心理学报 ›› 2008, Vol. 40 ›› Issue (01): 109-118.
不同条件下拟合指数的表现及临界值的选择
郭庆科;李芳;陈雪霞;王炜丽;孟庆茂
GUO Qing-Ke;LI Fang;CHEN Xue-Xia;WANG Wei-Li;MENG Qing-Mao
摘要: 在本模拟研究中设计了6种样本容量,6种因子载荷,和4种评分等级,并考察了正态和非正态分布两种情况。采用的错误模型为参数误置(真模型中每个因子各由5个题目来测量,错误模型中则是第一个因子由6个题测量,另两个因子各由4个和5个题来测量,即有一个因子载荷被误置)模型。结果发现(1)样本量、载荷量、评分等级数和分布形态都对GOF的取值确有影响。其中分布形态的影响最大。NNFI、IFI在不同条件下的平均值是最稳定的,其次是CFI、RMSEA和SRMR。它们都算是值得推荐的GOF,尤其是NNFI和IFI。(2)在正态分布中,当样本量≥1000时,根据NNFI、IFI、CFI、RMSEA、SRMR对模型是否拟合做出判断时有很低的两类错误率,在样本量<1000时则不理想。在偏态条件下无论选择哪个GOF两类错误率都很高。(3)采用2指数策略在很多情况下也不能显著降低两类错误率。(4)由于在数据分布非正态,或正态但样本量<1000时是难判断模型是否拟合的。因此我们提出了2界值策略。即为每个GOF确定上下两个界值。低于下界值时可判断模型是不正确的,而高于上界值时则可判断模型是正确的。GOF取值处于上下界值之间时难以判断模型是否拟合,只能说越高拟合的可能性越大。这时就要通过跨样本验证和增加样本量来确定模型是否正确
中图分类号: