心理学报 ›› 2022, Vol. 54 ›› Issue (1): 91-107.doi: 10.3724/SP.J.1041.2022.00091
收稿日期:
2021-08-09
发布日期:
2021-11-26
出版日期:
2022-01-25
通讯作者:
温忠麟
E-mail:wenzl@scnu.edu.cn
基金资助:
WEN Zhonglin(), OUYANG Jinying, FANG Junyan
Received:
2021-08-09
Online:
2021-11-26
Published:
2022-01-25
Contact:
WEN Zhonglin
E-mail:wenzl@scnu.edu.cn
摘要:
标准化估计对模型的解释和效应大小的比较有重要作用。虽然潜变量交互效应的恰当标准化估计公式已经面世超过10年, 国内外都在使用和引用, 但至今未见到关于不同估计方法得到的恰当标准化估计的系统比较。通过模拟实验, 比较了乘积指标法、潜调节结构方程(LMS)、无先验信息和有先验信息的贝叶斯法的潜变量交互效应标准化估计在不同条件下的表现。结果发现, 在正态条件下, LMS和有信息贝叶斯法表现较好; 而在非正态条件下, 乘积指标法比较稳健, 但需要较大的样本(不小于500), 小样本且外生潜变量之间相关很低时可使用无信息贝叶斯法。
中图分类号:
温忠麟, 欧阳劲樱, 方俊燕. (2022). 潜变量交互效应标准化估计:方法比较与选用策略. 心理学报, 54(1), 91-107.
WEN Zhonglin, OUYANG Jinying, FANG Junyan. (2022). Standardized estimates for latent interaction effects: Method comparison and selection strategy. Acta Psychologica Sinica, 54(1), 91-107.
N | 方法 | 适当解% | M | SD | SE | SE偏差% | 第Ⅰ类错误率 |
---|---|---|---|---|---|---|---|
ϕ12 = 0, ξ1 (0.001, -0.004), ξ2 (-0.008, -0.007), ξ1ξ2 (-0.024, 6.163) | |||||||
100 | PI | 72.8 | -0.009 | 0.239 | 0.180 | -24.5 | 0.069 |
LMS | 100.0 | -0.003 | 0.148 | 0.147 | -0.8 | 0.082 | |
BN | 100.0 | -0.005 | 0.146 | 0.147 | 0.6 | 0.060 | |
BI | 100.0 | -0.003 | 0.047 | 0.083 | 75.8 | 0.000 | |
200 | PI | 92.2 | 0.001 | 0.137 | 0.116 | -15.3 | 0.043 |
LMS | 100.0 | 0.005 | 0.105 | 0.100 | -4.8 | 0.080 | |
BN | 100.0 | 0.019 | 0.107 | 0.098 | -8.5 | 0.088 | |
BI | 100.0 | 0.011 | 0.053 | 0.068 | 28.3 | 0.010 | |
500 | PI | 100.0 | 0.000 | 0.077 | 0.072 | -6.6 | 0.052 |
LMS | 100.0 | 0.002 | 0.064 | 0.063 | -1.6 | 0.060 | |
BN | 100.0 | 0.001 | 0.065 | 0.063 | -3.1 | 0.058 | |
BI | 100.0 | 0.002 | 0.046 | 0.053 | 14.1 | 0.030 | |
ϕ12 = 0.3, ξ1 (-0.001, 0.000), ξ2 (-0.001, 0.001), ξ1ξ2 (1.619, 7.628) | |||||||
100 | PI | 77.4 | 0.006 | 0.207 | 0.163 | -21.4 | 0.059 |
LMS | 100.0 | 0.006 | 0.136 | 0.129 | -4.8 | 0.082 | |
BN | 100.0 | 0.008 | 0.133 | 0.135 | 1.1 | 0.044 | |
BI | 100.0 | 0.003 | 0.049 | 0.081 | 65.3 | 0.000 | |
200 | PI | 92.4 | 0.009 | 0.121 | 0.105 | -13.1 | 0.045 |
LMS | 100.0 | 0.003 | 0.092 | 0.089 | -3.4 | 0.070 | |
BN | 100.0 | 0.016 | 0.093 | 0.088 | -5.7 | 0.068 | |
BI | 100.0 | 0.010 | 0.051 | 0.064 | 24.8 | 0.008 | |
500 | PI | 99.6 | 0.004 | 0.064 | 0.063 | -0.4 | 0.034 |
LMS | 100.0 | 0.001 | 0.054 | 0.055 | 1.2 | 0.048 | |
BN | 100.0 | 0.001 | 0.056 | 0.055 | -1.5 | 0.054 | |
BI | 100.0 | 0.001 | 0.042 | 0.048 | 14.4 | 0.020 | |
ϕ12 = 0.7, ξ1 (-0.005, 0.002), ξ2 (-0.005, -0.002), ξ1ξ2 (2.673, 11.073) | |||||||
100 | PI | 84.2 | 0.009 | 0.153 | 0.120 | -21.9 | 0.076 |
LMS | 99.8 | 0.008 | 0.099 | 0.094 | -4.5 | 0.078 | |
BN | 96.2 | 0.011 | 0.100 | 0.103 | 3.5 | 0.037 | |
BI | 100.0 | 0.006 | 0.048 | 0.072 | 49.1 | 0.006 | |
200 | PI | 97.2 | 0.008 | 0.089 | 0.079 | -10.6 | 0.045 |
LMS | 100.0 | 0.003 | 0.065 | 0.065 | 0.2 | 0.054 | |
BN | 100.0 | 0.013 | 0.067 | 0.065 | -2.1 | 0.062 | |
BI | 100.0 | 0.012 | 0.045 | 0.054 | 20.5 | 0.034 | |
500 | PI | 100.0 | 0.004 | 0.049 | 0.048 | -2.3 | 0.046 |
LMS | 100.0 | 0.002 | 0.040 | 0.041 | 0.9 | 0.048 | |
BN | 100.0 | 0.001 | 0.041 | 0.040 | -2.3 | 0.050 | |
BI | 100.0 | 0.000 | 0.035 | 0.037 | 7.0 | 0.032 |
表1 正态分布下潜变量交互效应的标准化估计结果(γ3 = 0)
N | 方法 | 适当解% | M | SD | SE | SE偏差% | 第Ⅰ类错误率 |
---|---|---|---|---|---|---|---|
ϕ12 = 0, ξ1 (0.001, -0.004), ξ2 (-0.008, -0.007), ξ1ξ2 (-0.024, 6.163) | |||||||
100 | PI | 72.8 | -0.009 | 0.239 | 0.180 | -24.5 | 0.069 |
LMS | 100.0 | -0.003 | 0.148 | 0.147 | -0.8 | 0.082 | |
BN | 100.0 | -0.005 | 0.146 | 0.147 | 0.6 | 0.060 | |
BI | 100.0 | -0.003 | 0.047 | 0.083 | 75.8 | 0.000 | |
200 | PI | 92.2 | 0.001 | 0.137 | 0.116 | -15.3 | 0.043 |
LMS | 100.0 | 0.005 | 0.105 | 0.100 | -4.8 | 0.080 | |
BN | 100.0 | 0.019 | 0.107 | 0.098 | -8.5 | 0.088 | |
BI | 100.0 | 0.011 | 0.053 | 0.068 | 28.3 | 0.010 | |
500 | PI | 100.0 | 0.000 | 0.077 | 0.072 | -6.6 | 0.052 |
LMS | 100.0 | 0.002 | 0.064 | 0.063 | -1.6 | 0.060 | |
BN | 100.0 | 0.001 | 0.065 | 0.063 | -3.1 | 0.058 | |
BI | 100.0 | 0.002 | 0.046 | 0.053 | 14.1 | 0.030 | |
ϕ12 = 0.3, ξ1 (-0.001, 0.000), ξ2 (-0.001, 0.001), ξ1ξ2 (1.619, 7.628) | |||||||
100 | PI | 77.4 | 0.006 | 0.207 | 0.163 | -21.4 | 0.059 |
LMS | 100.0 | 0.006 | 0.136 | 0.129 | -4.8 | 0.082 | |
BN | 100.0 | 0.008 | 0.133 | 0.135 | 1.1 | 0.044 | |
