心理学报 ›› 2020, Vol. 52 ›› Issue (9): 1132-1142.doi: 10.3724/SP.J.1041.2020.01132
• 研究报告 • 上一篇
詹沛达1(), Hong Jiao2, Kaiwen Man3
收稿日期:
2020-03-02
发布日期:
2020-07-24
出版日期:
2020-09-25
通讯作者:
詹沛达
E-mail:pdzhan@gmail.com
基金资助:
ZHAN Peida1(), Hong JIAO2, Kaiwen MAN3
Received:
2020-03-02
Online:
2020-07-24
Published:
2020-09-25
Contact:
ZHAN Peida
E-mail:pdzhan@gmail.com
摘要:
在心理与教育测量中, 潜在加工速度反映学生运用潜在能力解决问题的效率。为在多维测验中探究潜在加工速度的多维性并实现参数估计, 本研究提出多维对数正态作答时间模型。实证数据分析及模拟研究结果表明:(1)潜在加工速度具有与潜在能力相匹配的多维结构; (2)新模型可精确估计个体水平的多维潜在加工速度及与作答时间有关的题目参数; (3)冗余指定潜在加工速度具有多维性带来的负面影响低于忽略其多维性所带来的。
中图分类号:
詹沛达, Hong Jiao, Kaiwen Man. (2020). 多维对数正态作答时间模型:对潜在加工速度多维性的探究. 心理学报, 52(9), 1132-1142.
ZHAN Peida, Hong JIAO, Kaiwen MAN. (2020). The multidimensional log-normal response time model: An exploration of the multidimensionality of latent processing speed. Acta Psychologica Sinica, 52(9), 1132-1142.
题目 | θ1 | θ2 | θ3 |
---|---|---|---|
CM015Q02D | 1 | ||
CM015Q03D | 1 | ||
CM020Q01 | 1 | ||
CM020Q02 | 1 | ||
CM020Q03 | 1 | ||
CM020Q04 | 1 | ||
CM038Q03T | 1 | ||
CM038Q05 | 1 | ||
CM038Q06 | 1 |
表1 2012年PISA计算机化数学测验的Q矩阵
题目 | θ1 | θ2 | θ3 |
---|---|---|---|
CM015Q02D | 1 | ||
CM015Q03D | 1 | ||
CM020Q01 | 1 | ||
CM020Q02 | 1 | ||
CM020Q03 | 1 | ||
CM020Q04 | 1 | ||
CM038Q03T | 1 | ||
CM038Q05 | 1 | ||
CM038Q06 | 1 |
Model | χ2 | df | TLI | CFI | AIC | BIC | SRMR | RMSEA [90% CI] |
---|---|---|---|---|---|---|---|---|
1-factor | 462.79** | 27 | 0.896 | 0.922 | 24592.15 | 24737.03 | 0.045 | 0.101 [0.093, 0.109] |
2-factor | 225.49** | 19 | 0.930 | 0.963 | 24370.85 | 24558.65 | 0.032 | 0.083 [0.073, 0.093] |
3-factor | 32.66** | 12 | 0.989 | 0.996 | 24192.02 | 24417.38 | 0.010 | 0.033 [0.020, 0.047] |
4-factor | 5.56 | 6 | 1.000 | 1.000 | 24176.92 | 24434.48 | 0.004 | 0.000 [0.000, 0.031] |
5-factor | 0.09 | 1 | 1.006 | 1.000 | 24181.44 | 24465.83 | 0.000 | 0.000 [0.000, 0.045] |
表2 2012年PISA计算机化数学测验数据的探索性因素分析中的数据-模型拟合指标
Model | χ2 | df | TLI | CFI | AIC | BIC | SRMR | RMSEA [90% CI] |
---|---|---|---|---|---|---|---|---|
1-factor | 462.79** | 27 | 0.896 | 0.922 | 24592.15 | 24737.03 | 0.045 | 0.101 [0.093, 0.109] |
2-factor | 225.49** | 19 | 0.930 | 0.963 | 24370.85 | 24558.65 | 0.032 | 0.083 [0.073, 0.093] |
3-factor | 32.66** | 12 | 0.989 | 0.996 | 24192.02 | 24417.38 | 0.010 | 0.033 [0.020, 0.047] |
4-factor | 5.56 | 6 | 1.000 | 1.000 | 24176.92 | 24434.48 | 0.004 | 0.000 [0.000, 0.031] |
