心理学报 ›› 2025, Vol. 57 ›› Issue (2): 218-231.doi: 10.3724/SP.J.1041.2025.0218 cstr: 32110.14.2025.0218
郝磊1,2, 许天委3, 周文龙3, 杨杰3, 彭思雅2, 刘明兰4, 徐家华5, 王延培2, 谭淑平5, 高家红6, 贺永2, 陶沙2, 董奇2, 秦绍正2()
收稿日期:
2024-03-10
发布日期:
2024-12-20
出版日期:
2025-02-25
通讯作者:
秦绍正, E-mail: szqin@bnu.edu.cn基金资助:
HAO Lei1,2, XU Tianwei3, ZHOU Wenlong3, YANG Jie3, PENG Siya2, LIU Minglan4, XU Jiahua5, WANG Yanpei2, TAN Shuping5, GAO Jiahong6, HE Yong2, TAO Sha2, DONG Qi2, QIN Shaozheng2()
Received:
2024-03-10
Online:
2024-12-20
Published:
2025-02-25
摘要:
从脑智发育视角来讲, 神经系统随着心理发展会产生出一系列具有功能特异化(specialization)且高度协同的模块。这些模块之间究竟如何协同支撑儿童情感与认知功能发展呢?本研究综合利用多个经典的情感与认知任务范式(含注意网络测试、情绪匹配和工作记忆任务)以及层级化(hierarchical)的多体素神经表征建模方法, 重点考察7~12岁学龄儿童多元需求(multi-demand)额顶系统在情感与认知任务驱动下的通用性(task-general)作用以及分层级神经表征的组织方式。结果表明:儿童低年龄组、儿童高年龄组和成人组被试均表现出了多元需求额顶系统(包括顶内沟和额眼区域)共同参与多种情感与认知任务的现象, 即跨任务共同激活; 值得强调的是, 学龄儿童多元需求额顶系统表现出了更低水平的跨任务神经表征可泛化性(generalizability), 而作为控制分析的前扣带回、背外侧前额叶和前脑岛则没有表现出组间的可泛化性差异。我们推测多元需求额顶系统在发育中可能作为一个潜在的通用性“枢纽”, 通过组构性(compositionality)的信息组织方式, 实现不同任务目标驱动下分层级的神经表征与计算, 进而支撑情感与认知功能随龄的发展。本研究突破了当前单任务范式视角下的发展认知神经科学研究框架, 有望为理解跨情感与认知领域的脑智发育工作原理和开发人工智能新型算法提供新的启示。
中图分类号:
郝磊, 许天委, 周文龙, 杨杰, 彭思雅, 刘明兰, 徐家华, 王延培, 谭淑平, 高家红, 贺永, 陶沙, 董奇, 秦绍正. (2025). 多种情感与认知任务驱动下大脑可泛化神经表征的发育模式. 心理学报, 57(2), 218-231.
HAO Lei, XU Tianwei, ZHOU Wenlong, YANG Jie, PENG Siya, LIU Minglan, XU Jiahua, WANG Yanpei, TAN Shuping, GAO Jiahong, HE Yong, TAO Sha, DONG Qi, QIN Shaozheng. (2025). Developmental differences in generalizable neural representations driven by multiple emotional and cognitive tasks. Acta Psychologica Sinica, 57(2), 218-231.