BI | 100.0 | 0.003 | 0.049 | 0.081 | 65.3 | 0.000 | |
200 | PI | 92.4 | 0.009 | 0.121 | 0.105 | -13.1 | 0.045 |
LMS | 100.0 | 0.003 | 0.092 | 0.089 | -3.4 | 0.070 | |
BN | 100.0 | 0.016 | 0.093 | 0.088 | -5.7 | 0.068 | |
BI | 100.0 | 0.010 | 0.051 | 0.064 | 24.8 | 0.008 | |
500 | PI | 99.6 | 0.004 | 0.064 | 0.063 | -0.4 | 0.034 |
LMS | 100.0 | 0.001 | 0.054 | 0.055 | 1.2 | 0.048 | |
BN | 100.0 | 0.001 | 0.056 | 0.055 | -1.5 | 0.054 | |
BI | 100.0 | 0.001 | 0.042 | 0.048 | 14.4 | 0.020 | |
ϕ12 = 0.7, ξ1 (-0.005, 0.002), ξ2 (-0.005, -0.002), ξ1ξ2 (2.673, 11.073) | |||||||
100 | PI | 84.2 | 0.009 | 0.153 | 0.120 | -21.9 | 0.076 |
LMS | 99.8 | 0.008 | 0.099 | 0.094 | -4.5 | 0.078 | |
BN | 96.2 | 0.011 | 0.100 | 0.103 | 3.5 | 0.037 | |
BI | 100.0 | 0.006 | 0.048 | 0.072 | 49.1 | 0.006 | |
200 | PI | 97.2 | 0.008 | 0.089 | 0.079 | -10.6 | 0.045 |
LMS | 100.0 | 0.003 | 0.065 | 0.065 | 0.2 | 0.054 | |
BN | 100.0 | 0.013 | 0.067 | 0.065 | -2.1 | 0.062 | |
BI | 100.0 | 0.012 | 0.045 | 0.054 | 20.5 | 0.034 | |
500 | PI | 100.0 | 0.004 | 0.049 | 0.048 | -2.3 | 0.046 |
LMS | 100.0 | 0.002 | 0.040 | 0.041 | 0.9 | 0.048 | |
BN | 100.0 | 0.001 | 0.041 | 0.040 | -2.3 | 0.050 | |
BI | 100.0 | 0.000 | 0.035 | 0.037 | 7.0 | 0.032 |
N | 方法 | 适当解% | M | SD | SE | SE偏差% | 第Ⅰ类错误率 |
---|---|---|---|---|---|---|---|
ϕ12 = 0, ξ1 (1.141, 1.962), ξ2 (1.152, 2.002), ξ1ξ2 (1.278, 20.126) | |||||||
100 | PI | 64.6 | 0.031 | 0.239 | 0.198 | -17.0 | 0.043 |
LMS | 99.4 | 0.015 | 0.155 | 0.158 | 2.1 | 0.078 | |
BN | 100.0 | 0.020 | 0.153 | 0.153 | -0.3 | 0.064 | |
BI | 100.0 | 0.005 | 0.047 | 0.083 | 77.1 | 0.004 | |
200 | PI | 83.2 | 0.009 | 0.157 | 0.130 | -17.2 | 0.060 |
LMS | 100.0 | 0.013 | 0.112 | 0.108 | -3.9 | 0.078 | |
BN | 100.0 | 0.030 | 0.114 | 0.102 | -10.1 | 0.096 | |
BI | 100.0 | 0.017 | 0.054 | 0.068 | 26.5 | 0.034 | |
500 | PI | 97.8 | 0.001 | 0.087 | 0.077 | -11.5 | 0.059 |
LMS | 100.0 | 0.016 | 0.067 | 0.067 | -0.9 | 0.092 | |
BN | 100.0 | 0.017 | 0.069 | 0.064 | -7.3 | 0.088 | |
BI | 100.0 | 0.013 | 0.047 | 0.053 | 12.9 | 0.034 | |
ϕ12 = 0.3, ξ1 (0.855, 1.121), ξ2 (0.858, 1.161), ξ1ξ2 (3.200, 32.430) | |||||||
100 | PI | 75.8 | 0.008 | 0.194 | 0.155 | -20.0 | 0.069 |
LMS | 100.0 | 0.049 | 0.135 | 0.132 | -2.1 | 0.088 | |
BN | 100.0 | 0.058 | 0.135 | 0.137 | 1.6 | 0.060 | |
BI | 100.0 | 0.021 | 0.049 | 0.081 | 64.7 | 0.010 | |
200 | PI | 91.6 | 0.005 | 0.113 | 0.104 | -8.2 | 0.057 |
LMS | 100.0 | 0.044 | 0.090 | 0.090 | -0.2 | 0.068 | |
BN | 100.0 | 0.061 | 0.092 | 0.088 | -4.3 | 0.122 | |
BI | 100.0 | 0.035 | 0.051 | 0.063 | 25.4 | 0.046 | |
500 | PI | 100.0 | -0.002 | 0.069 | 0.064 | -7.8 | 0.056 |
LMS | 100.0 | 0.044 | 0.056 | 0.055 | -1.3 | 0.122 | |
BN | 100.0 | 0.046 | 0.057 | 0.055 | -4.5 | 0.136 | |
BI | 100.0 | 0.034 | 0.043 | 0.047 | 11.4 | 0.088 | |
ϕ12 = 0.7, ξ1 (0.850, 1.075), ξ2 (0.856, 1.110), ξ1ξ2 (6.275, 86.323) | |||||||
100 | PI | 95.0 | 0.002 | 0.137 | 0.118 | -14.0 | 0.072 |
LMS | 100.0 | 0.064 | 0.100 | 0.098 | -2.4 | 0.106 | |
BN | 97.2 | 0.074 | 0.101 | 0.107 | 5.8 | 0.080 | |
BI | 100.0 | 0.035 | 0.048 | 0.071 | 48.2 | 0.032 | |
200 | PI | 100.0 | 0.000 | 0.081 | 0.074 | -8.8 | 0.058 |
LMS | 100.0 | 0.059 | 0.067 | 0.064 | -3.8 | 0.136 | |
BN | 99.6 | 0.076 | 0.069 | 0.067 | -3.4 | 0.177 | |
BI | 100.0 | 0.053 | 0.045 | 0.053 | 17.0 | 0.118 | |
500 | PI | 100.0 | -0.001 | 0.046 | 0.043 | -6.4 | 0.066 |
LMS | 100.0 | 0.056 | 0.041 | 0.040 | -2.5 | 0.272 | |
BN | 100.0 | 0.057 | 0.042 | 0.040 | -5.8 | 0.292 | |
BI | 100.0 | 0.048 | 0.035 | 0.036 | 2.7 | 0.248 |
表2 非正态分布下潜变量交互效应的标准化估计结果(γ3 = 0)
N | 方法 | 适当解% | M | SD | SE | SE偏差% | 第Ⅰ类错误率 |
---|---|---|---|---|---|---|---|
ϕ12 = 0, ξ1 (1.141, 1.962), ξ2 (1.152, 2.002), ξ1ξ2 (1.278, 20.126) | |||||||
100 | PI | 64.6 | 0.031 | 0.239 | 0.198 | -17.0 | 0.043 |
LMS | 99.4 | 0.015 | 0.155 | 0.158 | 2.1 | 0.078 | |
BN | 100.0 | 0.020 | 0.153 | 0.153 | -0.3 | 0.064 | |
BI | 100.0 | 0.005 | 0.047 | 0.083 | 77.1 | 0.004 | |
200 | PI | 83.2 | 0.009 | 0.157 | 0.130 | -17.2 | 0.060 |
LMS | 100.0 | 0.013 | 0.112 | 0.108 | -3.9 | 0.078 | |
BN | 100.0 | 0.030 | 0.114 | 0.102 | -10.1 | 0.096 | |
BI | 100.0 | 0.017 | 0.054 | 0.068 | 26.5 | 0.034 | |
500 | PI | 97.8 | 0.001 | 0.087 | 0.077 | -11.5 | 0.059 |
LMS | 100.0 | 0.016 | 0.067 | 0.067 | -0.9 | 0.092 | |