5-factor | 0.09 | 1 | 1.006 | 1.000 | 24181.44 | 24465.83 | 0.000 | 0.000 [0.000, 0.045] |
题目 | 因素1 | 因素2 | 因素3 |
---|---|---|---|
CM015Q02D | 0.695* | ||
CM015Q03D | 0.609* | ||
CM020Q01 | 0.565* | ||
CM020Q02 | 0.801* | ||
CM020Q03 | 0.642* | ||
CM020Q04 | 0.943* | ||
CM038Q03T | 0.502* | ||
CM038Q05 | 0.985* | ||
CM038Q06 | 0.621* |
表3 三因素模型的旋转因素载荷矩阵
题目 | 因素1 | 因素2 | 因素3 |
---|---|---|---|
CM015Q02D | 0.695* | ||
CM015Q03D | 0.609* | ||
CM020Q01 | 0.565* | ||
CM020Q02 | 0.801* | ||
CM020Q03 | 0.642* | ||
CM020Q04 | 0.943* | ||
CM038Q03T | 0.502* | ||
CM038Q05 | 0.985* | ||
CM038Q06 | 0.621* |
分析模型 | -2LL | DIC | WAIC | ppp |
---|---|---|---|---|
MLRTM | 19305 | 22505 | 22055 | 0.633 |
ULRTM | 21310 | 22890 | 22770 | 0.597 |
表4 2012年PISA计算机化数学测验数据分析中模型-数据拟合指标
分析模型 | -2LL | DIC | WAIC | ppp |
---|---|---|---|---|
MLRTM | 19305 | 22505 | 22055 | 0.633 |
ULRTM | 21310 | 22890 | 22770 | 0.597 |
Στ | τ1 | τ2 | τ3 |
---|---|---|---|
τ1 | 0.301 (0.016) [0.270, 0.334] | 0.751 | 0.767 |
τ2 | 0.185 (0.010) [0.167, 0.204] | 0.202 (0.010) [0.184, 0.220] | 0.855 |
τ3 | 0.227 (0.012) [0.206, 0.250] | 0.208 (0.009) [0.190, 0.226] | 0.292 (0.013) [0.266, 0.317] |
表5 2012年PISA计算机化数学测验数据分析中多维潜在加工速度的方差-协方差矩阵估计值
Στ | τ1 | τ2 | τ3 |
---|---|---|---|
τ1 | 0.301 (0.016) [0.270, 0.334] | 0.751 | 0.767 |
τ2 | 0.185 (0.010) [0.167, 0.204] | 0.202 (0.010) [0.184, 0.220] | 0.855 |
τ3 | 0.227 (0.012) [0.206, 0.250] | 0.208 (0.009) [0.190, 0.226] | 0.292 (0.013) [0.266, 0.317] |
题目 | ULRTM | MLRTM | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ξ | ω | ξ | ω | |||||||||
M | SE | 95% CI | M | SE | 95% CI | M | SE | 95% CI | M | SE | 95% CI | |
1 | 4.470 | 0.020 | [4.432, 4.508] | 1.617 | 0.031 | [1.558, 1.678] | 4.469 | 0.020 | [4.433, 4.510] | 1.845 | 0.045 | [1.760, 1.936] |
2 | 4.630 | 0.019 | [4.592, 4.667] | 1.697 | 0.032 | [1.635, 1.762] | 4.629 | 0.019 | [4.594, 4.668] | 1.976 | 0.051 | [1.874, 2.076] |
3 | 4.778 | 0.016 | [4.750, 4.811] | 2.423 | 0.050 | [2.327, 2.519] | 4.778 | 0.015 | [4.747, 4.807] | 2.505 | 0.055 | [2.397, 2.612] |
4 | 3.860 | 0.018 | [3.825, 3.895] | 1.866 | 0.036 | [1.793, 1.934] | 3.859 | 0.017 | [3.825, 3.894] | 1.915 | 0.038 | [1.841, 1.991] |
5 | 4.258 | 0.016 | [4.226, 4.291] | 2.186 | 0.044 | [2.104, 2.274] | 4.258 | 0.016 | [4.224, 4.287] | 2.202 | 0.047 | [2.112, 2.295] |
6 | 3.739 | 0.017 | [3.707, 3.774] | 2.031 | 0.040 | [1.958, 2.116] | 3.739 | 0.017 | [3.706, 3.771] | 2.097 | 0.043 | [2.012, 2.179] |