图1 跨情感与认知领域发展的多层级神经表征泛化机制构想图 注:第一层级对应不同的情感/认知条件, 该层级的各条件由神经特异性激活支持; 第二层级对应跨情感/认知任务的神经共激活, 多元需求系统在神经激活水平上支持着不同任务过程; 第三层级对应跨情感与认知领域的神经表征泛化, 通过组构性编码机制支持着不同情感与认知功能的成熟。彩图见电子版, 下同。
变量 | 年龄组 | ||||||
---|---|---|---|---|---|---|---|
7岁 | 8岁 | 9岁 | 10岁 | 11 & 12岁 | 总体 | ||
注意 | 总数 | 40 | 74 | 102 | 83 | 59 | 358 |
年龄 | 7.15 ± 0.25 | 8.07 ± 0.31 | 9.06 ± 0.30 | 10.00 ± 0.30 | 11.27 ± 0.49 | 9.22 ± 1.31 | |
年龄范围 | 6.51 ~ 7.49 | 7.50 ~ 8.49 | 8.51 ~ 9.49 | 9.52 ~ 10.49 | 10.54 ~ 12.45 | 6.51 ~ 12.45 | |
性别 | 18M / 22F | 41M / 33F | 55M / 47F | 48M / 35F | 30M / 29F | 192M / 166F | |
工作 记忆 | 总数 | 45 | 81 | 110 | 95 | 77 | 408 |
年龄 | 7.14 ± 0.25 | 8.07 ± 0.30 | 9.03 ± 0.29 | 9.98 ± 0.30 | 11.21 ± 0.47 | 9.27 ± 1.32 | |
年龄范围 | 6.52 ~ 7.49 | 7.51 ~ 8.49 | 8.50 ~ 9.49 | 9.51 ~ 10.49 | 10.54 ~ 12.30 | 6.52 ~ 12.30 | |
性别 | 21M / 24F | 44M / 37F | 57M / 53F | 54M / 41F | 43M / 34F | 219M / 189F | |
情绪 匹配 | 总数 | 49 | 86 | 108 | 89 | 78 | 410 |
年龄 | 7.12 ± 0.25 | 8.06 ± 0.30 | 9.02 ± 0.28 | 9.99 ± 0.30 | 11.20 ± 0.45 | 9.22 ± 1.34 | |
年龄范围 | 6.51 ~ 7.47 | 7.50 ~ 8.49 | 8.51 ~ 9.49 | 9.51 ~ 10.49 | 10.54 ~ 12.30 | 6.51 ~ 12.30 | |
性别 | 25M / 24F | 51M / 35F | 60M / 48F | 49M / 40F | 42M / 36F | 227M / 183F |
表1 各年龄组儿童的人口统计学信息
变量 | 年龄组 | ||||||
---|---|---|---|---|---|---|---|
7岁 | 8岁 | 9岁 | 10岁 | 11 & 12岁 | 总体 | ||
注意 | 总数 | 40 | 74 | 102 | 83 | 59 | 358 |
年龄 | 7.15 ± 0.25 | 8.07 ± 0.31 | 9.06 ± 0.30 | 10.00 ± 0.30 | 11.27 ± 0.49 | 9.22 ± 1.31 | |
年龄范围 | 6.51 ~ 7.49 | 7.50 ~ 8.49 | 8.51 ~ 9.49 | 9.52 ~ 10.49 | 10.54 ~ 12.45 | 6.51 ~ 12.45 | |
性别 | 18M / 22F | 41M / 33F | 55M / 47F | 48M / 35F | 30M / 29F | 192M / 166F | |
工作 记忆 | 总数 | 45 | 81 | 110 | 95 | 77 | 408 |
年龄 | 7.14 ± 0.25 | 8.07 ± 0.30 | 9.03 ± 0.29 | 9.98 ± 0.30 | 11.21 ± 0.47 | 9.27 ± 1.32 | |
年龄范围 | 6.52 ~ 7.49 | 7.51 ~ 8.49 | 8.50 ~ 9.49 | 9.51 ~ 10.49 | 10.54 ~ 12.30 | 6.52 ~ 12.30 | |
性别 | 21M / 24F | 44M / 37F | 57M / 53F | 54M / 41F | 43M / 34F | 219M / 189F | |
情绪 匹配 | 总数 | 49 | 86 | 108 | 89 | 78 | 410 |
年龄 | 7.12 ± 0.25 | 8.06 ± 0.30 | 9.02 ± 0.28 | 9.99 ± 0.30 | 11.20 ± 0.45 | 9.22 ± 1.34 | |
年龄范围 | 6.51 ~ 7.47 | 7.50 ~ 8.49 | 8.51 ~ 9.49 | 9.51 ~ 10.49 | 10.54 ~ 12.30 | 6.51 ~ 12.30 | |
性别 | 25M / 24F | 51M / 35F | 60M / 48F | 49M / 40F | 42M / 36F | 227M / 183F |