BN | 100.0 | 0.017 | 0.069 | 0.064 | -7.3 | 0.088 | |
BI | 100.0 | 0.013 | 0.047 | 0.053 | 12.9 | 0.034 | |
ϕ12 = 0.3, ξ1 (0.855, 1.121), ξ2 (0.858, 1.161), ξ1ξ2 (3.200, 32.430) | |||||||
100 | PI | 75.8 | 0.008 | 0.194 | 0.155 | -20.0 | 0.069 |
LMS | 100.0 | 0.049 | 0.135 | 0.132 | -2.1 | 0.088 | |
BN | 100.0 | 0.058 | 0.135 | 0.137 | 1.6 | 0.060 | |
BI | 100.0 | 0.021 | 0.049 | 0.081 | 64.7 | 0.010 | |
200 | PI | 91.6 | 0.005 | 0.113 | 0.104 | -8.2 | 0.057 |
LMS | 100.0 | 0.044 | 0.090 | 0.090 | -0.2 | 0.068 | |
BN | 100.0 | 0.061 | 0.092 | 0.088 | -4.3 | 0.122 | |
BI | 100.0 | 0.035 | 0.051 | 0.063 | 25.4 | 0.046 | |
500 | PI | 100.0 | -0.002 | 0.069 | 0.064 | -7.8 | 0.056 |
LMS | 100.0 | 0.044 | 0.056 | 0.055 | -1.3 | 0.122 | |
BN | 100.0 | 0.046 | 0.057 | 0.055 | -4.5 | 0.136 | |
BI | 100.0 | 0.034 | 0.043 | 0.047 | 11.4 | 0.088 | |
ϕ12 = 0.7, ξ1 (0.850, 1.075), ξ2 (0.856, 1.110), ξ1ξ2 (6.275, 86.323) | |||||||
100 | PI | 95.0 | 0.002 | 0.137 | 0.118 | -14.0 | 0.072 |
LMS | 100.0 | 0.064 | 0.100 | 0.098 | -2.4 | 0.106 | |
BN | 97.2 | 0.074 | 0.101 | 0.107 | 5.8 | 0.080 | |
BI | 100.0 | 0.035 | 0.048 | 0.071 | 48.2 | 0.032 | |
200 | PI | 100.0 | 0.000 | 0.081 | 0.074 | -8.8 | 0.058 |
LMS | 100.0 | 0.059 | 0.067 | 0.064 | -3.8 | 0.136 | |
BN | 99.6 | 0.076 | 0.069 | 0.067 | -3.4 | 0.177 | |
BI | 100.0 | 0.053 | 0.045 | 0.053 | 17.0 | 0.118 | |
500 | PI | 100.0 | -0.001 | 0.046 | 0.043 | -6.4 | 0.066 |
LMS | 100.0 | 0.056 | 0.041 | 0.040 | -2.5 | 0.272 | |
BN | 100.0 | 0.057 | 0.042 | 0.040 | -5.8 | 0.292 | |
BI | 100.0 | 0.048 | 0.035 | 0.036 | 2.7 | 0.248 |
N | 方法 | 适当解% | M | M偏差% | SD | SE | SE偏差% | 检验力 |
---|---|---|---|---|---|---|---|---|
ϕ12 = 0, ξ1 (0.001, -0.004), ξ2 (-0.008, -0.007), ξ1ξ2 (-0.024, 6.163) | ||||||||
100 | PI | 73.8 | 0.217 | 8.3 | 0.216 | 0.183 | -15.6 | 0.236 |
LMS | 100.0 | 0.189 | -5.7 | 0.148 | 0.144 | -2.6 | 0.300 | |
BN | 100.0 | 0.183 | -8.3 | 0.146 | 0.145 | -0.2 | 0.268 | |
BI | 100.0 | 0.195 | -2.6 | 0.051 | 0.084 | 65.0 | 0.766 | |
200 | PI | 95.2 | 0.213 | 6.7 | 0.141 | 0.129 | -8.8 | 0.416 |
LMS | 100.0 | 0.199 | -0.5 | 0.104 | 0.098 | -6.3 | 0.566 | |
BN | 100.0 | 0.215 | 7.3 | 0.106 | 0.095 | -10.4 | 0.638 | |
BI | 100.0 | 0.208 | 4.1 | 0.054 | 0.067 | 24.1 | 0.924 | |
500 | PI | 100.0 | 0.204 | 2.1 | 0.081 | 0.079 | -2.4 | 0.774 |
LMS | 100.0 | 0.201 | 0.3 | 0.061 | 0.061 | 0.0 | 0.878 | |
BN | 100.0 | 0.202 | 1.2 | 0.062 | 0.061 | -1.7 | 0.888 | |
BI | 100.0 | 0.201 | 0.7 | 0.045 | 0.051 | 13.2 | 0.986 | |
ϕ12 = 0.3, ξ1 (-0.001, 0.000), ξ2 (-0.001, 0.001), ξ1ξ2 (1.619, 7.628) | ||||||||
100 | PI | 81.2 | 0.230 | 15.2 | 0.210 | 0.176 | -15.9 | 0.273 |
LMS | 100.0 | 0.198 | -1.1 | 0.133 | 0.124 | -7.0 | 0.420 | |
BN | 100.0 | 0.200 | -0.2 | 0.130 | 0.131 | 1.1 | 0.374 | |
BI | 100.0 | 0.200 | -0.2 | 0.051 | 0.081 | 58.5 | 0.778 | |
200 | PI | 95.8 | 0.226 | 12.9 | 0.142 | 0.120 | -15.3 | 0.476 |
LMS | 100.0 | 0.201 | 0.7 | 0.089 | 0.086 | -3.4 | 0.626 | |
BN | 100.0 | 0.215 | 7.6 | 0.089 | 0.085 | -4.7 | 0.674 | |
BI | 100.0 | 0.209 | 4.6 | 0.051 | 0.063 | 21.9 | 0.962 | |
500 | PI | 99.6 | 0.207 | 3.7 | 0.072 | 0.071 | -1.4 | 0.871 |
LMS | 100.0 | 0.201 | 0.7 | 0.054 | 0.054 | 0.1 | 0.954 | |
BN | 100.0 | 0.204 | 2.1 | 0.055 | 0.053 | -3.5 | 0.964 | |
BI | 100.0 | 0.202 | 1.0 | 0.042 | 0.046 | 9.3 | 0.998 | |
ϕ12 = 0.7, ξ1 (-0.005, 0.002), ξ2 (-0.005, -0.002), ξ1ξ2 (2.673, 11.073) | ||||||||
100 | PI | 89.6 | 0.232 | 15.9 | 0.165 | 0.134 | -18.7 | 0.446 |
LMS | 99.8 | 0.203 | 1.4 | 0.095 | 0.090 | -5.4 | 0.623 | |
BN | 97.0 | 0.206 | 3.2 | 0.094 | 0.099 | 5.4 | 0.555 | |
BI | 100.0 | 0.202 | 0.9 | 0.048 | 0.070 | 46.2 | 0.906 | |
200 | PI | 98.2 | 0.218 | 8.8 | 0.104 | 0.089 | -14.0 | 0.735 |
LMS | 100.0 | 0.202 | 0.9 | 0.063 | 0.063 | -0.7 | 0.878 | |
BN | 100.0 | 0.214 | 7.1 | 0.063 | 0.063 | -0.9 | 0.922 | |
BI | 100.0 | 0.212 | 5.8 | 0.045 | 0.052 | 15.8 | 0.992 | |
500 | PI | 100.0 | 0.206 | 3.0 | 0.058 | 0.054 | -5.7 | 0.982 |
LMS | 100.0 | 0.201 | 0.6 | 0.039 | 0.039 | -0.1 | 0.998 | |
BN | 100.0 | 0.203 | 1.4 | 0.040 | 0.038 | -5.7 | 1.000 | |
BI | 100.0 | 0.202 | 0.8 | 0.034 | 0.035 | 3.0 | 1.000 |
表3 正态分布下潜变量交互效应的标准化估计结果(γ3 = 0.2)
N | 方法 | 适当解% | M | M偏差% | SD | SE | SE偏差% | 检验力 |
---|---|---|---|---|---|---|---|---|
