[1] |
Awh, E., Belopolsky, A.V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8),437-443.
doi: 10.1016/j.tics.2012.06.010
URL
|
[2] |
Burnham, B.R., Harris, A.M., & Suda, M.T. (2011). Relationship between working memory capacity and contingent involuntary orienting. Visual Cognition, 19(8),983-1002.
doi: 10.1080/13506285.2011.603710
URL
|
[3] |
Chun, M.M., & Jiang, Y.H. (1999). Top-down attentional guidance based on implicit learning of visual covariation. Psychological Science, 10(4),360-365.
doi: 10.1111/1467-9280.00168
URL
|
[4] |
Eimer, M., & Kiss, M. (2008). Involuntary attentional capture is determined by task set: Evidence from event-related brain potentials. Journal of Cognitive Neuroscience, 20(8),1423-1433.
doi: 10.1162/jocn.2008.20099
URL
|
[5] |
Failing, M., & Theeuwes, J. (2019). More capture, more suppression: Distractor suppression due to statistical regularities is determined by the magnitude of attentional capture. Psychonomic Bulletin & Review, 27(1),86-95.
doi: 10.3758/s13423-019-01672-z
URL
|
[6] |
Failing, M., Wang, B., & Theeuwes, J. (2019). Spatial suppression due to statistical regularities is driven by distractor suppression not by target activation. Attention, Perception, & Psychophysics, 817(5),1405-1414.
|
[7] |
Ferrante, O., Patacca, A., Di Caro, V., Della Libera, C., Santandrea, E., & Chelazzi, L. (2018). Altering spatial priority maps via statistical learning of target selection and distractor filtering. Cortex, 102,67-95.
doi: S0010-9452(17)30334-9
pmid: 29096874
|
[8] |
Folk, C.L., Remington, R.W., & Johnston, J.C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception & Performance, 18(4),1030-1044.
|
[9] |
Franconeri, S.L., & Simons, D.J. (2003). Moving and looming stimuli capture attention. Perception & Psychophysics, 65(7),999-1010.
doi: 10.3758/BF03194829
URL
|
[10] |
Fukuda, K., & Vogel, E.K. (2011). Individual differences in recovery time from attentional capture. Psychological Science, 22(3),361-368.
doi: 10.1177/0956797611398493
URL
|
[11] |
Gaspar, J.M., & McDonald, J.J. (2014). Suppression of salient objects prevents distraction in visual search. Journal of Neuroscience, 34(16),5658-5666.
doi: 10.1523/JNEUROSCI.4161-13.2014
URL
|
[12] |
Gaspelin, N., Gaspar, J.M., & Luck, S.J. (2019). Oculomotor inhibition of salient distractors: Voluntary inhibition cannot override selection history. Visual Cognition, 27(3-4),227-246.
|
[13] |
Gaspelin, N., Leonard, C.J., & Luck, S.J. (2015). Direct evidence for active suppression of salient-but-irrelevant sensory inputs. Psychological Science, 26(11),1740-1750.
doi: 10.1177/0956797615597913
URL
|
[14] |
Gaspelin, N., Leonard, C.J., & Luck, S.J. (2017). Suppression of overt attentional capture by salient-but-irrelevant color singletons. Attention, Perception, & Psychophysics, 79(1),45-62.
|
[15] |
Gaspelin, N., & Luck, S.J. (2018a). Combined electrophysiological and behavioral evidence for the suppression of salient distractors. Journal of Cognitive Neuroscience, 30(9),1265-1280.
doi: 10.1162/jocn_a_01279
URL
|
[16] |
Gaspelin, N., & Luck, S.J. (2018b). The role of inhibition in avoiding distraction by salient stimuli. Trends in Cognitive Sciences, 22(1),79-92.
doi: 10.1016/j.tics.2017.11.001
URL
|
[17] |
Gaspelin, N., & Luck, S.J. (2018c). Distinguishing among potential mechanisms of singleton suppression. Journal of Experimental Psychology: Human Perception & Performance, 44(4),626-644.
|
[18] |
Geng, J.J.& Behrmann, M. (2005). Spatial probability as an attentional cue in visual search. Perception & Psychophysics, 67(7),1252-1268.