7 | 4.190 | 0.016 | [4.158, 4.220] | 2.314 | 0.047 | [2.221, 2.406] | 4.189 | 0.017 | [4.156, 4.222] | 2.516 | 0.063 | [2.393, 2.638] |
8 | 4.522 | 0.018 | [4.487, 4.557] | 1.879 | 0.036 | [1.809, 1.950] | 4.522 | 0.018 | [4.488, 4.558] | 2.091 | 0.047 | [1.995, 2.180] |
9 | 4.377 | 0.020 | [4.338, 4.417] | 1.600 | 0.031 | [1.533, 1.656] | 4.379 | 0.021 | [4.339, 4.420] | 1.701 | 0.036 | [1.632, 1.771] |
μξ | 4.316 | 0.202 | [3.901, 4.701] | 4.315 | 0.199 | [3.914, 4.708] | ||||||
σξ2 | 0.367 | 0.217 | [0.103, 0.751] | 0.366 | 0.219 | [0.113, 0.763] |
表6 2012年PISA计算机化数学测验数据分析中题目参数估计值
题目 | ULRTM | MLRTM | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ξ | ω | ξ | ω | |||||||||
M | SE | 95% CI | M | SE | 95% CI | M | SE | 95% CI | M | SE | 95% CI | |
1 | 4.470 | 0.020 | [4.432, 4.508] | 1.617 | 0.031 | [1.558, 1.678] | 4.469 | 0.020 | [4.433, 4.510] | 1.845 | 0.045 | [1.760, 1.936] |
2 | 4.630 | 0.019 | [4.592, 4.667] | 1.697 | 0.032 | [1.635, 1.762] | 4.629 | 0.019 | [4.594, 4.668] | 1.976 | 0.051 | [1.874, 2.076] |
3 | 4.778 | 0.016 | [4.750, 4.811] | 2.423 | 0.050 | [2.327, 2.519] | 4.778 | 0.015 | [4.747, 4.807] | 2.505 | 0.055 | [2.397, 2.612] |
4 | 3.860 | 0.018 | [3.825, 3.895] | 1.866 | 0.036 | [1.793, 1.934] | 3.859 | 0.017 | [3.825, 3.894] | 1.915 | 0.038 | [1.841, 1.991] |
5 | 4.258 | 0.016 | [4.226, 4.291] | 2.186 | 0.044 | [2.104, 2.274] | 4.258 | 0.016 | [4.224, 4.287] | 2.202 | 0.047 | [2.112, 2.295] |
6 | 3.739 | 0.017 | [3.707, 3.774] | 2.031 | 0.040 | [1.958, 2.116] | 3.739 | 0.017 | [3.706, 3.771] | 2.097 | 0.043 | [2.012, 2.179] |
7 | 4.190 | 0.016 | [4.158, 4.220] | 2.314 | 0.047 | [2.221, 2.406] | 4.189 | 0.017 | [4.156, 4.222] | 2.516 | 0.063 | [2.393, 2.638] |
8 | 4.522 | 0.018 | [4.487, 4.557] | 1.879 | 0.036 | [1.809, 1.950] | 4.522 | 0.018 | [4.488, 4.558] | 2.091 | 0.047 | [1.995, 2.180] |
9 | 4.377 | 0.020 | [4.338, 4.417] | 1.600 | 0.031 | [1.533, 1.656] | 4.379 | 0.021 | [4.339, 4.420] | 1.701 | 0.036 | [1.632, 1.771] |
μξ | 4.316 | 0.202 | [3.901, 4.701] | 4.315 | 0.199 | [3.914, 4.708] | ||||||
σξ2 | 0.367 | 0.217 | [0.103, 0.751] | 0.366 | 0.219 | [0.113, 0.763] |
Parameter | MA_bias | M_RMSE | Cor |
---|---|---|---|
τ1 | 0.016 | 0.147 | 0.956 |
τ2 | 0.017 | 0.147 | 0.955 |
τ3 | 0.016 | 0.144 | 0.957 |
τ4 | 0.017 | 0.143 | 0.958 |
表7 模拟研究1中被试参数返真性的总结
Parameter | MA_bias | M_RMSE | Cor |
