心理学报 ›› 2025, Vol. 57 ›› Issue (9): 1677-1688.doi: 10.3724/SP.J.1041.2025.1677 cstr: 32110.14.2025.1677
• 研究报告 • 上一篇
收稿日期:2024-11-06
发布日期:2025-06-26
出版日期:2025-09-25
通讯作者:
陈平, E-mail: pchen@bnu.edu.cn基金资助:Received:2024-11-06
Online:2025-06-26
Published:2025-09-25
摘要: 在交互式问题解决测验中, 问题情境不是一次性呈现完整, 被试需要进行探索逐渐积累信息。这使得被试当前状态的行为选择, 不仅受到其问题解决能力的影响, 还受到其对问题情境的了解程度的影响(即学习效应)。针对现有模型方法的缺陷, 在单参数行动序列模型(1P-ASM)的基础上引入当前状态在作答序列中的位置这一变量, 对被试在问题解决过程中的学习效应进行建模, 提出考虑学习效应的1P-ASM拓展模型(1P-ASM-R*), 并通过实证研究和模拟研究评估新模型1P-ASM-R*的表现。结果显示:(1)相比于1P-ASM, 1P-ASM-R*能更好地拟合实证数据; (2)在模型中引入学习效应不影响其捕捉问题解决任务的特征。总之, 在问题解决能力过程数据测量模型中引入学习效应能够获得更加准确的问题解决能力估计值, 为过程数据的分析提供新的、有价值的方法。
中图分类号:
陆翔宇, 陈平. (2025). 交互式问题解决测验中学习效应的分析:过程数据测量模型的拓展与应用. 心理学报, 57(9), 1677-1688.
LU Xiangyu, CHEN Ping. (2025). Analysis of learning effect in interactive problem-solving test: Extension and application of process data measurement model. Acta Psychologica Sinica, 57(9), 1677-1688.
| 模型 | LOO | WAIC | PPP |
|---|---|---|---|
| 1P-ASM | 21647.9 | 21626.5 | 0.520 |
| 1P-ASM-R | 21637.7 | 21616.4 | 0.496 |
| 1P-ASM-R* | 21595.2 | 21573.5 | 0.507 |
表1 三种模型对数据的拟合情况
| 模型 | LOO | WAIC | PPP |
|---|---|---|---|
| 1P-ASM | 21647.9 | 21626.5 | 0.520 |
| 1P-ASM-R | 21637.7 | 21616.4 | 0.496 |
| 1P-ASM-R* | 21595.2 | 21573.5 | 0.507 |
| 模型 | 均值 | SD | 95%HPDL | 95%HPDU |
|---|---|---|---|---|
| 1P-ASM-R | 0.010 | 0.004 | 0.002 | 0.018 |
| 1P-ASM-R* | 0.158 | 0.029 | 0.101 | 0.214 |
表2 1P-ASM-R和1P-ASM-R*模型中学习效应参数的后验估计结果
| 模型 | 均值 | SD | 95%HPDL | 95%HPDU |
|---|---|---|---|---|
| 1P-ASM-R | 0.010 | 0.004 | 0.002 | 0.018 |
| 1P-ASM-R* | 0.158 | 0.029 | 0.101 | 0.214 |
| 状态 | 1P-ASM | 1P-ASM-R* | ||||||
|---|---|---|---|---|---|---|---|---|
| 均值 | SD | 95%HPDL | 95%HPDU | 均值 | SD | 95%HPDL | 95%HPDU | |
| A | 0.872 | 0.033 | 0.809 | 0.935 | 0.667 | 0.049 | 0.568 | 0.764 |
| B | 1.606 | 0.048 | 1.511 | 1.699 | 1.331 | 0.068 | 1.198 | 1.459 |
| C | 1.415 | 0.052 | 1.316 | 1.515 | 1.093 | 0.076 | 0.947 | 1.244 |
| D | 1.452 | 0.059 | 1.339 | 1.567 | 1.089 | 0.088 | 0.916 | 1.266 |
| E | 1.940 | 0.074 | 1.800 | 2.088 | 1.536 | 0.101 | 1.336 | 1.733 |
| F | 0.329 | 0.118 | 0.099 | 0.553 | −0.086 | 0.138 | −0.353 | 0.180 |
| G | −1.721 | 0.078 | −1.875 | −1.571 | −1.952 | 0.091 | −2.130 | −1.773 |
| H | −2.086 | 0.083 | −2.252 | −1.927 | −2.375 | 0.100 | −2.571 | −2.182 |
| I | −0.860 | 0.053 | −0.964 | −0.757 | −1.201 | 0.082 | −1.364 | −1.047 |
| J | −0.398 | 0.111 | −0.617 | −0.178 | −0.798 | 0.130 | −1.056 | −0.544 |
表3 1P-ASM和1P-ASM-R*的容易度参数的后验估计结果
| 状态 | 1P-ASM | 1P-ASM-R* | ||||||
|---|---|---|---|---|---|---|---|---|
| 均值 | SD | 95%HPDL | 95%HPDU | 均值 | SD | 95%HPDL | 95%HPDU | |
| A | 0.872 | 0.033 | 0.809 | 0.935 | 0.667 | 0.049 | 0.568 | 0.764 |
| B | 1.606 | 0.048 | 1.511 | 1.699 | 1.331 | 0.068 | 1.198 | 1.459 |
| C | 1.415 | 0.052 | 1.316 | 1.515 | 1.093 | 0.076 | 0.947 | 1.244 |
| D | 1.452 | 0.059 | 1.339 | 1.567 | 1.089 | 0.088 | 0.916 | 1.266 |
| E | 1.940 | 0.074 | 1.800 | 2.088 | 1.536 | 0.101 | 1.336 | 1.733 |
