Advances in Psychological Science ›› 2024, Vol. 32 ›› Issue (11): 1854-1871.doi: 10.3724/SP.J.1042.2024.01854
• Regular Articles • Previous Articles Next Articles
ZHOU Fan1, TIAN Haoyue2, JIANG Yingjie2,3()
Received:
2024-01-26
Online:
2024-11-15
Published:
2024-09-05
Contact:
JIANG Yingjie
E-mail:jiangyj993@nenu.edu.cn
CLC Number:
ZHOU Fan, TIAN Haoyue, JIANG Yingjie. Rapid memory consolidation: Schema-based learning and repeated reactivation[J]. Advances in Psychological Science, 2024, 32(11): 1854-1871.
[1] | 杜建政, 杨治良. (2002). 随机棋局存在专家记忆优势效应吗? 心理学报, 34(3), 34-38. |
[2] | Ahmad, F. N., Fernandes, M., & Hockley, W. E. (2015). Improving associative memory in older adults with unitization. Aging, Neuropsychology, and Cognition, 22(4), 452-472. |
[3] |
Alam, T. R. G., Krieger-Redwood, K., Evans, M., Rice, G. E., Smallwood, J., & Jefferies, E. (2021). Intrinsic connectivity of anterior temporal lobe relates to individual differences in semantic retrieval for landmarks. Cortex, 134, 76-91.
doi: 10.1016/j.cortex.2020.10.007 pmid: 33259970 |
[4] | Alme, C. B., Miao, C., Jezek, K., Treves, A., Moser, E. I., & Moser, M. B. (2014). Place cells in the hippocampus: Eleven maps for eleven rooms. Proceedings of the National Academy of Sciences, 111(52), 18428-18435. |
[5] |
Altmann, E. M., & Gray, W. D. (2002). Forgetting to remember: The functional relationship of decay and interference. Psychological Science, 13(1), 27-33.
pmid: 11892775 |
[6] |
Anagnostaras, S. G., Maren, S., & Fanselow, M. S. (1999). Temporally graded retrograde amnesia of contextual fear after hippocampal damage in rats: Within-subjects examination. Journal of Neuroscience, 19(3), 1106-1114.
pmid: 9920672 |
[7] | Anderson, M. C., Bjork, R. A., & Bjork, E. L. (1994). Remembering can cause forgetting: Retrieval dynamics in long-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20(5), 1063-1087. |
[8] |
Antony, J. W., Ferreira, C. S., Norman, K. A., & Wimber, M. (2017). Retrieval as a fast route to memory consolidation. Trends in Cognitive Sciences, 21(8), 573-576.
doi: S1364-6613(17)30099-2 pmid: 28583416 |
[9] | Antony, J. W., & Paller, K. A. (2018). Retrieval and sleep both counteract the forgetting of spatial information. Learning & Memory, 25(6), 258-263. |
[10] |
Asfestani, M. A., Brechtmann, V., Santiago, J., Peter, A., Born, J., & Feld, G. B. (2020). Consolidation of reward memory during sleep does not require dopaminergic activation. Journal of Cognitive Neuroscience, 32(9), 1688-1703.
doi: 10.1162/jocn_a_01585 pmid: 32459129 |
[11] |
Audrain, S., Gilmore, A. W., Wilson, J. M., Schacter, D. L., & Martin, A. (2022). A role for the anterior hippocampus in autobiographical memory construction regardless of temporal distance. Journal of Neuroscience, 42(33), 6445-6452.
doi: 10.1523/JNEUROSCI.0832-22.2022 pmid: 35851328 |
[12] | Audrain, S., & McAndrews, M. P. (2022). Schemas provide a scaffold for neocortical integration of new memories over time. Nature Communications, 13(1), 5795. |
[13] | Axmacher, N., Elger, C. E., & Fell, J. (2008). Ripples in the medial temporal lobe are relevant for human memory consolidation. Brain, 131(7), 1806-1817. |
[14] | Bader, R., Opitz, B., Reith, W., & Mecklinger, A. (2014). Is a novel conceptual unit more than the sum of its parts?: FMRI evidence from an associative recognition memory study. Neuropsychologia, 61(1), 123-134. |
[15] |
Barrett, T. R., & Ekstrand, B. R. (1972). Effect of sleep on memory: III. Controlling for time-of-day effects. Journal of Experimental Psychology, 96(2), 321-327.
doi: 10.1037/h0033625 pmid: 4345763 |
[16] | Bartlett, F. C. (1932). Remembering: A study in Experimental and Social Psychology. Cambridge: Cambridge University Press. |
[17] |
Bayley, P. J., Hopkins, R. O., & Squire, L. R. (2006). The fate of old memories after medial temporal lobe damage. Journal of Neuroscience, 26(51), 13311-13317.
pmid: 17182781 |
[18] |
Berkers, R. M., van Der Linden, M., De Almeida, R. F., Müller, N. C., Bovy, L., Dresler, M.,... Fernández, G. (2017). Transient medial prefrontal perturbation reduces false memory formation. Cortex, 88, 42-52.
doi: S0010-9452(16)30360-4 pmid: 28068640 |
[19] |
Bernstein, L. J., Beig, S., Siegenthaler, A. L., & Grady, C. L. (2002). The effect of encoding strategy on the neural correlates of memory for faces. Neuropsychologia, 40(1), 86-98.
pmid: 11595264 |
[20] |
Bilalić, M., McLeod, P., & Gobet, F. (2009). Specialization effect and its influence on memory and problem solving in expert chess players. Cognitive Science, 33(6), 1117-1143.
