[1] Aguirre, G. K., & D'Esposito, M. (1999). Topographical disorientation: A synthesis and taxonomy. Brain, 122(9), 1613-1628. [2] Bassett D. S., Wymbs N. F., Porter M. A., Mucha P. J., Carlson J. M., & Grafton S. T. (2011). Dynamic reconfiguration of human brain networks during learning. Proceedings of the National Academy of Sciences, 108(18), 7641-7646. [3] Bassett D. S., Yang M., Wymbs N. F., & Grafton S. T. (2015). Learning-induced autonomy of sensorimotor systems. Nature Neuroscience, 18(5), 744-751. [4] Bi T., Chen J., Zhou T., He Y., & Fang F. (2014). Function and structure of human left fusiform cortex are closely associated with perceptual learning of faces. Current Biology, 24(2), 222-227. [5] Boccia M., Guariglia C., Sabatini U., & Nemmi F. (2016). Navigating toward a novel environment from a route or survey perspective: Neural correlates and context-dependent connectivity. Brain Structure and Function, 221(4), 2005-2021. [6] Boccia M., Nemmi F., & Guariglia C. (2014). Neuropsychology of environmental navigation in humans: Review and meta-analysis of FMRI studies in healthy participants. Neuropsychology Review, 24, 236-251. [7] Byrne P., Becker S., & Burgess N. (2007). Remembering the past and imagining the future: A neural model of spatial memory and imagery. Psychological Review, 114(2), 340-375. [8] Chen Q., Weidner R., Weiss P. H., Marshall J. C., & Fink G. R. (2012). Neural interaction between spatial domain and spatial reference frame in parietal-occipital junction. Journal of Cognitive Neuroscience, 24(11), 2223-2236. [9] Ciaramelli E., Rosenbaum R. S., Solcz S., Levine B., & Moscovitch M. (2010). Mental space travel: Damage to posterior parietal cortex prevents egocentric navigation and reexperiencing of remote spatial memories. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(3), 619-634. [10] Dosher, B. A., & Lu, Z. L. (1998). Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. Proceedings of the National Academy of Sciences, 95(23), 13988-13993. [11] Dresler M., Shirer W. R., Konrad B. N., Müller N. C., Wagner I. C., Fernández G., ... Greicius M. D. (2017). Mnemonic training reshapes brain networks to support superior memory. Neuron, 93(5), 1227-1235. e1226. [12] Epstein R. A., Patai E. Z., Julian J. B., & Spiers H. J. (2017). The cognitive map in humans: Spatial navigation and beyond. Nature Neuroscience, 20(11), 1504-1513. [13] Evans, G. W., & Pezdek, K. (1980). Cognitive mapping: Knowledge of real-world distance and location information. Journal of Experimental Psychology: Human Learning and Memory, 6(1), 13-24. [14] Frankenstein J., Mohler B. J., Bülthoff H. H., & Meilinger T. (2012). Is the map in our head oriented north?. Psychological Science, 23(2), 120-125. [15] Gagnon S. A., Brunyé T. T., Gardony A., Noordzij M. L., Mahoney C. R., & Taylor H. A. (2014). Stepping into a map: Initial heading direction influences spatial memory flexibility. Cognitive Science, 38(2), 275-302. [16] Galati G., Lobel E., Vallar G., Berthoz A., Pizzamiglio L., & Le Bihan D. (2000). The neural basis of egocentric and allocentric coding of space in humans: A functional magnetic resonance study. Experimental Brain Research, 133(2), 156-164. [17] Grady C. L., Rieck J. R., Nichol D., Rodrigue K. M., & Kennedy K. M. (2021). Influence of sample size and analytic approach on stability and interpretation of brain-behavior correlations in task-related fMRI data. Human Brain Mapping, 42(1), 204-219. [18] Hao X., Huang Y., Song Y., Kong X., & Liu J. (2017). Experience with the cardinal coordinate system contributes to the precision of cognitive maps. Frontiers in Psychology, 8, 1166. [19] Hirshhorn M., Grady C., Rosenbaum R. S., Winocur G., & Moscovitch M. (2012). Brain regions involved in the retrieval of spatial and episodic details associated with a familiar environment: An fMRI study. Neuropsychologia, 50(13), 3094-3106. [20] Huang Y., Zhen Z., Song Y., Zhu Q., Wang S., & Liu J. (2013). Motor training increases the stability of activation patterns in the primary motor cortex. PLoS One, 8(1), e53555. [21] Iaria G., Chen J. K., Guariglia C., Ptito A., & Petrides M. (2007). Retrosplenial and hippocampal brain regions