| F | 0.329 | 0.118 | 0.099 | 0.553 | −0.086 | 0.138 | −0.353 | 0.180 |
| G | −1.721 | 0.078 | −1.875 | −1.571 | −1.952 | 0.091 | −2.130 | −1.773 |
| H | −2.086 | 0.083 | −2.252 | −1.927 | −2.375 | 0.100 | −2.571 | −2.182 |
| I | −0.860 | 0.053 | −0.964 | −0.757 | −1.201 | 0.082 | −1.364 | −1.047 |
| J | −0.398 | 0.111 | −0.617 | −0.178 | −0.798 | 0.130 | −1.056 | −0.544 |
| 样本量 | 序列长度 | 学习效应大小 | LOO | WAIC |
|---|---|---|---|---|
| 200 | 短 | 0 | 38% | 38% |
| 0.1 | 70% | 72% | ||
| 0.3 | 98% | 98% | ||
| 长 | 0 | 26% | 26% | |
| 0.1 | 100% | 100% | ||
| 0.3 | 100% | 100% | ||
| 1000 | 短 | 0 | 28% | 28% |
| 0.1 | 94% | 94% | ||
| 0.3 | 100% | 100% | ||
| 长 | 0 | 26% | 26% | |
| 0.1 | 100% | 100% | ||
| 0.3 | 100% | 100% |
表4 1P-ASM和1P-ASM-R*的模型拟合结果
| 样本量 | 序列长度 | 学习效应大小 | LOO | WAIC |
|---|---|---|---|---|
| 200 | 短 | 0 | 38% | 38% |
| 0.1 | 70% | 72% | ||
| 0.3 | 98% | 98% | ||
| 长 | 0 | 26% | 26% | |
| 0.1 | 100% | 100% | ||
| 0.3 | 100% | 100% | ||
| 1000 | 短 | 0 | 28% | 28% |
| 0.1 | 94% | 94% | ||
| 0.3 | 100% | 100% | ||
| 长 | 0 | 26% | 26% | |
| 0.1 | 100% | 100% | ||
| 0.3 | 100% | 100% |
| 样本量 | 序列 长度 | 学习效应大小 | Bias | RMSE | ||
|---|---|---|---|---|---|---|
| 1P- ASM | 1P- ASM-R* | 1P- ASM | 1P- ASM-R* | |||
| 200 | 短 | 0 | 0.018 | 0.017 | 0.580 | 0.581 |
| 0.1 | 0.025 | 0.015 | 0.584 | 0.583 | ||
| 0.3 | 0.040 | 0.017 | 0.601 | 0.596 | ||
| 长 | 0 | 0.027 | 0.027 | 0.449 | 0.449 | |
| 0.1 | 0.040 | 0.026 | 0.472 | 0.464 | ||
| 0.3 | 0.058 | 0.025 | 0.524 | 0.501 | ||
| 1000 | 短 | 0 | −0.023 | −0.023 | 0.586 | 0.586 |
| 0.1 | −0.021 | −0.022 | 0.590 | 0.589 | ||
| 0.3 | −0.023 | −0.017 | 0.609 | 0.605 | ||
| 长 | 0 | −0.020 | −0.020 | 0.447 | 0.447 | |
| 0.1 | 0.012 | −0.009 | 0.471 | 0.466 | ||
| 0.3 | −0.012 | 0.005 | 0.525 | 0.502 | ||
表5 能力参数估计的返真性情况
| 样本量 | 序列 长度 | 学习效应大小 | Bias | RMSE | ||
|---|---|---|---|---|---|---|
| 1P- ASM | 1P- ASM-R* | 1P- ASM | 1P- ASM-R* | |||
| 200 | 短 | 0 | 0.018 | 0.017 | 0.580 | 0.581 |
| 0.1 | 0.025 | 0.015 | 0.584 | 0.583 | ||
| 0.3 | 0.040 | 0.017 | 0.601 | 0.596 | ||
| 长 | 0 | 0.027 | 0.027 | 0.449 | 0.449 | |
| 0.1 | 0.040 | 0.026 | 0.472 | 0.464 | ||
| 0.3 | 0.058 | 0.025 | 0.524 | 0.501 | ||
| 1000 | 短 | 0 | −0.023 | −0.023 | 0.586 | 0.586 |
| 0.1 | −0.021 | −0.022 | 0.590 | 0.589 | ||
| 0.3 | −0.023 | −0.017 | 0.609 | 0.605 | ||
| 长 | 0 | −0.020 | −0.020 | 0.447 | 0.447 | |
| 0.1 | 0.012 | −0.009 | 0.471 | 0.466 | ||
| 0.3 | −0.012 | 0.005 | 0.525 | 0.502 | ||
| 样本量 | 序列 长度 | 学习效应 大小 | Bias | RMSE | |
|---|---|---|---|---|---|
| 200 | 短 | 0 | 0.013 | 0.013 | 0.006 |
| 0.1 | 0.128 | 0.028 | 0.009 | ||
| 0.3 | 0.334 | 0.034 | 0.009 | ||
| 长 | 0 | 0.003 | 0.003 | 0.001 | |
| 0.1 | 0.120 | 0.020 | 0.001 | ||
| 0.3 | 0.335 | 0.035 | 0.002 | ||
| 1000 | 短 | 0 | 0.002 | 0.002 | 0.001 |
| 0.1 | 0.104 | 0.004 | 0.002 | ||
| 0.3 | 0.312 | 0.012 | 0.002 | ||
| 长 | 0 | −0.005 | −0.005 | 0.000 | |
| 0.1 | 0.103 | 0.003 | 0.000 | ||
| 0.3 | 0.303 | 0.003 | 0.000 |
表6 学习效应参数估计的返真性情况
| 样本量 | 序列 长度 | 学习效应 大小 | Bias | RMSE | |