doi: 10.3758/BF03193557
URL
|
[19] |
Gong, M.Y., Jia, K., & Li, S. (2017). Perceptual competition promotes suppression of reward salience in behavioral selection and neural representation. Journal of Neuroscience, 37(26),6242-6252.
doi: 10.1523/JNEUROSCI.0217-17.2017
URL
|
[20] |
Gong, M.Y., Jia, K., & Li, S. (2018). Reward learning drives modulation on visual attention. Chinese Journal of Applied Psychology, 24(2),99-112.
|
|
[ 龚梦园, 贾珂, 李晟. (2018). 奖赏学习对视觉注意的调控. 应用心理学>, 24(2),99-112.]
|
[21] |
Gong, M.Y., Li, S., & Yang, F.T. (2016). Reward association facilitates distractor suppression in human visual search. The European Journal of Neuroscience, 43(7),942-953.
doi: 10.1111/ejn.13174
URL
|
[22] |
Gong, M.Y., & Liu, T.S. (2020). Biased neural representation of feature-based attention in the human frontoparietal network. Journal of Neuroscience, 40(43),8386-8395.
doi: 10.1523/JNEUROSCI.0690-20.2020
URL
|
[23] |
Han, S.W., & Kim, M.S. (2009). Do the contents of working memory capture attention? Yes, but cognitive control matters. Journal of Experimental Psychology: Human Perception & Performance, 35(5),1292-1302.
|
[24] |
Harris, A.M., Jacoby, O., Remington, R.W., Becker, S.I., Mattingley, J.B. (2020). Behavioral and electrophysiological evidence for a dissociation between working memory capacity and feature-based attention. Cortex, 129,159-174.
|
[25] |
Hu, L.P., Ding, Y.L., & Qu, Z. (2019). Perceptual learning induces active suppression of physically nonsalient shapes. Psychophysiology, 56(9),e13393.
|
[26] |
Jannati, A., Gaspar, J.M., & McDonald, J.J. (2013). Tracking target and distractor processing in fixed-feature visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance, 39(6),1713-1730.
doi: 10.1037/a0032251
URL
|
[27] |
Jiang, J.F., Summerfield, C., & Egner, T. (2013). Attention sharpens the distinction between expected and unexpected percepts in the visual brain. Journal of Neuroscience, 33(47),18438-18447.
doi: 10.1523/JNEUROSCI.3308-13.2013
URL
|
[28] |
Kumada, T. (2001). Feature-based control of attention: evidence for two forms of dimension weighting. Perception & Psychophysics, 63(4),698-708.
doi: 10.3758/BF03194430
URL
|
[29] |
Lee, J., Leonard, C.J., Luck, S.J., & Geng, J.J. (2018). Dynamics of feature-based attentional selection during color-shape conjunction search. Journal of Cognitive Neuroscience, 30(12),1773-1787.
doi: 10.1162/jocn_a_01318
URL
|
[30] |
Louisa, K. (2017). The effect of stimulus size and eccentricity on attention shift latencies. Vision, 1(4),25-34.
doi: 10.3390/vision1040025
URL
|
[31] |
Maunsell, J.H.R., & Treue, S. (2006). Feature-based attention in visual cortex. Trends in Neurosciences, 29(6),317-322.
doi: 10.1016/j.tins.2006.04.001
URL
|
[32] |
Nissens, T., Failing, M., & Theeuwes, J. (2017). People look at the object they fear: Oculomotor capture by stimuli that signal threat. Cognition and Emotion, 31(8),1707-1714.
doi: 10.1080/02699931.2016.1248905
URL
|
[33] |
Ono, F., & Kawahara, J.I. (2007). The subjective size of visual stimuli affects the perceived duration of their presentation. Perception & Psychophysics, 69(6),952-957.
doi: 10.3758/BF03193932
URL
|
[34] |
Pronina, A., Grigoryan, R.K., & Kaplan, A.Y. (2018). Objective eye movements during typing in P300 BCI: The effect of stimuli size and spacing. Moscow University Psychology Bulletin, 4,120-134.