ϕ12 = 0, ξ1 (0.001, -0.004), ξ2 (-0.008, -0.007), ξ1ξ2 (-0.024, 6.163) | ||||||||
100 | PI | 73.8 | 0.217 | 8.3 | 0.216 | 0.183 | -15.6 | 0.236 |
LMS | 100.0 | 0.189 | -5.7 | 0.148 | 0.144 | -2.6 | 0.300 | |
BN | 100.0 | 0.183 | -8.3 | 0.146 | 0.145 | -0.2 | 0.268 | |
BI | 100.0 | 0.195 | -2.6 | 0.051 | 0.084 | 65.0 | 0.766 | |
200 | PI | 95.2 | 0.213 | 6.7 | 0.141 | 0.129 | -8.8 | 0.416 |
LMS | 100.0 | 0.199 | -0.5 | 0.104 | 0.098 | -6.3 | 0.566 | |
BN | 100.0 | 0.215 | 7.3 | 0.106 | 0.095 | -10.4 | 0.638 | |
BI | 100.0 | 0.208 | 4.1 | 0.054 | 0.067 | 24.1 | 0.924 | |
500 | PI | 100.0 | 0.204 | 2.1 | 0.081 | 0.079 | -2.4 | 0.774 |
LMS | 100.0 | 0.201 | 0.3 | 0.061 | 0.061 | 0.0 | 0.878 | |
BN | 100.0 | 0.202 | 1.2 | 0.062 | 0.061 | -1.7 | 0.888 | |
BI | 100.0 | 0.201 | 0.7 | 0.045 | 0.051 | 13.2 | 0.986 | |
ϕ12 = 0.3, ξ1 (-0.001, 0.000), ξ2 (-0.001, 0.001), ξ1ξ2 (1.619, 7.628) | ||||||||
100 | PI | 81.2 | 0.230 | 15.2 | 0.210 | 0.176 | -15.9 | 0.273 |
LMS | 100.0 | 0.198 | -1.1 | 0.133 | 0.124 | -7.0 | 0.420 | |
BN | 100.0 | 0.200 | -0.2 | 0.130 | 0.131 | 1.1 | 0.374 | |
BI | 100.0 | 0.200 | -0.2 | 0.051 | 0.081 | 58.5 | 0.778 | |
200 | PI | 95.8 | 0.226 | 12.9 | 0.142 | 0.120 | -15.3 | 0.476 |
LMS | 100.0 | 0.201 | 0.7 | 0.089 | 0.086 | -3.4 | 0.626 | |
BN | 100.0 | 0.215 | 7.6 | 0.089 | 0.085 | -4.7 | 0.674 | |
BI | 100.0 | 0.209 | 4.6 | 0.051 | 0.063 | 21.9 | 0.962 | |
500 | PI | 99.6 | 0.207 | 3.7 | 0.072 | 0.071 | -1.4 | 0.871 |
LMS | 100.0 | 0.201 | 0.7 | 0.054 | 0.054 | 0.1 | 0.954 | |
BN | 100.0 | 0.204 | 2.1 | 0.055 | 0.053 | -3.5 | 0.964 | |
BI | 100.0 | 0.202 | 1.0 | 0.042 | 0.046 | 9.3 | 0.998 | |
ϕ12 = 0.7, ξ1 (-0.005, 0.002), ξ2 (-0.005, -0.002), ξ1ξ2 (2.673, 11.073) | ||||||||
100 | PI | 89.6 | 0.232 | 15.9 | 0.165 | 0.134 | -18.7 | 0.446 |
LMS | 99.8 | 0.203 | 1.4 | 0.095 | 0.090 | -5.4 | 0.623 | |
BN | 97.0 | 0.206 | 3.2 | 0.094 | 0.099 | 5.4 | 0.555 | |
BI | 100.0 | 0.202 | 0.9 | 0.048 | 0.070 | 46.2 | 0.906 | |
200 | PI | 98.2 | 0.218 | 8.8 | 0.104 | 0.089 | -14.0 | 0.735 |
LMS | 100.0 | 0.202 | 0.9 | 0.063 | 0.063 | -0.7 | 0.878 | |
BN | 100.0 | 0.214 | 7.1 | 0.063 | 0.063 | -0.9 | 0.922 | |
BI | 100.0 | 0.212 | 5.8 | 0.045 | 0.052 | 15.8 | 0.992 | |
500 | PI | 100.0 | 0.206 | 3.0 | 0.058 | 0.054 | -5.7 | 0.982 |
LMS | 100.0 | 0.201 | 0.6 | 0.039 | 0.039 | -0.1 | 0.998 | |
BN | 100.0 | 0.203 | 1.4 | 0.040 | 0.038 | -5.7 | 1.000 | |
BI | 100.0 | 0.202 | 0.8 | 0.034 | 0.035 | 3.0 | 1.000 |
N | 方法 | 适当解% | M | M偏差% | SD | SE | SE偏差% | 检验力 |
---|---|---|---|---|---|---|---|---|
ϕ12 = 0, ξ1 (1.141, 1.962), ξ2 (1.152, 2.002), ξ1ξ2 (1.278, 20.126) | ||||||||
100 | PI | 67.0 | 0.232 | 15.8 | 0.223 | 0.202 | -9.7 | 0.194 |
LMS | 99.6 | 0.197 | -1.4 | 0.152 | 0.153 | 0.3 | 0.329 | |
BN | 100.0 | 0.201 | 0.7 | 0.151 | 0.148 | -2.2 | 0.314 | |
BI | 100.0 | 0.200 | 0.2 | 0.050 | 0.084 | 69.9 | 0.772 | |
200 | PI | 88.6 | 0.223 | 11.4 | 0.177 | 0.149 | -15.8 | 0.348 |
LMS | 100.0 | 0.206 | 2.9 | 0.106 | 0.102 | -4.4 | 0.556 | |
BN | 100.0 | 0.223 | 11.7 | 0.107 | 0.098 | -8.5 | 0.620 | |
BI | 100.0 | 0.214 | 6.9 | 0.055 | 0.067 | 23.1 | 0.920 | |
500 | PI | 99.0 | 0.212 | 6.0 | 0.101 | 0.091 | -10.3 | 0.725 |
LMS | 100.0 | 0.214 | 6.8 | 0.065 | 0.063 | -2.5 | 0.890 | |
BN | 100.0 | 0.217 | 8.7 | 0.066 | 0.061 | -6.9 | 0.904 | |
BI | 100.0 | 0.212 | 6.1 | 0.047 | 0.052 | 11.0 | 0.988 | |
ϕ12 = 0.3, ξ1 (0.855, 1.121), ξ2 (0.858, 1.161), ξ1ξ2 (3.200, 32.430) | ||||||||
100 | PI | 81.8 | 0.239 | 19.7 | 0.207 | 0.173 | -16.5 | 0.330 |
LMS | 99.8 | 0.252 | 25.8 | 0.131 | 0.129 | -2.0 | 0.533 | |
BN | 100.0 | 0.260 | 30.0 | 0.129 | 0.131 | 1.4 | 0.528 | |
BI | 100.0 | 0.227 | 13.4 | 0.053 | 0.082 | 54.8 | 0.878 | |
200 | PI | 95.2 | 0.223 | 11.5 | 0.132 | 0.117 | -11.2 | 0.527 |
LMS | 100.0 | 0.251 | 25.4 | 0.089 | 0.088 | -0.5 | 0.804 | |
BN | 100.0 | 0.270 | 34.9 | 0.089 | 0.085 | -5.1 | 0.862 | |
BI | 100.0 | 0.244 | 22.1 | 0.054 | 0.063 | 17.3 | 0.986 | |
500 | PI | 100.0 | 0.207 | 3.4 | 0.075 | 0.071 | -6.1 | 0.868 |
LMS | 100.0 | 0.253 | 26.7 | 0.058 | 0.055 | -5.4 | 0.990 | |
BN | 100.0 | 0.258 | 28.9 | 0.059 | 0.053 | -10.1 | 0.994 | |
BI | 100.0 | 0.245 | 22.7 | 0.046 | 0.046 | 0.6 | 1.000 | |
ϕ12 = 0.7, ξ1 (0.850, 1.075), ξ2 (0.856, 1.110), ξ1ξ2 (6.275, 86.323) | ||||||||