|---|---|---|---|---|---|
| 200 | 短 | 0 | 0.013 | 0.013 | 0.006 |
| 0.1 | 0.128 | 0.028 | 0.009 | ||
| 0.3 | 0.334 | 0.034 | 0.009 | ||
| 长 | 0 | 0.003 | 0.003 | 0.001 | |
| 0.1 | 0.120 | 0.020 | 0.001 | ||
| 0.3 | 0.335 | 0.035 | 0.002 | ||
| 1000 | 短 | 0 | 0.002 | 0.002 | 0.001 |
| 0.1 | 0.104 | 0.004 | 0.002 | ||
| 0.3 | 0.312 | 0.012 | 0.002 | ||
| 长 | 0 | −0.005 | −0.005 | 0.000 | |
| 0.1 | 0.103 | 0.003 | 0.000 | ||
| 0.3 | 0.303 | 0.003 | 0.000 |
| 样本量 | 序列 长度 | 学习效应大小 | β1 | β2 | β3 | β4 | β5 | β6 | β7 | β8 | β9 | β10 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 200 | 短 | 0 | 0.018 | −0.078 | −0.077 | −0.086 | −0.174 | −0.083 | 0.130 | 0.203 | 0.066 | 0.059 |
| 0.1 | 0.060 | 0.013 | 0.054 | 0.079 | 0.071 | 0.078 | 0.214 | 0.295 | 0.184 | 0.225 | ||
| 0.3 | 0.108 | 0.310 | 0.404 | 0.484 | 0.537 | 0.431 | 0.465 | 0.524 | 0.556 | 0.614 | ||
| 长 | 0 | −0.034 | −0.045 | −0.037 | −0.092 | −0.093 | −0.129 | −0.046 | −0.036 | 0.000 | −0.044 | |
| 0.1 | 0.158 | 0.156 | 0.235 | 0.264 | 0.225 | 0.298 | 0.147 | 0.249 | 0.252 | 0.197 | ||
| 0.3 | 0.409 | 0.557 | 0.657 | 0.724 | 0.821 | 0.509 | 0.474 | 0.544 | 0.583 | 0.467 | ||
| 1000 | 短 | 0 | 0.019 | 0.013 | 0.022 | 0.020 | −0.014 | −0.040 | 0.023 | 0.045 | 0.014 | 0.016 |
| 0.1 | 0.068 | 0.154 | 0.199 | 0.238 | 0.236 | 0.187 | 0.143 | 0.199 | 0.202 | 0.215 | ||
| 0.3 | 0.192 | 0.423 | 0.529 | 0.607 | 0.631 | 0.631 | 0.398 | 0.489 | 0.588 | 0.613 | ||
| 长 | 0 | 0.012 | 0.017 | 0.011 | 0.016 | 0.022 | 0.002 | 0.017 | 0.002 | −0.001 | 0.021 | |
| 0.1 | 0.197 | 0.235 | 0.268 | 0.299 | 0.342 | 0.341 | 0.209 | 0.242 | 0.281 | 0.283 | ||
| 0.3 | 0.456 | 0.635 | 0.749 | 0.851 | 0.939 | 0.787 | 0.502 | 0.560 | 0.650 | 0.689 |
表A1 模拟研究中1P-ASM在各条件下的Bias
| 样本量 | 序列 长度 | 学习效应大小 | β1 | β2 | β3 | β4 | β5 | β6 | β7 | β8 | β9 | β10 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 200 | 短 | 0 | 0.018 | −0.078 | −0.077 | −0.086 | −0.174 | −0.083 | 0.130 | 0.203 | 0.066 | 0.059 |
| 0.1 | 0.060 | 0.013 | 0.054 | 0.079 | 0.071 | 0.078 | 0.214 | 0.295 | 0.184 | 0.225 | ||
| 0.3 | 0.108 | 0.310 | 0.404 | 0.484 | 0.537 | 0.431 | 0.465 | 0.524 | 0.556 | 0.614 | ||
| 长 | 0 | −0.034 | −0.045 | −0.037 | −0.092 | −0.093 | −0.129 | −0.046 | −0.036 | 0.000 | −0.044 | |
| 0.1 | 0.158 | 0.156 | 0.235 | 0.264 | 0.225 | 0.298 | 0.147 | 0.249 | 0.252 | 0.197 | ||
| 0.3 | 0.409 | 0.557 | 0.657 | 0.724 | 0.821 | 0.509 | 0.474 | 0.544 | 0.583 | 0.467 | ||
| 1000 | 短 | 0 | 0.019 | 0.013 | 0.022 | 0.020 | −0.014 | −0.040 | 0.023 | 0.045 | 0.014 | 0.016 |
| 0.1 | 0.068 | 0.154 | 0.199 | 0.238 | 0.236 | 0.187 | 0.143 | 0.199 | 0.202 | 0.215 | ||
| 0.3 | 0.192 | 0.423 | 0.529 | 0.607 | 0.631 | 0.631 | 0.398 | 0.489 | 0.588 | 0.613 | ||
| 长 | 0 | 0.012 | 0.017 | 0.011 | 0.016 | 0.022 | 0.002 | 0.017 | 0.002 | −0.001 | 0.021 | |
| 0.1 | 0.197 | 0.235 | 0.268 | 0.299 | 0.342 | 0.341 | 0.209 | 0.242 | 0.281 | 0.283 | ||
| 0.3 | 0.456 | 0.635 | 0.749 | 0.851 | 0.939 | 0.787 | 0.502 | 0.560 | 0.650 | 0.689 |