图4 跨情感与认知领域的多层级神经泛化模型 注:将多变量模式相异性分解为不同情感/认知条件、跨情感/认知任务和跨情感与认知领域三个层级。左侧矩阵代表一个脑区内所有受试者在不同情感与认知条件下的神经表征相异性, 元素格代表所有受试者的每个情感与认知过程成对匹配的神经相异性, 彩色条表示功能相异性层级中的相应级别。在总体公式中, 1~18的参数估计值代表模型中各情感与认知条件的神经泛化程度, 19~27的参数估计值代表模型中跨情感/认知任务的神经泛化程度, 28~30的参数估计值代表模型中每个年龄组跨情感与认知领域的神经泛化程度。A:注意; W:工作记忆; E:情绪匹配。
任务 | 条件 | 样本量 | t值 | p值 |
---|---|---|---|---|
ANT1 | 警觉分数 | 182/267 | 1.320 | 0.188 |
定向分数 | 182/267 | 1.005 | 0.316 | |
ANT2 | 警觉分数 | 182/252 | 1.646 | 0.101 |
定向分数 | 182/252 | 1.363 | 0.174 | |
WM | 1-Back正确率 | 182/238 | 0.351 | 0.726 |
2-Back正确率 | 182/238 | 1.622 | 0.106 | |
EM | 情绪正确率 | 182/221 | 0.125 | 0.901 |
控制正确率 | 182/221 | 0.331 | 0.741 |
表S1 筛除被试和未被筛除被试之间的任务绩效差异对比
任务 | 条件 | 样本量 | t值 | p值 |
---|---|---|---|---|
ANT1 | 警觉分数 | 182/267 | 1.320 | 0.188 |
定向分数 | 182/267 | 1.005 | 0.316 | |
ANT2 | 警觉分数 | 182/252 | 1.646 | 0.101 |
定向分数 | 182/252 | 1.363 | 0.174 | |
WM | 1-Back正确率 | 182/238 | 0.351 | 0.726 |
2-Back正确率 | 182/238 | 1.622 | 0.106 | |
EM | 情绪正确率 | 182/221 | 0.125 | 0.901 |
控制正确率 | 182/221 | 0.331 | 0.741 |
组别 | 脑区 | 左/右脑 | 布罗德曼分区 | 团块大小 | 坐标(x, y, z) |
---|---|---|---|---|---|
儿童低年龄组 | 顶内沟(IPS) | L | 40 | 48 | −30, −48, 42 |
R | 134 | 34, −46, 40 | |||
额眼区域(FEF) | L | 6 | 116 | −28, −4, 48 | |
R | 77 | 26, −2, 52 | |||
儿童高年龄组 | 顶内沟(IPS) | L | 40 | 155 | −34, −48, 50 |
R | 239 | 32, −46, 46 | |||
额眼区域(FEF) | L | 6 | 370 | −34, −4, 56 | |
R | 261 | 28, 0, 54 | |||
前辅助运动区(pSMA) | L | 32/24 | 132 | −8, 4, 56 | |
腹侧额叶皮层(VFC) | R | 9 | 51 | 46, 6, 24 | |
成年人组 | 顶内沟(IPS) | L | 40 | 262 | −32, −48, 44 |
R | 443 | 30, −46, 42 | |||
额眼区域(FEF) | L | 6 | 376 | −28, −2, 56 | |
R | 384 | 30, −2, 52 | |||
腹侧额叶皮层(VFC) | R | 9 | 97 | 48, 6, 32 |
表S2 额顶系统在各情感与认知条件下激活的重叠脑区
组别 | 脑区 | 左/右脑 | 布罗德曼分区 | 团块大小 | 坐标(x, y, z) |
---|---|---|---|---|---|
儿童低年龄组 | 顶内沟(IPS) | L | 40 | 48 | −30, −48, 42 |
R | 134 | 34, −46, 40 | |||
额眼区域(FEF) | L | 6 | 116 | −28, −4, 48 | |
R | 77 | 26, −2, 52 | |||
儿童高年龄组 | 顶内沟(IPS) | L | 40 | 155 | −34, −48, 50 |
R | 239 | 32, −46, 46 | |||
额眼区域(FEF) | L | 6 | 370 | −34, −4, 56 | |
R | 261 | 28, 0, 54 | |||
前辅助运动区(pSMA) | L | 32/24 | 132 | −8, 4, 56 | |
腹侧额叶皮层(VFC) | R | 9 | 51 | 46, 6, 24 | |
成年人组 | 顶内沟(IPS) | L | 40 | 262 | −32, −48, 44 |
R | 443 | 30, −46, 42 | |||
额眼区域(FEF) | L | 6 | 376 | −28, −2, 56 | |
R | 384 | 30, −2, 52 | |||
腹侧额叶皮层(VFC) | R | 9 | 97 | 48, 6, 32 |
[1] |
Adolphs, R. (2002). Neural systems for recognizing emotion. Current Opinion in Neurobiology, 12(2), 169-177.