100 | PI | 85.0 | 0.221 | 10.3 | 0.133 | 0.114 | -13.8 | 0.576 |
LMS | 99.8 | 0.299 | 49.5 | 0.098 | 0.094 | -4.6 | 0.872 | |
BN | 98.2 | 0.302 | 51.2 | 0.094 | 0.101 | 7.9 | 0.851 | |
BI | 100.0 | 0.267 | 33.4 | 0.052 | 0.073 | 40.2 | 0.986 | |
200 | PI | 96.0 | 0.210 | 4.9 | 0.078 | 0.073 | -6.1 | 0.831 |
LMS | 100.0 | 0.297 | 48.7 | 0.065 | 0.065 | -0.2 | 0.992 | |
BN | 99.4 | 0.303 | 51.4 | 0.064 | 0.063 | -2.6 | 0.994 | |
BI | 100.0 | 0.291 | 45.7 | 0.047 | 0.051 | 8.3 | 0.998 | |
500 | PI | 100.0 | 0.204 | 1.8 | 0.047 | 0.044 | -6.1 | 0.992 |
LMS | 100.0 | 0.297 | 48.6 | 0.041 | 0.040 | -2.7 | 1.000 | |
BN | 100.0 | 0.298 | 49.2 | 0.041 | 0.039 | -5.2 | 1.000 | |
BI | 100.0 | 0.290 | 45.1 | 0.037 | 0.035 | -5.5 | 1.000 |
表4 非正态分布下潜变量交互效应的标准化估计结果(γ3 = 0.2)
N | 方法 | 适当解% | M | M偏差% | SD | SE | SE偏差% | 检验力 |
---|---|---|---|---|---|---|---|---|
ϕ12 = 0, ξ1 (1.141, 1.962), ξ2 (1.152, 2.002), ξ1ξ2 (1.278, 20.126) | ||||||||
100 | PI | 67.0 | 0.232 | 15.8 | 0.223 | 0.202 | -9.7 | 0.194 |
LMS | 99.6 | 0.197 | -1.4 | 0.152 | 0.153 | 0.3 | 0.329 | |
BN | 100.0 | 0.201 | 0.7 | 0.151 | 0.148 | -2.2 | 0.314 | |
BI | 100.0 | 0.200 | 0.2 | 0.050 | 0.084 | 69.9 | 0.772 | |
200 | PI | 88.6 | 0.223 | 11.4 | 0.177 | 0.149 | -15.8 | 0.348 |
LMS | 100.0 | 0.206 | 2.9 | 0.106 | 0.102 | -4.4 | 0.556 | |
BN | 100.0 | 0.223 | 11.7 | 0.107 | 0.098 | -8.5 | 0.620 | |
BI | 100.0 | 0.214 | 6.9 | 0.055 | 0.067 | 23.1 | 0.920 | |
500 | PI | 99.0 | 0.212 | 6.0 | 0.101 | 0.091 | -10.3 | 0.725 |
LMS | 100.0 | 0.214 | 6.8 | 0.065 | 0.063 | -2.5 | 0.890 | |
BN | 100.0 | 0.217 | 8.7 | 0.066 | 0.061 | -6.9 | 0.904 | |
BI | 100.0 | 0.212 | 6.1 | 0.047 | 0.052 | 11.0 | 0.988 | |
ϕ12 = 0.3, ξ1 (0.855, 1.121), ξ2 (0.858, 1.161), ξ1ξ2 (3.200, 32.430) | ||||||||
100 | PI | 81.8 | 0.239 | 19.7 | 0.207 | 0.173 | -16.5 | 0.330 |
LMS | 99.8 | 0.252 | 25.8 | 0.131 | 0.129 | -2.0 | 0.533 | |
BN | 100.0 | 0.260 | 30.0 | 0.129 | 0.131 | 1.4 | 0.528 | |
BI | 100.0 | 0.227 | 13.4 | 0.053 | 0.082 | 54.8 | 0.878 | |
200 | PI | 95.2 | 0.223 | 11.5 | 0.132 | 0.117 | -11.2 | 0.527 |
LMS | 100.0 | 0.251 | 25.4 | 0.089 | 0.088 | -0.5 | 0.804 | |
BN | 100.0 | 0.270 | 34.9 | 0.089 | 0.085 | -5.1 | 0.862 | |
BI | 100.0 | 0.244 | 22.1 | 0.054 | 0.063 | 17.3 | 0.986 | |
500 | PI | 100.0 | 0.207 | 3.4 | 0.075 | 0.071 | -6.1 | 0.868 |
LMS | 100.0 | 0.253 | 26.7 | 0.058 | 0.055 | -5.4 | 0.990 | |
BN | 100.0 | 0.258 | 28.9 | 0.059 | 0.053 | -10.1 | 0.994 | |
BI | 100.0 | 0.245 | 22.7 | 0.046 | 0.046 | 0.6 | 1.000 | |
ϕ12 = 0.7, ξ1 (0.850, 1.075), ξ2 (0.856, 1.110), ξ1ξ2 (6.275, 86.323) | ||||||||
100 | PI | 85.0 | 0.221 | 10.3 | 0.133 | 0.114 | -13.8 | 0.576 |
LMS | 99.8 | 0.299 | 49.5 | 0.098 | 0.094 | -4.6 | 0.872 | |
BN | 98.2 | 0.302 | 51.2 | 0.094 | 0.101 | 7.9 | 0.851 | |
BI | 100.0 | 0.267 | 33.4 | 0.052 | 0.073 | 40.2 | 0.986 | |
200 | PI | 96.0 | 0.210 | 4.9 | 0.078 | 0.073 | -6.1 | 0.831 |
LMS | 100.0 | 0.297 | 48.7 | 0.065 | 0.065 | -0.2 | 0.992 | |
BN | 99.4 | 0.303 | 51.4 | 0.064 | 0.063 | -2.6 | 0.994 | |
BI | 100.0 | 0.291 | 45.7 | 0.047 | 0.051 | 8.3 | 0.998 | |
500 | PI | 100.0 | 0.204 | 1.8 | 0.047 | 0.044 | -6.1 | 0.992 |
LMS | 100.0 | 0.297 | 48.6 | 0.041 | 0.040 | -2.7 | 1.000 | |
BN | 100.0 | 0.298 | 49.2 | 0.041 | 0.039 | -5.2 | 1.000 | |
BI | 100.0 | 0.290 | 45.1 | 0.037 | 0.035 | -5.5 | 1.000 |
特 点 | 原始估计 | 恰当标准化估计 | |||||||
---|---|---|---|---|---|---|---|---|---|
无约束的 | LMS | 贝叶斯法 | 无约束的 | LMS | 贝叶斯法 | ||||
乘积指标法 | 无先验 | 有先验 | 乘积指标法 | 无先验 | 有先验 | ||||
效应估计 偏差 | 正态 | N大可接受 | 可接受 | - | 可接受 | N大可接受 | 可接受 | 可接受 | 可接受 |
非正态 | N大可接受 | 偏差较大 | - | - | N大可接受 | 外生潜变量相关很低时可接受 | |||
标准 误偏差 | 正态 | N大可接受 | 可接受 | - | 可接受 | N大可接受 | 可接受 | 可接受 | 高估 |
非正态 | N大可接受 | 偏差可能大 | - | - | N大可接受 | 可接受 | 可接受 | N大可接受 | |
I类 错误率 | 正态 | 可接受 | 可接受 | - | - | 可接受 | N大可接受 | 可接受 | 可接受 |
非正态 | 可接受 | 偏高 | - | - | 可接受 | 偏高 | 样本小或外生潜变量 相关很低时可接受 | ||
检验力 | 正态/非正态 | N大可接受 | 较高 | - | - | N大可接受 | 较高 | 较高 | 高 |
标准化 估计获得 方式 | 用原始估计和通常标准化估计简单手工计算, 或者使用附录的Mplus程序 | Mplus编程, 输出标准化解 (Mplus 8.2以上版本) |
表5 乘积指标法、LMS和贝叶斯法的原始估计和恰当标准化估计特点比较
特 点 | 原始估计 | 恰当标准化估计 | |||||||
---|---|---|---|---|---|---|---|---|---|
无约束的 | LMS | 贝叶斯法 | 无约束的 | LMS | 贝叶斯法 | ||||
乘积指标法 | 无先验 | 有先验 | 乘积指标法 | 无先验 | 有先验 | ||||
效应估计 偏差 | 正态 | N大可接受 | 可接受 | - | 可接受 | N大可接受 | 可接受 | 可接受 | 可接受 |
非正态 | N大可接受 | 偏差较大 | - | - | N大可接受 | 外生潜变量相关很低时可接受 | |||