| 样本量 | 序列 长度 | 学习效应大小 | β1 | β2 | β3 | β4 | β5 | β6 | β7 | β8 | β9 | β10 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 200 | 短 | 0 | 0.012 | −0.094 | −0.099 | −0.112 | −0.201 | −0.103 | 0.116 | 0.185 | 0.043 | 0.038 |
| 0.1 | −0.009 | −0.149 | −0.154 | −0.165 | −0.199 | −0.129 | 0.079 | 0.120 | −0.038 | −0.006 | ||
| 0.3 | −0.055 | −0.113 | −0.141 | −0.154 | −0.160 | −0.067 | 0.135 | 0.093 | 0.006 | 0.045 | ||
| 长 | 0 | −0.038 | −0.051 | −0.046 | −0.101 | −0.103 | −0.135 | −0.051 | −0.041 | −0.006 | −0.049 | |
| 0.1 | −0.052 | −0.107 | −0.067 | −0.076 | −0.152 | 0.023 | −0.085 | −0.011 | −0.043 | −0.101 | ||
| 0.3 | −0.055 | −0.108 | −0.132 | −0.171 | −0.159 | −0.142 | −0.020 | −0.017 | −0.076 | −0.101 | ||
| 1000 | 短 | 0 | 0.019 | 0.010 | 0.019 | 0.016 | −0.019 | −0.045 | 0.020 | 0.042 | 0.011 | 0.011 |
| 0.1 | 0.006 | 0.014 | 0.021 | 0.027 | −0.003 | −0.036 | 0.018 | 0.038 | 0.008 | −0.001 | ||
| 0.3 | 0.018 | −0.003 | −0.017 | −0.036 | −0.091 | −0.042 | 0.048 | 0.029 | 0.024 | −0.011 | ||
| 长 | 0 | 0.023 | 0.029 | 0.024 | 0.030 | 0.039 | 0.016 | 0.029 | 0.015 | 0.014 | 0.037 | |
| 0.1 | 0.006 | 0.000 | −0.001 | −0.004 | 0.004 | 0.035 | −0.003 | 0.004 | 0.007 | −0.013 | ||
| 0.3 | 0.013 | 0.010 | 0.012 | 0.013 | 0.010 | −0.043 | 0.021 | 0.011 | −0.004 | −0.003 |
表A2 模拟研究中1P-ASM-R*在各条件下的Bias
| 样本量 | 序列 长度 | 学习效应大小 | β1 | β2 | β3 | β4 | β5 | β6 | β7 | β8 | β9 | β10 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 200 | 短 | 0 | 0.012 | −0.094 | −0.099 | −0.112 | −0.201 | −0.103 | 0.116 | 0.185 | 0.043 | 0.038 |
| 0.1 | −0.009 | −0.149 | −0.154 | −0.165 | −0.199 | −0.129 | 0.079 | 0.120 | −0.038 | −0.006 | ||
| 0.3 | −0.055 | −0.113 | −0.141 | −0.154 | −0.160 | −0.067 | 0.135 | 0.093 | 0.006 | 0.045 | ||
| 长 | 0 | −0.038 | −0.051 | −0.046 | −0.101 | −0.103 | −0.135 | −0.051 | −0.041 | −0.006 | −0.049 | |
| 0.1 | −0.052 | −0.107 | −0.067 | −0.076 | −0.152 | 0.023 | −0.085 | −0.011 | −0.043 | −0.101 | ||
| 0.3 | −0.055 | −0.108 | −0.132 | −0.171 | −0.159 | −0.142 | −0.020 | −0.017 | −0.076 | −0.101 | ||
| 1000 | 短 | 0 | 0.019 | 0.010 | 0.019 | 0.016 | −0.019 | −0.045 | 0.020 | 0.042 | 0.011 | 0.011 |
| 0.1 | 0.006 | 0.014 | 0.021 | 0.027 | −0.003 | −0.036 | 0.018 | 0.038 | 0.008 | −0.001 | ||
| 0.3 | 0.018 | −0.003 | −0.017 | −0.036 | −0.091 | −0.042 | 0.048 | 0.029 | 0.024 | −0.011 | ||
| 长 | 0 | 0.023 | 0.029 | 0.024 | 0.030 | 0.039 | 0.016 | 0.029 | 0.015 | 0.014 | 0.037 | |
| 0.1 | 0.006 | 0.000 | −0.001 | −0.004 | 0.004 | 0.035 | −0.003 | 0.004 | 0.007 | −0.013 | ||
| 0.3 | 0.013 | 0.010 | 0.012 | 0.013 | 0.010 | −0.043 | 0.021 | 0.011 | −0.004 | −0.003 |
| 样本量 | 序列 长度 | 学习效应大小 | β1 | β2 | β3 | β4 | β5 | β6 | β7 | β8 | β9 | β10 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 200 | 短 | 0 | 0.132 | 0.223 | 0.205 | 0.220 | 0.275 | 0.478 | 0.296 | 0.360 | 0.238 | 0.359 |
| 0.1 | 0.149 | 0.182 | 0.180 | 0.238 | 0.298 | 0.447 | 0.321 | 0.386 | 0.289 | 0.434 | ||
| 0.3 | 0.173 | 0.361 | 0.449 | 0.526 | 0.596 | 0.661 | 0.524 | 0.590 | 0.592 | 0.699 | ||
