8] Cole M. W., Etzel J. A., Zacks J. M., Schneider W., & Braver T. S. (2011). Rapid transfer of abstract rules to novel contexts in human lateral prefrontal cortex. [9] Cole M. W., Laurent P., & Stocco A. (2013). Rapid instructed task learning: A new window into the human brain’s unique capacity for flexible cognitive control. [10] Cole M. W., Reynolds J. R., Power J. D., Repovs G., Anticevic A., & Braver T. S. (2013). Multi-task connectivity reveals flexible hubs for adaptive task control. [11] Cole, M. W., & Schneider, W. (2007). The cognitive control network: Integrated cortical regions with dissociable functions. [12] Cox, R. W., & Hyde, J. S. (1997). Software tools for analysis and visualization of fMRI data. [13] Diamond, A., & Goldman-Rakic, P. S. (1989). Comparison of human infants and rhesus monkeys on Piaget’s AB task: Evidence for dependence on dorsolateral prefrontal cortex. [14] Dosenbach N. U., Visscher K. M., Palmer E. D., Miezin F. M., Wenger K. K., Kang H. C.,.. Petersen S. E. (2006). A core system for the implementation of task sets. [15] Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: Mental programs for intelligent behaviour. [16] Duncan, J. (2013). The structure of cognition: Attentional episodes in mind and brain. [17] Duncan, J., & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. [18] Esteban O., Ciric R., Finc K., Blair R. W., Markiewicz C. J., Moodie C. A.,.. Gorgolewski K. J. (2020). Analysis of task-based functional MRI data preprocessed with fMRIPrep. [19] Esteban O., Markiewicz C. J., Blair R. W., Moodie C. A., Isik A. I., Erramuzpe A.,.. Gorgolewski K. J. (2019). fMRIPrep: A robust preprocessing pipeline for functional MRI. [20] Fair D. A., Cohen A. L., Power J. D., Dosenbach N. U., Church J. A., Miezin F. M., Schlaggar B. L., & Petersen S. E. (2009). Functional brain networks develop from a “local to distributed” organization. [21] Fedorenko E., Duncan J., & Kanwisher N. (2013). Broad domain generality in focal regions of frontal and parietal cortex. [22] Filipek, P. A. (1999). Neuroimaging in the developmental disorders: The state of the science. [23] Friston, K. J., & Price, C. J. (2001). Dynamic representations and generative models of brain function. [24] Gazzaniga M. S.(2004). The cognitive neurosciences. MIT Press. [25] Gee D. G., Humphreys K. L., Flannery J., Goff B., Telzer E. H., Shapiro M.,.. Tottenham N. (2013). A developmental shift from positive to negative connectivity in human amygdala-prefrontal circuitry. [26] Glasser M. F., Sotiropoulos S. N., Wilson J. A., Coalson T. S., Fischl B., Andersson J. L.,.. Polimeni J. R. (2013). The minimal preprocessing pipelines for the Human Connectome Project. [27] Gorgolewski K., Burns C. D., Madison C., Clark D., Halchenko Y. O., Waskom M. L., & Ghosh S. S. (2011). Nipype: A flexible, lightweight and extensible neuroimaging data processing framework in python. [28] Greve, D. N., & Fischl, B. (2009). Accurate and robust brain image alignment using boundary-based registration. [29] Hao L., Li L., Chen M., Xu J., Jiang M., Wang Y.,.. Qin S. (2021). Mapping domain-and age-specific functional brain activity for children’s cognitive and affective development. [30] Hao L., Peng S., Zhou Y., Chen X., Qiu J., Luo W.,.. Qin S. Z. (2024). Neural specialization with generalizable representations underlies children’s cognitive development of attention. [31] Hugdahl K., Raichle M. E., Mitra A., & Specht K. (2015). On the existence of a generalized non-specific task-dependent network. [32] Jenkinson M., Bannister P., Brady M., & Smith S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. [33] Jenkinson, M., & Smith, S. (2001). A global optimisation method for robust affine registration of brain images. [34] Johnson, M. H. (1990). Cortical maturation and the development of visual attention in early infancy. [35] Johnson, M. H. (2000). Functional brain development in infants: Elements of an interactive specialization framework. [36] Johnson, M. H. (2001). Functional brain development in humans. [37] Johnson, M. H. (2011). Interactive specialization: A domain-general framework for human functional brain development? [38] Kanwisher, N. (2010). Functional specificity in the human brain: A window into the functional architecture of the mind. [39] Kanwisher N., McDermott J., & Chun M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. [40] Kragel P. A., Kano M., Van Oudenhove L., Ly H. G., Dupont P., Rubio A.,.. Wager, T. D. (2018). Generalizable representations of pain, cognitive control, and negative emotion in medial frontal cortex. [41] Lanczos, C. (1964). Evaluation of noisy data. [42] Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. [43] Missana, M., & Grossmann, T. (2015). Infants’ emerging sensitivity to emotional body expressions: Insights from asymmetrical frontal brain activity. [44] Morton, J., & Frith, U. (1995). Causal modeling: A structural approach to developmental psychopathology. In D. Cicchetti & D. J. Cohen (Eds.), [45] Paus, T. (2005). Mapping brain maturation and cognitive development during adolescence. [46] Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. [47] Power J. D., Mitra A., Laumann T. O., Snyder A. Z., Schlaggar B. L., & Petersen S. E. (2014). Methods to detect, characterize, and remove motion artifact in resting state fMRI. [48] Pruim R. H., Mennes M., van Rooij D., Llera A., Buitelaar J. K., & Beckmann C. F. (2015). ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. [49] Qin S., Cho S., Chen T., Rosenberg-Lee M., Geary D. C., & Menon V. (2014). Hippocampal-neocortical functional reorganization underlies children’s cognitive development. [50] Qin S., Young C. B., Supekar K., Uddin L. Q., & Menon V. (2012). Immature integration and segregation of emotion-related brain circuitry in young children. [51] Reverberi C., Görgen K., & Haynes J. -D. (2012). Compositionality of rule representations in human prefrontal cortex. [52] Richards, J. E. (2001). Cortical indexes of saccade planning in infants.Infancy, 2(2), 123-133. [53] Rumsey, J. M., & Ernst, M. (2000). Functional neuroimaging of autistic disorders. [54] Sakai, K. (2008). Task set and prefrontal cortex. [55] Schiller, P. H. (1996). On the specificity of neurons and visual areas. [56] Stuss D. T.,& Knight, R. T. (2013). Principles of frontal lobe function. Oxford University Press, USA. [57] Sugiura M., Katayori Y., Muratsubaki T., Shiratori M., Hanawa S., Nejad K. K.,.. Fukudo S. (2023). Automatic adaptive emotion regulation is associated with lower emotion-related activation in the frontoparietal cortex and other cortical regions with multi-componential organization. [58] Toga A. W., Thompson P. M., & Sowell E. R. (2006). Mapping brain maturation. [59] Tschentscher N., Mitchell D., & Duncan J. (2017). Fluid intelligence predicts novel rule implementation in a distributed frontoparietal control network. [60] Uddin L. Q., Nomi J. S., Hébert-Seropian B., Ghaziri J., & Boucher O. (2017). Structure and function of the human insula. [61] Wallis J. D., Anderson K. C., & Miller E. K. (2001). Single neurons in prefrontal cortex encode abstract rules. [62] Yang G. R., Joglekar M. R., Song H. F., Newsome W. T., & Wang X. -J. (2019). Task representations in neural networks trained to perform many cognitive tasks. [63] Zhang Y., Padmanabhan A., Gross J. J., & Menon V. (2019). Development of human emotion circuits investigated using a big-data analytic approach: Stability, reliability, and robustness. |
[1] | WANG Biyao, CHEN Chen, HU Xiaofei, WANG Di, LI Baolin. Spatial generalization of serial dependence in visual duration perception [J]. Acta Psychologica Sinica, 2024, 56(4): 394-411. |
[2] | YUAN Bo, WANG Xiaoping, YIN Jun, LI Weiqiang. The role of cross-situational stimulus generalization in the formation of trust towards face: A perspective based on direct and observational learning [J]. Acta Psychologica Sinica, 2023, 55(7): 1099-1114. |
[3] | WANG Tianhong, CHEN Yuqi, LU Jingyi. The generalization effect in gap evaluation: How large is the gap between you and me? [J]. Acta Psychologica Sinica, 2020, 52(11): 1327-1339. |
[4] | GONG Huoliang, YANG Di, ZHANG Fangyi. The influence of questioning type on the generalization of autobiographical memory [J]. Acta Psychologica Sinica, 2019, 51(12): 1318-1329. |
[5] | HAN Shangfeng, LI Yue, LIU Shen, XU Qiang, TAN Qun, ZHANG Lin. Beauty is in the eye of the beholder: The halo effect and generalization effect in the facial attractiveness evaluation [J]. Acta Psychologica Sinica, 2018, 50(4): 363-376. |
[6] | XU Liang, XIE Xiaoyuan, YAN Pei, LI Junjiao, ZHENG Xifu. Sex differences in fear generalization [J]. Acta Psychologica Sinica, 2018, 50(2): 197-205. |
[7] | FENG Biao, XU Liang, ZHANG Weixing, CHEN Ting, WANG Wenqing, ZHENG Xifu. The inhibitive effect of positive emotions on fear generalization [J]. Acta Psychologica Sinica, 2017, 49(3): 317-328. |
[8] | XU Liang, OU Songyi, ZHENG Xifu, CHEN Ting, FENG Biao, YAN Pei. The impact of state anxiety on fear generalization [J]. Acta Psychologica Sinica, 2016, 48(12): 1507-1518. |
[9] |
YOU Xu-Qun,SONG Xiao-Lei . Hemispheric Specialization Effects in Visual Image Generation [J]. , 2009, 41(10): 911-921. |
[10] | LIU Tao,YANG Yi-Ming,ZHANG Hui,ZHANG Shan-Shan,LIANG Dan-Dan,GU Jie-Xin', HU Wei. Neural Distinction between Chinese Nouns and Verbs in the Grammatical Context: An ERP Study [J]. , 2008, 40(06): 671-680. |
[11] | Jin hua, Ho-Ling Liu, Ya-Ling Yang,Mo Lei. fMRI RESEARCH ON THE NEURAL REPRESENTATIONS ABOUT SEMANTIC KNOWLEDGE:MODALITY SPECIFICITY OR CATEGORY SPECIFICITY? [J]. , 2005, 37(02): 159-166. |
[12] | Mo Lei Wu Sina (South China Normal University, Guangzhou 510631). THE EFFECTS OF EVENT PROTOTYPES WITH DIFFERENT GENERALIZATIONDEGREE ON PROBLEM CATEGORIZING AND SOLVING [J]. , 2001, 33(05): 33-41. |
[13] | Tao Linmi,Yao Guozheng,Wang Yunjiu Institute of Biopysics, Academia Sinica, Beijing 100101, P. R. China. A COMPUTATIONAL THEORY FOR HUMAN COLOR VISION [J]. , 1993, 25(03): 11-18. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||