标准 误偏差 | 正态 | N大可接受 | 可接受 | - | 可接受 | N大可接受 | 可接受 | 可接受 | 高估 |
非正态 | N大可接受 | 偏差可能大 | - | - | N大可接受 | 可接受 | 可接受 | N大可接受 | |
I类 错误率 | 正态 | 可接受 | 可接受 | - | - | 可接受 | N大可接受 | 可接受 | 可接受 |
非正态 | 可接受 | 偏高 | - | - | 可接受 | 偏高 | 样本小或外生潜变量 相关很低时可接受 | ||
检验力 | 正态/非正态 | N大可接受 | 较高 | - | - | N大可接受 | 较高 | 较高 | 高 |
标准化 估计获得 方式 | 用原始估计和通常标准化估计简单手工计算, 或者使用附录的Mplus程序 | Mplus编程, 输出标准化解 (Mplus 8.2以上版本) |
[1] |
Algina, J., & Moulder, B. C. (2001). A note on estimating the Jöreskog-Yang model for latent variable interaction using LISREL 8.3. Structural Equation Modeling: A Multidisciplinary Journal, 8(1), 40-52.
doi: 10.1207/S15328007SEM0801_3 URL |
[2] |
Arminger, G., & Muthén, B. (1998). A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the Metropolis-Hastings algorithm. Psychometrika, 63(3), 271-300.
doi: 10.1007/BF02294856 URL |
[3] | Asparouhov, T., & Muthén, B. (2010). Bayesian analysis of latent variable models using Mplus. Muthén & Muthén. |
[4] |
Asparouhov, T., & Muthén, B. (2021). Bayesian estimation of single and multilevel models with latent variable interactions. Structural Equation Modeling: A Multidisciplinary Journal, 28(2), 314-328.
doi: 10.1080/10705511.2020.1761808 URL |
[5] |
Aytürk, E., Cham, H., Jennings, P. A., & Brown, J. L. (2020). Exploring the performance of latent moderated structural equations approach for ordered-categorical items. Structural Equation Modeling: A Multidisciplinary Journal, 28(3), 410-422.
doi: 10.1080/10705511.2020.1810047 URL |
[6] |
Bandalos, D. L. (2002). The effects of item parceling on goodness-of-fit and parameter estimate bias in structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 9(1), 78-102.
doi: 10.1207/S15328007SEM0901_5 URL |
[7] | Boomsma, A. (1983). On the robustness of LISREL against small sample size and non-normality [Unpublished doctorial dissertation]. University of Groningen. |
[8] |
Bradley, J. V. (1978). Robustness? British Journal of Mathematical and Statistical Psychology, 31(2), 144-152.
doi: 10.1111/bmsp.1978.31.issue-2 URL |
[9] |
Brandt, H., Cambria, J., & Kelava, A. (2018). An adaptive Bayesian lasso approach with spike-and-slab priors to identify multiple linear and nonlinear effects in structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 25(6), 946-960.
doi: 10.1080/10705511.2018.1474114 URL |
[10] | Brandt, H., Umbach, N., & Kelava, A. (2015). The standardization of linear and nonlinear effects in direct and indirect applications of structural equation mixture models for normal and nonnormal data. Frontiers in Psychology, 6, 1813. |
[11] |
Büchner, R. D., & Klein, A. G. (2020). A Quasi-likelihood approach to assess model fit in quadratic and interaction SEM. Multivariate Behavioral Research, 55(6), 855-872.
doi: 10.1080/00273171.2019.1689349 URL |
[12] |
Cham, H., West, S. G., Ma, Y., & Aiken, L. S. (2012). Estimating latent variable interactions with nonnormal observed data: A comparison of four approaches. Multivariate Behavioral Research, 47(6), 840-876.
doi: 10.1080/00273171.2012.732901 URL |
[13] |
Champoux, J. E., & Peters, W. S. (1987). Form, effect size and power in moderated regression analysis. Journal of Occupational Psychology, 60(3), 243-255.
doi: 10.1111/joop.1987.60.issue-3 URL |
[14] |
Fang, J., Wen, Z., & Hau, K. -T. (2019). Mediation effects in 2-1-1 multilevel model: Evaluation of alternative estimation methods. Structural Equation Modeling: A Multidisciplinary Journal, 26(4), 591-606.
doi: 10.1080/10705511.2018.1547967 URL |
[15] |
Foldnes, N., & Hagtvet, K. A. (2014). The choice of product indicators in latent variable interaction models: Post hoc analyses. Psychological Methods, 19(3), 444-457.
doi: 10.1037/a0035728 pmid: 24773360 |
[16] | Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2014). Bayesian data analysis (3rd ed.). Boca Raton, FL: CRC press. |
[17] |
Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6), 721-741.
pmid: 22499653 |
[18] |
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1), 97-109.
doi: 10.1093/biomet/57.1.97 URL |
[19] |
Hau, K. -T., & Marsh, H. W. (2004). The use of item parcels in structural equation modelling: Non-normal data and small sample sizes. British Journal of Mathematical and Statistical Psychology, 57(2), 327-351.