| 长 | 0 | 0.083 | 0.093 | 0.133 | 0.180 | 0.209 | 0.550 | 0.163 | 0.139 | 0.137 | 0.281 | |
| 0.1 | 0.174 | 0.184 | 0.266 | 0.293 | 0.305 | 0.532 | 0.219 | 0.292 | 0.323 | 0.431 | ||
| 0.3 | 0.416 | 0.564 | 0.664 | 0.734 | 0.843 | 0.709 | 0.496 | 0.570 | 0.637 | 0.644 | ||
| 1000 | 短 | 0 | 0.069 | 0.092 | 0.096 | 0.110 | 0.134 | 0.261 | 0.139 | 0.159 | 0.112 | 0.150 |
| 0.1 | 0.090 | 0.183 | 0.222 | 0.265 | 0.273 | 0.302 | 0.206 | 0.244 | 0.243 | 0.273 | ||
| 0.3 | 0.200 | 0.432 | 0.536 | 0.617 | 0.642 | 0.706 | 0.413 | 0.513 | 0.601 | 0.644 | ||
| 长 | 0 | 0.038 | 0.052 | 0.052 | 0.066 | 0.092 | 0.242 | 0.069 | 0.072 | 0.088 | 0.153 | |
| 0.1 | 0.201 | 0.239 | 0.274 | 0.305 | 0.350 | 0.416 | 0.218 | 0.254 | 0.295 | 0.320 | ||
| 0.3 | 0.458 | 0.637 | 0.751 | 0.853 | 0.945 | 0.855 | 0.508 | 0.567 | 0.662 | 0.720 |
表A3 模拟研究中1P-ASM在各条件下的RMSE
| 样本量 | 序列 长度 | 学习效应大小 | β1 | β2 | β3 | β4 | β5 | β6 | β7 | β8 | β9 | β10 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 200 | 短 | 0 | 0.132 | 0.223 | 0.205 | 0.220 | 0.275 | 0.478 | 0.296 | 0.360 | 0.238 | 0.359 |
| 0.1 | 0.149 | 0.182 | 0.180 | 0.238 | 0.298 | 0.447 | 0.321 | 0.386 | 0.289 | 0.434 | ||
| 0.3 | 0.173 | 0.361 | 0.449 | 0.526 | 0.596 | 0.661 | 0.524 | 0.590 | 0.592 | 0.699 | ||
| 长 | 0 | 0.083 | 0.093 | 0.133 | 0.180 | 0.209 | 0.550 | 0.163 | 0.139 | 0.137 | 0.281 | |
| 0.1 | 0.174 | 0.184 | 0.266 | 0.293 | 0.305 | 0.532 | 0.219 | 0.292 | 0.323 | 0.431 | ||
| 0.3 | 0.416 | 0.564 | 0.664 | 0.734 | 0.843 | 0.709 | 0.496 | 0.570 | 0.637 | 0.644 | ||
| 1000 | 短 | 0 | 0.069 | 0.092 | 0.096 | 0.110 | 0.134 | 0.261 | 0.139 | 0.159 | 0.112 | 0.150 |
| 0.1 | 0.090 | 0.183 | 0.222 | 0.265 | 0.273 | 0.302 | 0.206 | 0.244 | 0.243 | 0.273 | ||
| 0.3 | 0.200 | 0.432 | 0.536 | 0.617 | 0.642 | 0.706 | 0.413 | 0.513 | 0.601 | 0.644 | ||
| 长 | 0 | 0.038 | 0.052 | 0.052 | 0.066 | 0.092 | 0.242 | 0.069 | 0.072 | 0.088 | 0.153 | |
| 0.1 | 0.201 | 0.239 | 0.274 | 0.305 | 0.350 | 0.416 | 0.218 | 0.254 | 0.295 | 0.320 | ||
| 0.3 | 0.458 | 0.637 | 0.751 | 0.853 | 0.945 | 0.855 | 0.508 | 0.567 | 0.662 | 0.720 |
| 样本量 | 序列 长度 | 学习效应大小 | β1 | β2 | β3 | β4 | β5 | β6 | β7 | β8 | β9 | β10 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 200 | 短 | 0 | 0.131 | 0.255 | 0.246 | 0.237 | 0.314 | 0.461 | 0.279 | 0.361 | 0.262 | 0.352 |
| 0.1 | 0.154 | 0.262 | 0.275 | 0.305 | 0.381 | 0.458 | 0.264 | 0.316 | 0.266 | 0.364 | ||
| 0.3 | 0.162 | 0.238 | 0.280 | 0.302 | 0.359 | 0.527 | 0.296 | 0.317 | 0.268 | 0.320 | ||
| 长 | 0 | 0.109 | 0.116 | 0.151 | 0.204 | 0.214 | 0.561 | 0.178 | 0.163 | 0.167 | 0.274 | |
| 0.1 | 0.109 | 0.161 | 0.177 | 0.150 | 0.252 | 0.441 | 0.205 | 0.169 | 0.219 | 0.418 | ||
| 0.3 | 0.113 | 0.163 | 0.184 | 0.230 | 0.267 | 0.508 | 0.162 | 0.190 | 0.283 | 0.484 | ||
| 1000 | 短 | 0 | 0.065 | 0.119 | 0.113 | 0.135 | 0.155 | 0.292 | 0.150 | 0.171 | 0.129 | 0.170 |
| 0.1 | 0.072 | 0.132 | 0.132 | 0.151 | 0.166 | 0.272 | 0.162 | 0.181 | 0.145 | 0.207 | ||
| 0.3 | 0.064 | 0.106 | 0.120 | 0.152 | 0.183 | 0.355 | 0.129 | 0.176 | 0.158 | 0.235 | ||
| 长 | 0 | 0.050 | 0.065 | 0.071 | 0.084 | 0.108 | 0.251 | 0.082 | 0.081 | 0.097 | 0.154 | |
| 0.1 | 0.054 | 0.049 | 0.071 | 0.078 | 0.075 | 0.240 | 0.070 | 0.090 | 0.093 | 0.158 | ||
| 0.3 | 0.071 | 0.070 | 0.083 | 0.092 | 0.119 | 0.329 | 0.082 | 0.096 | 0.152 | 0.235 |
表A4 模拟研究中1P-ASM-R*在各条件下的RMSE
| 样本量 | 序列 长度 | 学习效应大小 | β1 | β2 | β3 | β4 | β5 | β6 | β7 | β8 | β9 | β10 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 200 | 短 | 0 | 0.131 | 0.255 | 0.246 | 0.237 | 0.314 | 0.461 | 0.279 | 0.361 | 0.262 | 0.352 |
| 0.1 | 0.154 | 0.262 | 0.275 | 0.305 | 0.381 | 0.458 | 0.264 | 0.316 | 0.266 | 0.364 | ||
| 0.3 | 0.162 | 0.238 | 0.280 | 0.302 | 0.359 | 0.527 | 0.296 | 0.317 | 0.268 | 0.320 | ||
| 长 | 0 | 0.109 | 0.116 | 0.151 | 0.204 | 0.214 | 0.561 | 0.178 | 0.163 | 0.167 | 0.274 | |
| 0.1 | 0.109 | 0.161 | 0.177 | 0.150 | 0.252 | 0.441 | 0.205 | 0.169 | 0.219 | 0.418 | ||
| 0.3 | 0.113 | 0.163 | 0.184 | 0.230 | 0.267 | 0.508 | 0.162 | 0.190 | 0.283 | 0.484 | ||
| 1000 | 短 | 0 | 0.065 | 0.119 | 0.113 | 0.135 | 0.155 | 0.292 | 0.150 | 0.171 | 0.129 | 0.170 |
| 0.1 | 0.072 | 0.132 | 0.132 | 0.151 | 0.166 | 0.272 | 0.162 | 0.181 | 0.145 | 0.207 | ||
| 0.3 | 0.064 | 0.106 | 0.120 | 0.152 | 0.183 | 0.355 | 0.129 | 0.176 | 0.158 | 0.235 | ||
| 长 | 0 | 0.050 | 0.065 | 0.071 | 0.084 | 0.108 | 0.251 | 0.082 | 0.081 | 0.097 | 0.154 | |
| 0.1 | 0.054 | 0.049 | 0.071 | 0.078 | 0.075 | 0.240 | 0.070 | 0.090 | 0.093 | 0.158 | ||
| 0.3 | 0.071 | 0.070 | 0.083 | 0.092 | 0.119 | 0.329 | 0.082 | 0.096 | 0.152 | 0.235 |
| [1] |
Borsboom, D., Mellenbergh, G. J., & Van Heerden, J. (2003). The theoretical status of latent variables. Psychological Review, 110(2), 203-219.
doi: 10.1037/0033-295X.110.2.203 pmid: 12747522 |
| [2] | Breiman, L. (2001). Statistical modeling: The two cultures. Statistical Science, 16(3), 199-215. |
| [3] | Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., … Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1), 1-32. |
| [4] |
Chen, G., & Chen, P. (2019). Explanatory item response theory models: Theory and application. Advances in Psychological Science, 27(5), 937-950.
doi: 10.3724/SP.J.1042.2019.00937 |
|
[陈冠宇, 陈平. (2019). 解释性项目反应理论模型:理论与应用. 心理科学进展, 27(5), 937-950.]
doi: 10.3724/SP.J.1042.2019.00937 |
|
| [5] |
Chen, Y. (2020). A continuous-time dynamic choice measurement model for problem-solving process data. Psychometrika, 85(4), 1052-1075.
doi: 10.1007/s11336-020-09734-1 pmid: 33346883 |
| [6] | Chen, Y., Zhang, J., Yang, Y., & Lee, Y. (2022). Latent space model for process data. Journal of Educational Measurement, 59(4), 517-535. |
| [7] | De Boeck, P., & Wilson, M. (2004). Explanatory item response models: A generalized linear and nonlinear approach. New York, NY: Springer. |
| [8] |
Fu, Y., Chen, Q, & Zhan, P. (2023). Binary modeling of action sequences in problem-solving tasks: One- and two-parameter action sequence model. Acta Psychologica Sinica, 55(8), 1383-1396.