doi: 10.1016/s0959-4388(02)00301-x pmid: 12015233 |
[2] |
Atkinson, J. (1984). Human visual development over the first 6 months of life. A review and a hypothesis. Human Neurobiology, 3(2), 61-74.
pmid: 6378843 |
[3] |
Barbey, A. K., Koenigs, M., & Grafman, J. (2013). Dorsolateral prefrontal contributions to human working memory. Cortex, 49(5), 1195-1205.
doi: 10.1016/j.cortex.2012.05.022 pmid: 22789779 |
[4] |
Baum, G. L., Ciric, R., Roalf, D. R., Betzel, R. F., Moore, T. M., Shinohara, R. T.,... Satterthwaite, T. D. (2017). Modular segregation of structural brain networks supports the development of executive function in youth. Current Biology, 27(11), 1561-1572.
doi: S0960-9822(17)30496-7 pmid: 28552358 |
[5] | Baum, G. L., Cui, Z., Roalf, D. R., Ciric, R., Betzel, R. F., Larsen, B.,... Satterthwaite, T. D. (2020). Development of structure-function coupling in human brain networks during youth. Proceedings of the National Academy of Sciences, 117(1), 771-778. |
[6] |
Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage, 37(1), 90-101.
doi: 10.1016/j.neuroimage.2007.04.042 pmid: 17560126 |
[7] |
Camilleri, J. A., Müller, V. I., Fox, P., Laird, A. R., Hoffstaedter, F., Kalenscher, T., & Eickhoff, S. B. (2018). Definition and characterization of an extended multiple- demand network. Neuroimage, 165, 138-147.
doi: S1053-8119(17)30840-6 pmid: 29030105 |
[8] |
Cole, M. W., Etzel, J. A., Zacks, J. M., Schneider, W., & Braver, T. S. (2011). Rapid transfer of abstract rules to novel contexts in human lateral prefrontal cortex. Frontiers in Human Neuroscience, 5, 142.
doi: 10.3389/fnhum.2011.00142 pmid: 22125519 |
[9] | Cole, M. W., Laurent, P., & Stocco, A. (2013). Rapid instructed task learning: A new window into the human brain’s unique capacity for flexible cognitive control. Cognitive, Affective, &behavioral Neuroscience, 13(1), 1-22. |
[10] |
Cole, M. W., Reynolds, J. R., Power, J. D., Repovs, G., Anticevic, A., & Braver, T. S. (2013). Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neuroscience, 16(9), 1348-1355.
doi: 10.1038/nn.3470 pmid: 23892552 |
[11] |
Cole, M. W., & Schneider, W. (2007). The cognitive control network: Integrated cortical regions with dissociable functions. Neuroimage, 37(1), 343-360.
doi: 10.1016/j.neuroimage.2007.03.071 pmid: 17553704 |
[12] |
Cox, R. W., & Hyde, J. S. (1997). Software tools for analysis and visualization of fMRI data. NMR in Biomedicine, 10(4-5), 171-178.