---|---|---|---|
τ1 | 0.016 | 0.147 | 0.956 |
τ2 | 0.017 | 0.147 | 0.955 |
τ3 | 0.016 | 0.144 | 0.957 |
τ4 | 0.017 | 0.143 | 0.958 |
Στ | τ1 | τ2 | τ3 | τ4 |
---|---|---|---|---|
τ1 | 0.00003 (0.00000) | |||
τ2 | 0.00023 (0.00003) | 0.00069 (-0.00010) | ||
τ3 | 0.00031 (0.00004) | 0.00015 (0.00002) | 0.00015 (0.00002) | |
τ4 | 0.00015 (0.00002) | 0.00041 (-0.00006) | 0.00020 (0.00003) | 0.00079 (-0.00011) |
表8 模拟研究1中被试参数的方差协方差矩阵返真性
Στ | τ1 | τ2 | τ3 | τ4 |
---|---|---|---|---|
τ1 | 0.00003 (0.00000) | |||
τ2 | 0.00023 (0.00003) | 0.00069 (-0.00010) | ||
τ3 | 0.00031 (0.00004) | 0.00015 (0.00002) | 0.00015 (0.00002) | |
τ4 | 0.00015 (0.00002) | 0.00041 (-0.00006) | 0.00020 (0.00003) | 0.00079 (-0.00011) |
分析模型 | 参数 | MA_bias | M_RMSE | Cor |
---|---|---|---|---|
ULRTM | τ | 0.013 | 0.088 | 0.985 |
MLRTM | τ1 | 0.023 | 0.197 | 0.974 |
τ2 | 0.026 | 0.226 | 0.973 | |
τ3 | 0.027 | 0.235 | 0.971 | |
τ4 | 0.023 | 0.199 | 0.974 |
表9 模拟研究2中被试参数返真性
分析模型 | 参数 | MA_bias | M_RMSE | Cor |
---|---|---|---|---|
ULRTM | τ | 0.013 | 0.088 | 0.985 |
MLRTM | τ1 | 0.023 | 0.197 | 0.974 |
τ2 | 0.026 | 0.226 | 0.973 | |
τ3 | 0.027 | 0.235 | 0.971 | |
τ4 | 0.023 | 0.199 | 0.974 |
[1] |
Adams, R. J., Wilson, M., & Wang, W. (1997). The multidimensional random coefficients multinomial logit model. Applied Psychological Measurement, 21(1), 1-23.
doi: 10.1177/0146621697211001 URL |
[2] |
Bolsinova, M., & Tijmstra, J. (2018). Improving precision of ability estimation: Getting more from response times. British Journal of Mathematical and Statistical Psychology, 71(1), 13-38.
doi: 10.1111/bmsp.12104 URL pmid: 28635139 |
[3] |
Curran, P. J., & Bauer, D J. (2011). The disaggregation of within-person and between-person effects in longitudinal models of change. Annual Review of Psychology, 62, 583-619.
doi: 10.1146/annurev.psych.093008.100356 URL |
[4] |
de Boeck, P., & Jeon, M. (2019). An overview of models for response times and processes in cognitive tests. Frontiers in Psychology, 10, 102.
doi: 10.3389/fpsyg.2019.00102 URL pmid: 30787891 |
[5] |
Ferrando, P. J., & Lorenzo-Seva, U. (2007). A measurement model for Likert responses that incorporates response time. Multivariate Behavioral Research, 42(4), 675-706.
doi: 10.1080/00273170701710247 URL |
[6] |
Fox, J.-P. & Marianti, S. (2017). Person-fit statistics for joint models for accuracy and speed. Journal of Educational Measurement, 54(2), 243-262.