doi: 10.3724/SP.J.1041.2023.01383 |
|
[付颜斌, 陈琦鹏, 詹沛达. (2023). 问题解决任务中行动序列的二分类建模:单/两参数行动序列模型. 心理学报, 55(8), 1383-1396.]
doi: 10.3724/SP.J.1041.2023.01383 |
|
| [9] | Fu, Y., Zhan, P., Chen, Q., & Jiao, H. (2024). Joint modeling of action sequences and action time in computer-based interactive tasks. Behavior Research Methods, 56(5), 4293-4310. |
| [10] | Gelfand, A. E., Dey, D. K., & Chang, H. (1992). Model Determination using predictive distributions with implementation via sampling-based methods (technical report, No. SOL ONR 462). Palo Alto, CA: Department of Statistics, Stanford University. |
| [11] | Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis (3rd ed.). Boca Raton, FL: Chapman & Hall/CRC Press. |
| [12] | Gelman, A., Meng, X.-L., & Stern, H. (1996). Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica, 6(4), 733-760. |
| [13] | Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7(4), 457-472. |
| [14] | Goode, N., & Beckmann, J. F. (2010). You need to know: There is a causal relationship between structural knowledge and control performance in complex problem solving tasks. Intelligence, 38(3), 345-352. |
| [15] | Han, Y., Liu, H., & Ji, F. (2022). A sequential response model for analyzing process data on technology-based problem-solving tasks. Multivariate Behavioral Research, 57(6), 960-977. |
| [16] |
Han, Y., Xiao, Y., & Liu, H. (2022). Feature extraction and ability estimation of process data in the problem-solving test. Advances in Psychological Science, 30(6), 1393-1409.
doi: 10.3724/SP.J.1042.2022.01393 |
|
[韩雨婷, 肖悦, 刘红云. (2022). 问题解决测验中过程数据的特征抽取与能力评估. 心理科学进展, 30(6), 1393-1409.]
doi: 10.3724/SP.J.1042.2022.01393 |
|
| [17] | Hao, J., Shu, Z., & von Davier, A. (2015). Analyzing process data from game/scenario-based tasks: An edit distance approach. Journal of Educational Data Mining, 7(1), 33-50. |
| [18] | He, Q., Borgonovi, F., & Paccagnella, M. (2021). Leveraging process data to assess adults’ problem-solving skills: Using sequence mining to identify behavioral patterns across digital tasks. Computers & Education, 166, Article 104170. |
| [19] | He, Q., Borgonovi, F., & Suárez-Álvarez, J. (2023). Clustering sequential navigation patterns in multiple-source reading tasks with dynamic time warping method. Journal of Computer Assisted Learning, 39(3), 719-736. |
| [20] |
LaMar, M. M. (2018). Markov decision process measurement model. Psychometrika, 83(1), 67-88.
doi: 10.1007/s11336-017-9570-0 pmid: 28447309 |
| [21] |
Levy, R. (2019). Dynamic Bayesian network modeling of game-based diagnostic assessments. Multivariate Behavioral Research, 54(6), 771-794.
doi: 10.1080/00273171.2019.1590794 pmid: 30942094 |
| [22] | Levy, R. (2020). Implications of considering response process data for greater and lesser psychometrics. Educational Assessment, 25(3), 218-235. |
| [23] | Li, M., Liu, Y., & Liu, H. (2020). Analysis of the problem- solving strategies in computer-based dynamic assessment: The extension and application of multilevel mixture IRT model. Acta Psychologica Sinica, 52(4), 528-540. |
|
[李美娟, 刘玥, 刘红云. (2020). 计算机动态测验中问题解决过程策略的分析: 多水平混合IRT模型的拓展与应用. 心理学报, 52(4), 528-540.]
doi: 10.3724/SP.J.1041.2020.00528 |
|
| [24] |
Liu, Y., Xu, H., Chen, Q., & Zhan, P. (2022). The measurement of problem-solving competence using process data. Advances in Psychological Science, 30(3), 522-535.
doi: 10.3724/SP.J.1042.2022.00522 |
|
[刘耀辉, 徐慧颖, 陈琦鹏, 詹沛达. (2022). 基于过程数据的问题解决能力测量及数据分析方法. 心理科学进展, 30(3), 522-535.]
doi: 10.3724/SP.J.1042.2022.00522 |
|
| [25] | Novick, L. R., & Bassok, M. (2005). Problem solving. In In K. J. Holyoak & R. G. Morrison (Eds.), The Cambridge handbook of thinking and reasoning (pp. 321-349). Cambridge University Press. |
| [26] | OECD. (2013). PISA 2012 assessment and analytical framework: Mathematics, reading, science, problem solving and financial literacy. PISA, OECD Publishing, Paris. |
| [27] | Qiao, X., & Jiao, H. (2018). Data mining techniques in analyzing process data: A didactic. Frontiers in Psychology, 9, Article 2231. |
| [28] | Shu, Z., Bergner, Y., Zhu, M., & Hao, J. (2017). An item response theory analysis of problem-solving processes in scenario-based tasks. Psychological Test and Assessment Modeling, 59(1), 109-131. |
| [29] | Stan Development Team. (2024). RStan: The R interface to Stan (Version 2.32.6)[R]. https://mc-stan.org/ |
| [30] | Tang, X. (2024). A latent hidden Markov model for process data. Psychometrika, 89(1), 205-240. |
| [31] |
Tang, X., Wang, Z., He, Q., Liu, J., & Ying, Z. (2020). Latent feature extraction for process data via multidimensional scaling. Psychometrika, 85(2), 378-397.