pmid: 9430344 |
[13] |
Diamond, A., & Goldman-Rakic, P. S. (1989). Comparison of human infants and rhesus monkeys on Piaget’s AB task: Evidence for dependence on dorsolateral prefrontal cortex. Experimental Brain Research, 74(1), 24-40.
doi: 10.1007/BF00248277 pmid: 2924839 |
[14] |
Dosenbach, N. U., Visscher, K. M., Palmer, E. D., Miezin, F. M., Wenger, K. K., Kang, H. C.,... Petersen, S. E. (2006). A core system for the implementation of task sets. Neuron, 50(5), 799-812.
doi: 10.1016/j.neuron.2006.04.031 pmid: 16731517 |
[15] |
Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: Mental programs for intelligent behaviour. Trends in Cognitive Sciences, 14(4), 172-179.
doi: 10.1016/j.tics.2010.01.004 pmid: 20171926 |
[16] |
Duncan, J. (2013). The structure of cognition: Attentional episodes in mind and brain. Neuron, 80(1), 35-50.
doi: 10.1016/j.neuron.2013.09.015 pmid: 24094101 |
[17] |
Duncan, J., & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 23(10), 475-483.
doi: 10.1016/s0166-2236(00)01633-7 pmid: 11006464 |
[18] |
Esteban, O., Ciric, R., Finc, K., Blair, R. W., Markiewicz, C. J., Moodie, C. A.,... Gorgolewski, K. J. (2020). Analysis of task-based functional MRI data preprocessed with fMRIPrep. Nature Protocols, 15(7), 2186-2202.
doi: 10.1038/s41596-020-0327-3 pmid: 32514178 |
[19] |
Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A.,... Gorgolewski, K. J. (2019). fMRIPrep: A robust preprocessing pipeline for functional MRI. Nature Methods, 16(1), 111-116.
doi: 10.1038/s41592-018-0235-4 pmid: 30532080 |
[20] | Fair, D. A., Cohen, A. L., Power, J. D., Dosenbach, N. U., Church, J. A., Miezin, F. M., Schlaggar, B. L., & Petersen, S. E. (2009). Functional brain networks develop from a “local to distributed” organization. PLoS Computational Biology, 5(5), e1000381. |
[21] | Fedorenko, E., Duncan, J., & Kanwisher, N. (2013). Broad domain generality in focal regions of frontal and parietal cortex. Proceedings of the National Academy of Sciences, 110(41), 16616-16621. |
[22] | Filipek, P. A. (1999). Neuroimaging in the developmental disorders: The state of the science. The Journal of Child Psychology and Psychiatry and Allied Disciplines, 40(1), 113-128. |
[23] |
Friston, K. J., & Price, C. J. (2001). Dynamic representations and generative models of brain function. Brain Research Bulletin, 54(3), 275-285.
pmid: 11287132 |
[24] | Gazzaniga, M. S. (2004). The cognitive neurosciences. MIT Press. |
[25] |
Gee, D. G., Humphreys, K. L., Flannery, J., Goff, B., Telzer, E. H., Shapiro, M.,... Tottenham, N. (2013). A developmental shift from positive to negative connectivity in human amygdala-prefrontal circuitry. Journal of Neuroscience, 33(10), 4584-4593.
doi: 10.1523/JNEUROSCI.3446-12.2013 pmid: 23467374 |
[26] |
Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L.,... Polimeni, J. R. (2013). The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage, 80, 105-124.
doi: 10.1016/j.neuroimage.2013.04.127 pmid: 23668970 |
[27] |
Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O., Waskom, M. L., & Ghosh, S. S. (2011). Nipype: A flexible, lightweight and extensible neuroimaging data processing framework in python. Frontiers in Neuroinformatics, 5, 13.
doi: 10.3389/fninf.2011.00013 pmid: 21897815 |
[28] |
Greve, D. N., & Fischl, B. (2009). Accurate and robust brain image alignment using boundary-based registration. Neuroimage, 48(1), 63-72.