|
[35] |
Sàenz, M., Buraĉas, G.T., & Boynton, G.M. (2002). Global effects of feature-based attention in human visual cortex. Nature Neuroscience, 5(7),631-632.
doi: 10.1038/nn876
URL
|
[36] |
Sàenz, M., Buraĉas, G.T., Boynton, G.M. (2003). Global feature-based attention for motion and color. Vision Research, 43(6),629-637.
doi: 10.1016/S0042-6989(02)00595-3
URL
|
[37] |
Sawaki, R., Geng, J.J., & Luck, S.J. (2012). A common neural mechanism for preventing and terminating the allocation of attention. Journal of Neuroscience, 32(31),10725-10736.
doi: 10.1523/JNEUROSCI.1864-12.2012
URL
|
[38] |
Sawaki, R., & Luck, S.J. (2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception, & Psychophysics, 72(6),1455-1470.
|
[39] |
Sawaki, R., & Luck, S.J. (2011). Active suppression of distractors that match the contents of visual working memory. Visual Cognition, 19(7),956-972.
pmid: 22053147
|
[40] |
Sawaki, R., & Luck, S.J. (2013). Active suppression after involuntary capture of attention. Psychonomic Bulletin & Review, 20(2),296-301.
doi: 10.3758/s13423-012-0353-4
URL
|
[41] |
Stilwell, B.T., Bahle, B., & Vecera, S.P. (2019). Feature-based statistical regularities of distractors modulate attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 45(3),419-433.
doi: 10.1037/xhp0000613
URL
|
[42] |
Sun, M., Wang, E., Huang, J., Zhao, C.G., Guo, J.L., Li, D.W.,... Song, Y. (2018). Attentional selection and suppression in children and adults. Development Science, 21(6),e12684.
doi: 10.1111/desc.2018.21.issue-6
URL
|
[43] |
Vatterott, D.B., Mozer, M.C., & Vecera, S.P. (2017). Rejecting salient distractors: Generalization from experience. Attention, Perception, & Psychophysics, 80,485-499.
doi: 10.3758/s13414-017-1465-8
URL
|
[44] |
Vatterott, D.B., & Vecera, S.P. (2012). Experience-dependent attentional tuning of distractor rejection. Psychonomic Bulletin & Review, 19(5),871-878.
doi: 10.3758/s13423-012-0280-4
URL
|
[45] |
Wang, B., Samara, I., & Theeuwes, J. (2019). Statistical regularities bias overt attention. Attention, Perception, & Psychophysics, 81,1813-1821.
|
[46] |
Wang, B.& Theeuwes, J. (2018a). Statistical regularities modulate attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 44(1),13-17.
doi: 10.1037/xhp0000472
URL
|
[47] |
Wang, B., & Theeuwes, J. (2018b). How to inhibit a distractor location? Statistical learning versus active, top-down suppression. Attention, Perception, & Psychophysics, 80(4),860-870.
|
[48] |
Wang, B., & Theeuwes, J. (2018c). Statistical regularities modulate attentional capture independent of search strategy. Attention, Perception, & Psychophysics, 80(7),1763-1774.
|
[49] |
Wang H. Y., Sui, J., & Zhang M. (2018). Attentional capture is contingent on attentional control setting for semantic meaning: Evidence from modified spatial cueing paradigm. Acta Psychologica Sinica, 50(10),1071-1082.
doi: 10.3724/SP.J.1041.2018.01071
URL
|
|
[ 王慧媛, 隋洁, 张明. (2018). 语义关联的注意捕获——来自线索化范式的证据. 心理学报>, 50(10),1071-1082.]
|
[50] |
Yantis, S., & Hillstrom, A.P. (1994). Stimulus-driven attentional capture: Evidence from equiluminant visual objects. Journal of Experimental Psychology: Human Perception and Performance, 20(1),95-107.
doi: 10.1037/0096-1523.20.1.95
URL
|
[51] |
Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance, 10(5),601-621.
doi: 10.1037/0096-1523.10.5.601
URL
|
[52] |
Zhao, J.Y., & Luo, Y. (2017). Statistical regularities guide the spatial scale of attention. Attention, Perception, & Psychophysics, 79(1),24-30.
|