doi: 10.1007/s11336-020-09708-3 pmid: 32572672 |
| [32] | Ulitzsch, E., He, Q., & Pohl, S. (2022). Using sequence mining techniques for understanding incorrect behavioral patterns on interactive tasks. Journal of Educational and Behavioral Statistics, 47(1), 3-35. |
| [33] | Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27(5), 1413-1432. |
| [34] |
Wang, P., & Liu, H. (2024). Polytomous effectiveness indicators in complex problem-solving tasks and their applications in developing measurement model. Psychometrika, 89(3), 877-902.
doi: 10.1007/s11336-024-09963-8 pmid: 38592619 |
| [35] | Wang, Z., Tang, X., Liu, J., & Ying, Z. (2023). Subtask analysis of process data through a predictive model. British Journal of Mathematical and Statistical Psychology, 76(1), 211-235. |
| [36] | Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research, 11, 3571-3594. |
| [37] | Xiao, Y., He, Q., Veldkamp, B., & Liu, H. (2021). Exploring latent states of problem‐solving competence using hidden Markov model on process data. Journal of Computer Assisted Learning, 37(5), 1232-1247. |
| [38] | Xiao, Y., & Liu, H. (2024). A state response measurement model for problem-solving process data. Behavior Research Methods, 56(1), 258-277. |
| [39] | Xu, X., Zhang, S., Guo, J., & Xin, T. (2024). Biclustering of log data: Insights from a computer-based complex problem solving assessment. Journal of Intelligence, 12(1), Article 10, 1-32. |
| [40] |
Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science, 12(6), 1100-1122.
doi: 10.1177/1745691617693393 pmid: 28841086 |
| [41] | Yuan, J., Li, M., & Liu, H. (2023). The development and challenge of contextualized testing. Journal of China Examinations, 3, 17-26. |
| [袁建林, 李美娟, 刘红云. (2023). 情境化测验的进展与挑战. 中国考试, 3, 17-26.] | |
| [42] |
Zhan, P., & Qiao, X. (2022). Diagnostic classification analysis of problem-solving competence using process data: An item expansion method. Psychometrika, 87(4), 1529-1547.
doi: 10.1007/s11336-022-09855-9 pmid: 35389193 |
| [43] | Zheng, Y., Nydick, S., Huang, S., & Zhang, S. (2024). MxML (exploring the relationship between measurement and machine learning): Current state of the field. Educational Measurement: Issues and Practice, 43(1), 19-38. |
| [1] | 付颜斌, 陈琦鹏, 詹沛达. 问题解决任务中行动序列的二分类建模:单/两参数行动序列模型[J]. 心理学报, 2023, 55(8): 1383-1396. |
| [2] | 董念念, 尹奎, 邢璐, 孙鑫, 董雅楠. 领导每日消极反馈对员工创造力的影响机制[J]. 心理学报, 2023, 55(5): 831-843. |
| [3] | 童昊, 喻晓锋, 秦春影, 彭亚风, 钟小缘. 多级计分测验中基于残差统计量的被试拟合研究[J]. 心理学报, 2022, 54(9): 1122-1136. |
| [4] | 任赫, 陈平. 两种新的多维计算机化分类测验终止规则[J]. 心理学报, 2021, 53(9): 1044-1058. |
| [5] | 李美娟, 刘玥, 刘红云. 计算机动态测验中问题解决过程策略的分析:多水平混合IRT模型的拓展与应用[J]. 心理学报, 2020, 52(4): 528-540. |
| [6] | 罗芬, 王晓庆, 蔡艳, 涂冬波. 基于基尼指数的双目标CD-CAT选题策略[J]. 心理学报, 2020, 52(12): 1452-1465. |
| [7] | 李美佳, 庄丹琪, 彭华茂. 基于问题解决式的类比推理的老化:表面相似性和结构相似性的作用[J]. 心理学报, 2018, 50(11): 1282-1291. |
| [8] | 陈平. 两种新的计算机化自适应测验在线标定方法[J]. 心理学报, 2016, 48(9): 1184-1198. |
| [9] | 孟祥斌;陶剑;陈莎莉. 四参数Logistic模型潜在特质参数的 Warm加权极大似然估计[J]. 心理学报, 2016, 48(8): 1047-1056. |
| [10] | 李文福;童丹丹;邱江;张庆林. 科学发明问题解决的脑机制再探[J]. 心理学报, 2016, 48(4): 331-342. |
| [11] | 汪文义; 宋丽红;丁树良. 复杂决策规则下MIRT的分类准确性和分类一致性[J]. 心理学报, 2016, 48(12): 1612-1624. |
| [12] | 詹沛达;陈平;边玉芳. 使用验证性补偿多维IRT模型进行认知诊断评估[J]. 心理学报, 2016, 48(10): 1347-1356. |
| [13] | 张梅;辛自强;林崇德. 三人问题解决中的惯例:测量及合作水平的影响[J]. 心理学报, 2015, 47(6): 814-825. |
| [14] | 詹沛达;李晓敏;王文中;边玉芳;王立君. 多维题组效应认知诊断模型[J]. 心理学报, 2015, 47(5): 689-701. |
| [15] | 张博;黎坚;徐楚;李一茗. 11~14岁超常儿童与普通儿童问题解决能力的发展比较[J]. 心理学报, 2014, 46(12): 1823-1834. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