in human navigation: Complementary functional contributions to the formation and use of cognitive maps. European Journal of Neuroscience, 25(3), 890-899. [22] Janzen G., Jansen C., & van Turennout M. (2008). Memory consolidation of landmarks in good navigators. Hippocampus, 18(1), 40-47. [23] Janzen, G., & Van Turennout, M. (2004). Selective neural representation of objects relevant for navigation. Nature Neuroscience, 7(6), 673-677. [24] Jonker T. R., Seli P., Cheyne J. A., & Smilek D. (2013). Performance reactivity in a continuous-performance task: Implications for understanding post-error behavior. Consciousness and Cognition, 22(4), 1468-1476. [25] Jordan K., Schadow J., Wuestenberg T., Heinze H. J., & Jäncke L. (2004). Different cortical activations for subjects using allocentric or egocentric strategies in a virtual navigation task. Neuroreport, 15(1), 135-140. [26] Keerativittayayut R., Aoki R., Sarabi M. T., Jimura K., & Nakahara K. (2018). Large-scale network integration in the human brain tracks temporal fluctuations in memory encoding performance. Elife, 7, e32696. [27] Kitchin, R. M. (1994). Cognitive maps: What are they and why study them? Journal of Environmental Psychology, 14(1), 1-19. [28] Klatzky, R. L. (1998). Allocentric and egocentric spatial representations: Definitions, distinctions, and interconnections. In Freska, C., Habel, C., & Wender, K.F.(Eds.), Spatial cognition: An interdisciplinary approach to representing and processing spatial knowledge (pp. 1-17). Springer. [29] Kravitz D. J., Saleem K. S., Baker C. I., & Mishkin M. (2011). A new neural framework for visuospatial processing. Nature Reviews Neuroscience, 12(4), 217-230. [30] Liu N., Li H., Su W., & Chen Q. (2017). Common and specific neural correlates underlying the spatial congruency effect induced by the egocentric and allocentric reference frame. Human Brain Mapping, 38(4), 2112-2127. [31] Maguire E. A., Burgess N., Donnett J. G., Frackowiak R. S., Frith C. D., & O'Keefe J. (1998). Knowing where and getting there: A human navigation network. Science, 280(5365), 921-924. [32] Milivojevic B., Johnson B., Hamm J., & Corballis M. (2003). Non-identical neural mechanisms for two types of mental transformation: Event-related potentials during mental rotation and mental paper folding. Neuropsychologia, 41(10), 1345-1356. [33] Mohr H., Wolfensteller U., Betzel R. F., Mišić B., Sporns O., Richiardi J., & Ruge H. (2016). Integration and segregation of large-scale brain networks during short-term task automatization. Nature Communications, 7(1), 13217. [34] Montello D. R.(1998). A new framework for understanding the acquisition of spatial knowledge in large-scale environments. In Egenhofer, M. J., & Golledge, R. G. (eds.), Spatial and temporal reasoning in geographic information systems (pp. 143-154). New York: Oxford University Press. [35] Morgan L. K., MacEvoy S. P., Aguirre G. K., & Epstein R. A. (2011). Distances between real-world locations are represented in the human hippocampus. Journal of Neuroscience, 31(4), 1238-1245. [36] Neggers S. F., Van der Lubbe, R. H., Ramsey N. F., & Postma A. (2006). Interactions between ego- and allocentric neuronal representations of space. Neuroimage, 31(1), 320-331. [37] Nemmi F., Piras F., Péran P., Incoccia C., Sabatini U., & Guariglia C. (2013). Landmark sequencing and route knowledge: An fMRI study. Cortex, 49(2), 507-519. [38] Nori, R., & Piccardi, L. (2011). Familiarity and spatial cognitive style: How important are they for spatial representation. In Thomas, J. B.(Ed.), Spatial memory: Visuospatial processes, cognitive performance and developmental effects (pp. 123-144). New York: Nova Science Publishers. [39] Parslow D. M., Rose D., Brooks B., Fleminger S., Gray J. A., Giampietro V., ... Andrew C. (2004). Allocentric spatial memory activation of the hippocampal formation measured with fMRI. Neuropsychology, 18(3), 450-461. [40] Reifegerste J., Jarvis R., & Felser C. (2020). Effects of chronological age on native and nonnative sentence processing: Evidence from subject-verb agreement in German. Journal of Memory and Language, 111, 104083. [41] Rosenbaum R. S., Winocur G., Grady C. L., Ziegler