doi: 10.1016/j.neuroimage.2009.06.060 pmid: 19573611 |
[29] | Hao, L., Li, L., Chen, M., Xu, J., Jiang, M., Wang, Y.,... Qin, S. (2021). Mapping domain-and age-specific functional brain activity for children’s cognitive and affective development. Neuroscience Bulletin, 37(6), 763-776. |
[30] | Hao, L., Peng, S., Zhou, Y., Chen, X., Qiu, J., Luo, W.,... Qin, S. Z. (2024). Neural specialization with generalizable representations underlies children’s cognitive development of attention. American Psychologist, doi: 10.1037/amp0001283. |
[31] | Hugdahl, K., Raichle, M. E., Mitra, A., & Specht, K. (2015). On the existence of a generalized non-specific task- dependent network. Frontiers in Human Neuroscience, 9, 430. |
[32] |
Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17(2), 825-841.
doi: 10.1016/s1053-8119(02)91132-8 pmid: 12377157 |
[33] |
Jenkinson, M., & Smith, S. (2001). A global optimisation method for robust affine registration of brain images. Medical Image Analysis, 5(2), 143-156.
doi: 10.1016/s1361-8415(01)00036-6 pmid: 11516708 |
[34] |
Johnson, M. H. (1990). Cortical maturation and the development of visual attention in early infancy. Journal of Cognitive Neuroscience, 2(2), 81-95.
doi: 10.1162/jocn.1990.2.2.81 pmid: 23972019 |
[35] |
Johnson, M. H. (2000). Functional brain development in infants: Elements of an interactive specialization framework. Child Development, 71(1), 75-81.
doi: 10.1111/1467-8624.00120 pmid: 10836560 |
[36] |
Johnson, M. H. (2001). Functional brain development in humans. Nature Reviews Neuroscience, 2(7), 475-483.
doi: 10.1038/35081509 pmid: 11433372 |
[37] |
Johnson, M. H. (2011). Interactive specialization: A domain- general framework for human functional brain development? Developmental Cognitive Neuroscience, 1(1), 7-21.
doi: 10.1016/j.dcn.2010.07.003 pmid: 22436416 |
[38] | Kanwisher, N. (2010). Functional specificity in the human brain: A window into the functional architecture of the mind. Proceedings of the National Academy of Sciences, 107(25), 11163-11170. |
[39] |
Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17(11), 4302-4311.
pmid: 9151747 |
[40] |
Kragel, P. A., Kano, M., Van Oudenhove, L., Ly, H. G., Dupont, P., Rubio, A.,... Wager, T. D. (2018). Generalizable representations of pain, cognitive control, and negative emotion in medial frontal cortex. Nature Neuroscience, 21(2), 283-289.
doi: 10.1038/s41593-017-0051-7 pmid: 29292378 |
[41] | Lanczos, C. (1964). Evaluation of noisy data. Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis, 1(1), 76-85. |
[42] | Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167-202. |
[43] | Missana, M., & Grossmann, T. (2015). Infants’ emerging sensitivity to emotional body expressions: Insights from asymmetrical frontal brain activity. Developmental Psychology, 51(2), 151-160. |
[44] | Morton, J., & Frith, U. (1995). Causal modeling:A structural approach to developmental psychopathology. In D. Cicchetti & D. J. Cohen (Eds.), Developmental psychopathology, Vol. 1. Theory and methods (pp. 357-390). John Wiley & Sons. |
[45] |
Paus, T. (2005). Mapping brain maturation and cognitive development during adolescence. Trends in Cognitive Sciences, 9(2), 60-68.
doi: 10.1016/j.tics.2004.12.008 pmid: 15668098 |
[46] | Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35(1), 73-89. https://doi.org/10.1146/annurev-neuro-062111-150525 |
[47] |
Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2014). Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage, 84, 320-341.
doi: 10.1016/j.neuroimage.2013.08.048 pmid: 23994314 |
[48] |
Pruim, R. H., Mennes, M., van Rooij, D., Llera, A., Buitelaar, J. K., & Beckmann, C. F. (2015). ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. Neuroimage, 112, 267-277.