doi: 10.1111/jedm.12143 URL |
[7] | Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis. New York: Chapman & Hall. |
[8] | Goudie, R. J., Turner, R. M., de Angelis, D., & Thomas, A. (2017). MultiBUGS: A parallel implementation of the BUGS modelling framework for faster Bayesian inference. arXiv Preprint arXiv:1704.03216. |
[9] |
Guo, L. Shang, P., & Xia, L. (2017). Advantages and illustrations of application of response time model in psychological and educational testing. Advances in Psychological Science, 25(4), 701-712.
doi: 10.3724/SP.J.1042.2017.00701 URL |
[ 郭磊, 尚鹏丽, 夏凌翔. (2017). 心理与教育测验中反应时模型应用的优势与举例. 心理科学进展, 25(4), 701-712.] | |
[10] |
Guo, X., Luo, Z., & Yu, X. (2020). A speed-accuracy tradeoff hierarchical model based on cognitive experiment. Frontiers in Psychology, 10, 2910.
doi: 10.3389/fpsyg.2019.02910 URL pmid: 31969855 |
[11] |
Horwitz, B., Tagamets, M. A., & McIntosh, A. R. (1999). Neural modeling, functional brain imaging, and cognition. Trends in Cognitive Sciences, 3(3), 91-98.
doi: 10.1016/s1364-6613(99)01282-6 URL pmid: 10322460 |
[12] |
Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55.
doi: 10.1080/10705519909540118 URL |
[13] |
Klein Entink, R. H., van der Linden, W. J., & Fox, J.-P. (2009). A Box-Cox normal model for response times. British Journal of Mathematical and Statistical Psychology, 62(3), 621-640.
doi: 10.1348/000711008X374126 URL |
[14] |
Lu, J., Wang, C., Zhang, J., & Tao, J. (2019). A mixture model for responses and response times with a higher-order ability structure to detect rapid guessing behaviour. British Journal of Mathematical and Statistical Psychology. Online First, https://doi.org/10.1111/bmsp.12175
doi: 10.1111/bmsp.12192 URL pmid: 31705539 |
[15] |
Man, K., Harring, J. R., Jiao, H., & Zhan, P. (2019). Joint modeling of compensatory multidimensional item responses and response times. Applied Psychological Measurement, 43(8), 639-654.
doi: 10.1177/0146621618824853 URL pmid: 31551641 |
[16] | Meng, X.-B. (2016). A log-skew-normal model for item response times. Journal of Psychological Science, 39, 727-734. |
[ 孟祥斌. (2016). 项目反应时间的对数偏正态模型. 心理科学, 39(3), 727-734.] | |
[17] |
Mesulam, M. M. (1990). Large‐scale neurocognitive networks and distributed processing for attention, language, and memory. Annals of Neurology, 28(5), 597-613.
doi: 10.1002/ana.410280502 URL pmid: 2260847 |
[18] | Muthén, L. K., & Muthén, B. (2019). Mplus: The comprehensive modeling program for applied researchers: User’s guide, 5. |
[19] | Ntzoufras, I. (2009). Bayesian modeling using WinBUGS. Manhattan: John Wiley & Sons. |
[20] | OECD, (2013). PISA 2012 assessment and analytical framework: Mathematics, reading, science, problem solving and financial literacy, OECD Publishing. http://dx.doi.org/ 10.1787/9789264190511-en |
[21] | Reckase, M. D. (2009). Multidimensional item response theory. New York: Springer. |
[22] |
Steiger, J. H. (1990). Structural model evaluation and modification: An interval estimation approach. Multivariate Behavioral Research, 25(2), 173-180.
doi: 10.1207/s15327906mbr2502_4 URL pmid: 26794479 |
[23] |
Tatsuoka, K. K. (1983). Rule Space: An approach for dealing with misconceptions based on item response theory. Journal of Educational Measurement, 20(4), 345-354.