doi: 10.1111/bmsp.2004.57.issue-2 URL |
[20] |
Holtmann, J., Koch, T., Lochner, K., & Eid, M. (2016). A comparison of ML, WLSMV, and Bayesian methods for multilevel structural equation models in small samples: A simulation study. Multivariate Behavioral Research, 51(5), 661-680.
pmid: 27594086 |
[21] | Hoogland, J. J., & Boomsma, A. (1998). Robustness studies in covariance structure modeling: An overview and a meta-analysis. Sociological Methods & Research, 26(3), 329-367. |
[22] |
Ito, T. A., Friedman, N. P., Bartholow, B. D., Correll, J., Loersch, C., Altamirano, L. J., & Miyake, A. (2015). Toward a comprehensive understanding of executive cognitive function in implicit racial bias. Journal of Personality and Social Psychology, 108(2), 187-217.
doi: 10.1037/a0038557 URL |
[23] |
Jaccard, J., & Wan, C. K. (1995). Measurement error in the analysis of interaction effects between continuous predictors using multiple regression: Multiple indicator and structural equation approaches. Psychological Bulletin, 117(2), 348-357.
doi: 10.1037/0033-2909.117.2.348 URL |
[24] |
Jackman, M. G. A., Leite, W. L., & Cochrane, D. J. (2011). Estimating latent variable interactions with the unconstrained approach: A comparison of methods to form product indicators for large, unequal numbers of items. Structural Equation Modeling: A Multidisciplinary Journal, 18(2), 274-288.
doi: 10.1080/10705511.2011.557342 URL |
[25] | Jia, F. (2016). Methods for handling missing non-normal data in structural equation modeling [Unpublished doctorial dissertation]. University of Kansas. |
[26] | Jöreskog, K. G., & Sörbom, D. (1996). LISREL 8: User's reference guide. Chicago, IL: Scientific Software International, Inc, |
[27] |
Kelava, A., Moosbrugger, H., Dimitruk, P., & Schermelleh- Engel, K. (2008). Multicollinearity and missing constraints: A comparison of three approaches for the analysis of latent nonlinear effects. Methodology, 4(2), 51-66.
doi: 10.1027/1614-2241.4.2.51 URL |
[28] |
Kelava, A., & Nagengast, B. (2012). A Bayesian model for the estimation of latent interaction and quadratic effects when latent variables are non-normally distributed. Multivariate Behavioral Research, 47(5), 717-742.
doi: 10.1080/00273171.2012.715560 URL |
[29] |
Kelava, A., Nagengast, B., & Brandt, H. (2014). A nonlinear structural equation mixture modeling approach for nonnormally distributed latent predictor variables. Structural Equation Modeling: A Multidisciplinary Journal, 21(3), 468-481.
doi: 10.1080/10705511.2014.915379 URL |
[30] |
Kelava, A., Werner, C. S., Schermelleh-Engel, K., Moosbrugger, H., Zapf, D., Ma, Y., ... West, S. G. (2011). Advanced nonlinear latent variable modeling: Distribution analytic LMS and QML estimators of interaction and quadratic effects. Structural Equation Modeling: A Multidisciplinary Journal, 18(3), 465-491.
doi: 10.1080/10705511.2011.582408 URL |
[31] |
Kenny, D. A., & Judd, C. M. (1984). Estimating the nonlinear and interactive effects of latent variables. Psychological Bulletin, 96(1), 201-210.
doi: 10.1037/0033-2909.96.1.201 URL |
[32] |
Klein, A. G., & Moosbrugger, H. (2000). Maximum likelihood estimation of latent interaction effects with the LMS method. Psychometrika, 65(4), 457-474.
doi: 10.1007/BF02296338 URL |
[33] |
Klein, A. G., & Muthén, B. O. (2007). Quasi-maximum likelihood estimation of structural equation models with multiple interaction and quadratic effects. Multivariate Behavioral Research, 42(4), 647-673.
doi: 10.1080/00273170701710205 URL |
[34] | Laczniak, R. N., Carlson, L., Walker, D., & Brocato, E. D. (2017). Parental restrictive mediation and children's violent video game play: The effectiveness of the Entertainment Software Rating Board (ESRB) rating system. Journal of Public Policy & Marketing, 36(1), 70-78. |
[35] |
Lee, S. Y., & Song, X. Y. (2004). Evaluation of the Bayesian and maximum likelihood approaches in analyzing structural equation models with small sample sizes. Multivariate Behavioral Research, 39(4), 653-686.
doi: 10.1207/s15327906mbr3904_4 URL |
[36] |
Lee, S. Y., Song, X. Y., & Poon, W. Y. (2004). Comparison of approaches in estimating interaction and quadratic effects of latent variables. Multivariate Behavioral Research, 39(1), 37-67.
doi: 10.1207/s15327906mbr3901_2 URL |
[37] |
Lee, S. Y., Song, X. Y., & Tang, N. S. (2007). Bayesian methods for analyzing structural equation models with covariates, interaction, and quadratic latent variables. Structural Equation Modeling: A Multidisciplinary Journal, 14(3), 404-434.
doi: 10.1080/10705510701301511 URL |
[38] |
Lin, G. C., Wen, Z., Marsh, H. W., & Lin, H. S. (2010). Structural equation models of latent interactions: Clarification of orthogonalizing and double-mean-centering strategies. Structural Equation Modeling: A Multidisciplinary Journal, 17(3), 374-391.
doi: 10.1080/10705511.2010.488999 URL |
[39] |
MacCallum, R. C., & Austin, J. T. (2000). Applications of structural equation modeling in psychological research. Annual Review of Psychology, 51(1), 201-226.
doi: 10.1146/psych.2000.51.issue-1 URL |
[40] |
Marsh, H. W., Wen, Z., & Hau, K. -T. (2004). Structural equation models of latent interactions: Evaluation of alternative estimation strategies and indicator construction. Psychological Methods, 9(3), 275-300.
doi: 10.1037/1082-989X.9.3.275 URL |
[41] | Marsh, H. W., Wen, Z., Nagengast, B., & Hau, K. -T. (2012). Structural equation models of latent interaction. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (pp.436-458). New York: Guilford Press. |
[42] |
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087-1092.
doi: 10.1063/1.1699114 URL |
[43] |
Miočević, M., MacKinnon, D. P., & Levy, R. (2017). Power in Bayesian mediation analysis for small sample research. Structural Equation Modeling: A Multidisciplinary Journal, 24(5), 666-683.
doi: 10.1080/10705511.2017.1312407 URL |
[44] |
Moulder, B. C., & Algina, J. (2002). Comparison of methods for estimating and testing latent variable interactions. Structural Equation Modeling: A Multidisciplinary Journal, 9(1), 1-19.
doi: 10.1207/S15328007SEM0901_1 URL |
[45] |
Muthén, B., & Asparouhov, T. (2012). Bayesian structural equation modeling: A more flexible representation of substantive theory. Psychological Methods, 17(3), 313-335.
doi: 10.1037/a0026802 pmid: 22962886 |
[46] |
Muthén, B., Kaplan, D., & Hollis, M. (1987). On structural equation modeling with data that are not missing completely at random. Psychometrika, 52(3), 431-462.
doi: 10.1007/BF02294365 URL |
[47] | Muthén, L. K., & Muthén, B. O. (2019). Mplus user’s guide (8th ed.). Los Angeles, CA: Muthén & Muthén. |
[48] |
Nagengast, B., Marsh, H. W., Scalas, L. F., Xu, M. K., Hau, K. -T., & Trautwein, U. (2011). Who took the “×” out of expectancy-value theory? A psychological mystery, a substantive-methodological synergy, and a cross-national generalization. Psychological Science, 22(8), 1058-1066.