doi: S1053-8119(15)00182-2 pmid: 25770991 |
[49] | Qin, S., Cho, S., Chen, T., Rosenberg-Lee, M., Geary, D. C., & Menon, V. (2014). Hippocampal-neocortical functional reorganization underlies children’s cognitive development. Nature Neuroscience, 17(9), 1263-1269. |
[50] | Qin, S., Young, C. B., Supekar, K., Uddin, L. Q., & Menon, V. (2012). Immature integration and segregation of emotion- related brain circuitry in young children. Proceedings of the National Academy of Sciences, 109(20), 7941-7946. |
[51] | Reverberi, C., Görgen, K., & Haynes, J. -D. (2012). Compositionality of rule representations in human prefrontal cortex. Cerebral Cortex, 22(6), 1237-1246. |
[52] | Richards, J. E. (2001). Cortical indexes of saccade planning in infants. Infancy, 2(2), 123-133. |
[53] |
Rumsey, J. M., & Ernst, M. (2000). Functional neuroimaging of autistic disorders. Mental Retardation and Developmental Disabilities Research Reviews, 6(3), 171-179.
pmid: 10982494 |
[54] |
Sakai, K. (2008). Task set and prefrontal cortex. Annual Review of Neuroscience, 31, 219-245.
doi: 10.1146/annurev.neuro.31.060407.125642 pmid: 18558854 |
[55] |
Schiller, P. H. (1996). On the specificity of neurons and visual areas. Behavioural Brain Research, 76(1-2), 21-35.
pmid: 8734041 |
[56] | Stuss, D. T., & Knight, R. T. (2013). Principles of frontal lobe function. Oxford University Press, USA. |
[57] | Sugiura, M., Katayori, Y., Muratsubaki, T., Shiratori, M., Hanawa, S., Nejad, K. K.,... Fukudo, S. (2023). Automatic adaptive emotion regulation is associated with lower emotion-related activation in the frontoparietal cortex and other cortical regions with multi-componential organization. Frontiers in Behavioral Neuroscience, 17, 1059158. |
[58] |
Toga, A. W., Thompson, P. M., & Sowell, E. R. (2006). Mapping brain maturation. Trends in Neurosciences, 29(3), 148-159.
doi: 10.1016/j.tins.2006.01.007 pmid: 16472876 |
[59] |
Tschentscher, N., Mitchell, D., & Duncan, J. (2017). Fluid intelligence predicts novel rule implementation in a distributed frontoparietal control network. Journal of Neuroscience, 37(18), 4841-4847.
doi: 10.1523/JNEUROSCI.2478-16.2017 pmid: 28408412 |
[60] |
Uddin, L. Q., Nomi, J. S., Hébert-Seropian, B., Ghaziri, J., & Boucher, O. (2017). Structure and function of the human insula. Journal of Clinical Neurophysiology, 34(4), 300-306.
doi: 10.1097/WNP.0000000000000377 pmid: 28644199 |
[61] | Wallis, J. D., Anderson, K. C., & Miller, E. K. (2001). Single neurons in prefrontal cortex encode abstract rules. Nature, 411(6840), 953-956. |
[62] |
Yang, G. R., Joglekar, M. R., Song, H. F., Newsome, W. T., & Wang, X. -J. (2019). Task representations in neural networks trained to perform many cognitive tasks. Nature Neuroscience, 22(2), 297-306.
doi: 10.1038/s41593-018-0310-2 pmid: 30643294 |
[63] |
Zhang, Y., Padmanabhan, A., Gross, J. J., & Menon, V. (2019). Development of human emotion circuits investigated using a big-data analytic approach: Stability, reliability, and robustness. Journal of Neuroscience, 39(36), 7155-7172.
doi: 10.1523/JNEUROSCI.0220-19.2019 pmid: 31332001 |
[1] | 刘涛,杨亦鸣,张辉,张珊珊,梁丹丹, 顾介鑫,胡伟. 语法语境下汉语名动分离的ERP研究[J]. 心理学报, 2008, 40(06): 671-680. |
[2] | 金花,刘鹤龄,杨娅玲,莫雷. 语义知识神经表征的fMRI研究:通道特异性或类别特异性?[J]. 心理学报, 2005, 37(02): 159-166. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||