doi: 10.1111/jedm.1983.20.issue-4 URL |
[24] |
van der Linden, W. J. (2006). A lognormal model for response times on test items. Journal of Educational and Behavioral Statistics, 31(2), 181-204. http://dx.doi.org/10.3102/ 10769986031002181
doi: 10.3102/10769986031002181 URL |
[25] |
van der Linden, W. J. (2007). A hierarchical framework for modeling speed and accuracy on test items. Psychometrika, 72, 287-308. http://dx.doi.org/10.1007/s11336-006-1478-z
doi: 10.1007/s11336-006-1478-z URL |
[26] |
van der Linden, W. J. (2009). Conceptual issues in response- time modeling. Journal of Educational Measurement, 46(3), 247-272. http://dx.doi.org/10.1111/j.1745-3984.2009.00080.x
doi: 10.1111/jedm.2009.46.issue-3 URL |
[27] |
van der Linden, W. J. (2011). Test design and speededness. Journal of Educational Measurement, 48(1), 44-60.
doi: 10.1111/jedm.2011.48.issue-1 URL |
[28] |
van der Linden, W. J., Klein Entink, R., & Fox, J.-P. (2010). IRT parameter estimation with response times as collateral information. Applied Psychological Measurement, 34(5), 327-347.
doi: 10.1177/0146621609349800 URL |
[29] |
Wang, C., Chang, H. H., & Douglas, J. A. (2013). The linear transformation model with frailties for the analysis of item response times. British Journal of Mathematical and Statistical Psychology, 66(1), 144-168.
doi: 10.1111/j.2044-8317.2012.02045.x URL pmid: 22506914 |
[30] |
Wang, C., Weiss, D. J., & Su, S. (2019). Modeling response time and responses in multidimensional health measurement. Frontiers in Psychology, 10, 51.
doi: 10.3389/fpsyg.2019.00051 URL pmid: 30761036 |
[31] |
Wang, C., & Xu, G. (2015). A mixture hierarchical model for response times and response accuracy. British Journal of Mathematical and Statistical Psychology, 68(3), 456-477.
doi: 10.1111/bmsp.12054 URL pmid: 25873487 |
[32] |
Wang, S., Zhang, S., Douglas, J., & Culpepper, S. (2018). Using response times to assess learning progress: A joint model for responses and response times. Measurement: Interdisciplinary Research and Perspectives, 16(1), 45-58.
doi: 10.1080/15366367.2018.1435105 URL |
[33] |
Wang, T., & Hanson, B. A. (2005). Development and calibration of an item response model that incorporates response time. Applied Psychological Measurement, 29(5), 323-339.
doi: 10.1177/0146621605275984 URL |
[34] | Zhan, P. (2019). Joint modeling for response times and response accuracy in computer-based multidimensional assessments. Journal of Psychological Science, 42, 170-178. |
[ 詹沛达. (2019). 计算机化多维测验中作答时间和作答精度数据的联合分析. 心理科学, 42, 170-178.] | |
[35] |
Zhan, P., Jiao, H., & Liao, D. (2018). Cognitive diagnosis modelling incorporating item response times. British Journal of Mathematical and Statistical Psychology, 71(2), 262-286.
doi: 10.1111/bmsp.12114 URL pmid: 28872185 |
[36] | Zhan, P., Jiao, H., Wang, W.-C., and Man, K. (2018). A multidimensional hierarchical framework for modeling speed and ability in computer-based multidimensional tests. arXiv:1807.04003. Available online at: https://arxiv.org/abs/ 1807.04003 |
[1] | 田亚淑, 詹沛达, 王立君. 联合作答精度和作答时间的概率态认知诊断模型[J]. 心理学报, 2023, 55(9): 1573-1586. |
[2] | 詹沛达. 引入眼动注视点的联合-交叉负载多模态认知诊断建模[J]. 心理学报, 2022, 54(11): 1416-1423. |
[3] | 詹沛达, 于照辉, 李菲茗, 王立君. 一种基于多阶认知诊断模型测评科学素养的方法[J]. 心理学报, 2019, 51(6): 734-746. |
[4] | Klaus D. Kubinger. 当代客观化人格测验的技术—— 基于实验的行为评估:维也纳研究小组开发的多种计算机化测验介绍[J]. 心理学报, 2009, 41(10): 1024-1036. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||