doi: 10.1177/0956797611415540 pmid: 21750248 |
[49] | Satorra, A., & Bentler, P. M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In A. von Eye & C. C. Clogg (Eds.), Latent variables analysis: Applications for developmental research (pp.399-419). Thousand Oaks, CA: Sage. |
[50] | Schermelleh-Engel, K., Klein, A., & Moosbrugger, H. (1998). Estimating nonlinear effects using a latent moderated structural equations approach. In R. E. Schumacker & G. A. Marcoulides (Eds.), Interaction and nonlinear effects in structural equation modeling (pp.203-238). Mahwah, NJ: Erlbaum. |
[51] |
Smid, S. C., McNeish, D., Miočević, M., & van de Schoot, R. (2020). Bayesian versus frequentist estimation for structural equation models in small sample contexts: A systematic review. Structural Equation Modeling: A Multidisciplinary Journal, 27(1), 131-161.
doi: 10.1080/10705511.2019.1577140 URL |
[52] |
van Erp, S., Mulder, J., & Oberski, D. L. (2018). Prior sensitivity analysis in default Bayesian structural equation modeling. Psychological Methods, 23(2), 363-388.
doi: 10.1037/met0000162 URL |
[53] |
Wen, Z., Hau, K. -T., & Marsh, H. W. (2008). Appropriate standardized estimates for moderating effects in structural equation models. Acta Psychologica Sinica, 40(6), 729-736.
doi: 10.3724/SP.J.1041.2008.00729 URL |
[ 温忠麟, 侯杰泰, Marsh, H. W. (2008). 结构方程模型中调节效应的标准化估计. 心理学报, 40(6), 729-736.] | |
[54] | Wen, Z., & Liu, H. (2020). Analyses of mediating and moderating effects: Methods and applications. Beijing: Educational Science Publishing House. |
[ 温忠麟, 刘红云. (2020). 中介效应和调节效应:方法及应用. 教育科学出版社.] | |
[55] |
Wen, Z., Marsh, H. W., & Hau, K. -T. (2010). Structural equation models of latent interactions: An appropriate standardized solution and its scale-free properties. Structural Equation Modeling: A Multidisciplinary Journal, 17(1), 1-22.
doi: 10.1080/10705510903438872 URL |
[56] | Wen, Z., & Wu, Y. (2010). Evolution and simplification of the approaches to estimating structural equation models with latent interaction. Advance in Psychological Science, 18(8), 1306-1313. |
[ 温忠麟, 吴艳. (2010). 潜变量交互效应建模方法演变与简化. 心理科学进展, 18(8), 1306-1313.] | |
[57] | Wen, Z., Wu, Y., & Hau, K. -T. (2013). Latent interaction in structural equation modeling: Distribution-analytic approaches. Psychological Exploration, 33(5), 409-414. |
[ 温忠麟, 吴艳, 侯杰泰. (2013). 潜变量交互效应结构方程: 分布分析方法. 心理学探新, 33(5), 409-414.] | |
[58] | Wu, Y., Wen, Z., Hau, K. -T., & Marsh, H. W. (2011). Appropriate standardized estimates of latent interaction models without the mean structure. Acta Psychologica Sinica, 43(10), 1219-1228. |
[ 吴艳, 温忠麟, 侯杰泰, Marsh, H. W. (2011). 无均值结构的潜变量交互效应模型的标准化估计. 心理学报, 43(10), 1219-1228.] | |
[59] | Wu, Y., Wen, Z., & Li, B. (2014). Testing the standardized solutions in structural equation models with interaction effects. Psychological Exploration, 34(3), 260-264. |
[ 吴艳, 温忠麟, 李碧. (2014). 潜变量交互效应模型标准化估计中的检验问题. 心理学探新, 34(3), 260-264.] | |
[60] | Wu, Y., Wen, Z., & Lin, G. C. (2009). Structural equation modeling of latent interactions without using the mean structure. Acta Psychologica Sinica, 41(12), 1252-1259. |
[ 吴艳, 温忠麟, 林冠群. (2009). 潜变量交互效应建模:告别均值结构. 心理学报, 41(12), 1252-1259.] | |
[61] |
Wu, Y., Wen, Z., Marsh, H. W., & Hau, K. -T. (2013). A comparison of strategies for forming product indicators for unequal numbers of items in structural equation models of latent interactions. Structural Equation Modeling: A Multidisciplinary Journal, 20(4), 551-567.
doi: 10.1080/10705511.2013.824772 URL |
[62] |
You, J., Deng, B., Lin, M. P., & Leung, F. (2016). The interactive effects of impulsivity and negative emotions on adolescent nonsuicidal self-injury: A latent growth curve analysis. Suicide and Life-Threatening Behavior, 46(3), 266-283.
doi: 10.1111/sltb.2016.46.issue-3 URL |
[63] |
Yuan, Y., & MacKinnon, D. P. (2009). Bayesian mediation analysis. Psychological Methods, 14(4), 301-322.
doi: 10.1037/a0016972 URL |
[64] | Zhang, L. J., Lu, J., Wei, X. Y., & Pan, J. H. (2019). Bayesian structural equation modeling and its current researches. Advance in Psychological Science, 27(11), 1812-1825. |
[ 张沥今, 陆嘉琦, 魏夏琰, 潘俊豪. (2019). 贝叶斯结构方程模型及其研究现状. 心理科学进展, 27(11), 1812-1825.] |
[1] | 温忠麟, 王一帆, 杜铭诗, 俞雅慧, 张愉蕙, 金童林. 二阶潜增长模型标度方法及其可比的一阶潜增长模型[J]. 心理学报, 2023, 55(8): 1372-1382. |
[2] | 程亚华, 冯瑶, 李宜逊, 马嘉琪, 沈岚岚, 张文建, 伍新春, 冯秋迪. 小学儿童口语词汇知识的发展轨迹及其对阅读能力的预测:一个潜变量增长模型[J]. 心理学报, 2023, 55(7): 1074-1086. |
[3] | 曹衍淼, 方惠慈, 朱欣悦, 纪林芹, 张文新. BDNF基因、同伴关系与青少年早期抑郁:基于动态发展视角[J]. 心理学报, 2023, 55(10): 1620-1636. |
[4] | 徐冉, 张宝山, 林瑶. 家人情感卷入对老年自我刻板印象的影响:基于潜变量增长模型的分析[J]. 心理学报, 2021, 53(11): 1215-1227. |
[5] | 程亚华, 伍新春, 刘红云, 李虹. 小学低年级儿童口语词汇知识的发展轨迹及其影响因素[J]. 心理学报, 2018, 50(2): 206-215. |
[6] | 张杉杉;陈楠;刘红云. LGM模型中缺失数据处理方法的比较: ML方法与Diggle-Kenward选择模型[J]. 心理学报, 2017, 49(5): 699-710. |
[7] | 刘俊升;周颖;李丹. 童年中晚期孤独感的发展轨迹:一项潜变量增长模型分析[J]. 心理学报, 2013, 45(2): 179-192. |
[8] | 张晓. 童年早期社会能力的发展:一个潜变量增长模型[J]. 心理学报, 2011, 43(12): 1388-1397. |
[9] | 吴艳,温忠麟,侯杰泰,Herbert W. Marsh. 无均值结构的潜变量交互效应模型的标准化估计[J]. 心理学报, 2011, 43(10): 1219-1228. |
[10] | 吴艳,温忠麟,林冠群. 潜变量交互效应建模: 告别均值结构[J]. 心理学报, 2009, 41(12): 1252-1259. |
[11] | 温忠麟,侯杰泰,Herbert W. Marsh. 结构方程模型中调节效应的标准化估计[J]. 心理学报, 2008, 40(06): 729-736. |
[12] | 陈天勇,李德明. 执行功能可分离性及与年龄关系的潜变量分析[J]. 心理学报, 2005, 37(02): 210-217. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||