M., & Moscovitch M. (2007). Memory for familiar environments learned in the remote past: fMRI studies of healthy people and an amnesic person with extensive bilateral hippocampal lesions. Hippocampus, 17(12), 1241-1251. [42] Rosenbaum R. S., Ziegler M., Winocur G., Grady C. L., & Moscovitch M. (2004). “I have often walked down this street before”: fMRI studies on the hippocampus and other structures during mental navigation of an old environment. Hippocampus, 14(7), 826-835. [43] Ruotolo F., Ruggiero G., Raemaekers M., Iachini T., Van der Ham I., Fracasso A., & Postma A. (2019). Neural correlates of egocentric and allocentric frames of reference combined with metric and non-metric spatial relations. Neuroscience, 409, 235-252. [44] Saj A., Cojan Y., Musel B., Honoré J., Borel L., & Vuilleumier P. (2014). Functional neuro-anatomy of egocentric versus allocentric space representation. Neurophysiologie Clinique/Clinical Neurophysiology, 44(1), 33-40. [45] Schinazi, V. R., & Epstein, R. A. (2010). Neural correlates of real-world route learning. Neuroimage, 53(2), 725-735. [46] Schinazi V. R., Nardi D., Newcombe N. S., Shipley T. F., & Epstein R. A. (2013). Hippocampal size predicts rapid learning of a cognitive map in humans. Hippocampus, 23(6), 515-528. [47] Shepard, R. N., & Feng, C. (1972). A chronometric study of mental paper folding. Cognitive Psychology, 3(2), 228-243. [48] Siegel, A. W., & White, S. H. (1975). The development of spatial representations of large-scale environments. Advances in Child Development and Behavior, 10, 9-55. [49] Spiers, H. J., & Maguire, E. A. (2006). Thoughts, behaviour, and brain dynamics during navigation in the real world. Neuroimage, 31(4), 1826-1840. [50] Spiers, H. J., & Maguire, E. A. (2007). A navigational guidance system in the human brain. Hippocampus, 17(8), 618-626. [51] Sulpizio V., Committeri G., Lambrey S., Berthoz A., & Galati G. (2013). Selective role of lingual/parahippocampal gyrus and retrosplenial complex in spatial memory across viewpoint changes relative to the environmental reference frame. Behavioural Brain Research, 242, 62-75. [52] Suthana N. A., Ekstrom A. D., Moshirvaziri S., Knowlton B., & Bookheimer S. Y. (2009). Human hippocampal CA1 involvement during allocentric encoding of spatial information. Journal of Neuroscience, 29(34), 10512-10519. [53] Tambini A., Rimmele U., Phelps E. A., & Davachi L. (2017). Emotional brain states carry over and enhance future memory formation. Nature Neuroscience, 20(2), 271-278. [54] Taylor, H. A., & Tversky, B. (1992). Spatial mental models derived from survey and route descriptions. Journal of Memory and Language, 31(2), 261-292. [55] Visser R. M., Scholte H. S., & Kindt M. (2011). Associative learning increases trial-by-trial similarity of BOLD-MRI patterns. Journal of Neuroscience, 31(33), 12021-12028. [56] Vogeley, K., & Fink, G. R. (2003). Neural correlates of the first-person-perspective. Trends in Cognitive Sciences, 7(1), 38-42. [57] Weniger G., Ruhleder M., Wolf S., Lange C., & Irle E. (2009). Egocentric memory impaired and allocentric memory intact as assessed by virtual reality in subjects with unilateral parietal cortex lesions. Neuropsychologia, 47(1), 59-69. [58] Weniger G., Siemerkus J., Schmidt-Samoa C., Mehlitz M., Baudewig J., Dechent P., & Irle E. (2010). The human parahippocampal cortex subserves egocentric spatial learning during navigation in a virtual maze. Neurobiology of Learning and Memory, 93(1), 46-55. [59] Wolbers, T., & Wiener, J. M. (2014). Challenges for identifying the neural mechanisms that support spatial navigation: The impact of spatial scale. Frontiers in Human Neuroscience, 8, 571. [60] Xue G., Dong Q., Chen C., Lu Z., Mumford J. A., & Poldrack R. A. (2010). Greater neural pattern similarity across repetitions is associated with better memory. Science, 330(6000), 97-101. [61] Yu M., Li X., Song Y., & Liu J. (2021). Visual association learning induces global network reorganization. Neuropsychologia, 154, 107789. [62] Yu M., Song H., Huang J., Song Y., & Liu J. (2020). Motor learning improves the stability of large-scale brain connectivity pattern. Frontiers in Human Neuroscience, 14, 571733. |