doi: 10.1111/j.1551-6709.2009.01030.x pmid: 21585497 |
[21] | Bjork, R. A. (1994). Memory and metamemory considerations in the training of human beings. In J. Metcalfe & A. Shimamura (Eds.), Metacognition: Knowing about knowing (pp. 185-205). MIT Press. |
[22] |
Bloom, P., & Markson, L. (1998). Capacities underlying word learning. Trends in Cognitive Sciences, 2(2), 67-73.
pmid: 21227068 |
[23] |
Bonasia, K., Sekeres, M. J., Gilboa, A., Grady, C. L., Winocur, G., & Moscovitch, M. (2018). Prior knowledge modulates the neural substrates of encoding and retrieving naturalistic events at short and long delays. Neurobiology of Learning and Memory, 153, 26-39.
doi: S1074-7427(18)30039-X pmid: 29474955 |
[24] |
Bonnici, H. M., & Maguire, E. A. (2018). Two years later-Revisiting autobiographical memory representations in vmPFC and hippocampus. Neuropsychologia, 110, 159-169.
doi: S0028-3932(17)30180-X pmid: 28502632 |
[25] | Bright, P., Buckman, J., Fradera, A., Yoshimasu, H., Colchester, A. C., & Kopelman, M. D. (2006). Retrograde amnesia in patients with hippocampal, medial temporal, temporal lobe, or frontal pathology. Learning & Memory, 13(5), 545-557. |
[26] | Brodt, S., Inostroza, M., Niethard, N., & Born, J. (2023). Sleep—A brain-state serving systems memory consolidation. Neuron, 111(7), 1050-1075. |
[27] | Butler, A. C. (2010). Repeated testing produces superior transfer of learning relative to repeated studying. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(5), 1118-1133. |
[28] | Carpenter, S. K. (2011). Semantic information activated during retrieval contributes to later retention: Support for the mediator effectiveness hypothesis of the testing effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(6), 1547-1552. |
[29] | Carrier, M., & Pashler, H. (1992). The influence of retrieval on retention. Memory & Cognition, 20(6), 633-642. |
[30] |
Chan, J. C. K., Thomas, A. K., & Bulevich, J. B. (2009). Recalling a witnessed event increases eyewitness suggestibility: The reversed testing effect. Psychological Science, 20(1), 66-73.
doi: 10.1111/j.1467-9280.2008.02245.x pmid: 19037905 |
[31] |
Clark, R. E., Broadbent, N. J., & Squire, L. R. (2005). Impaired remote spatial memory after hippocampal lesions despite extensive training beginning early in life. Hippocampus, 15(3), 340-346.
pmid: 15744736 |
[32] |
Cooper, E., Greve, A., & Henson, R. N. (2019). Little evidence for Fast Mapping (FM) in adults: A review and discussion. Cognitive Neuroscience, 10(4), 196-209.
doi: 10.1080/17588928.2018.1542376 pmid: 30451079 |
[33] | Coutanche, M. N., & Thompson-Schill, S. L. (2014). Fast mapping rapidly integrates information into existing memory networks. Journal of Experimental Psychology: General, 143(6), 2296-2303. |
[34] | Cowan, E., Liu, A., Henin, S., Kothare, S., Devinsky, O., & Davachi, L. (2020). Sleep spindles promote the restructuring of memory representations in ventromedial prefrontal cortex through enhanced hippocampal-cortical functional connectivity. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 40(9), 1909-1919. |
[35] | Cowan, N., Beschin, N., & Della Sala, S. (2004). Verbal recall in amnesiacs under conditions of diminished retroactive interference. Brain, 127(4), 825-834. |
[36] |
Cowan, N., Beschin, N., Perini, M., & Della Sala, S. (2005). Just lying there, remembering: Improving recall of prose in amnesic patients with mild cognitive impairment by minimising interference. Memory, 13(3-4), 435-440.
pmid: 15948630 |
[37] |
Craik, F. I. M. (2002). Levels of processing: Past, present... and future? Memory, 10(5-6), 305-318.
pmid: 12396643 |
[38] |
D’Angelo, M. C., Kacollja, A., Rabin, J. S., Rosenbaum, R. S., & Ryan, J. D. (2015). Unitization supports lasting performance and generalization on a relational memory task: Evidence from a previously undocumented developmental amnesic case. Neuropsychologia, 77, 185-200.
doi: 10.1016/j.neuropsychologia.2015.07.025 pmid: 26232743 |
[39] | de Sousa, A. F., Cowansage, K. K., Zutshi, I., Cardozo, L. M., Yoo, E. J., Leutgeb, S., & Mayford, M. (2019). Optogenetic reactivation of memory ensembles in the retrosplenial cortex induces systems consolidation. Proceedings of the National Academy of Sciences, 116(17), 8576-8581. |
[40] |
De Vivo, L., Bellesi, M., Marshall, W., Bushong, E. A., Ellisman, M. H., Tononi, G., & Cirelli, C. (2017). Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science, 355(6324), 507-510.
doi: 10.1126/science.aah5982 pmid: 28154076 |
[41] | Delhaye, E., Tibon, R., Gronau, N., Levy, D. A., & Bastin, C. (2018). Misrecollection prevents older adults from benefitting from semantic relatedness of the memoranda in associative memory. Aging, Neuropsychology, and Cognition, 25(5), 634-654. |
[42] | Denis, D., Kim, S. Y., Kark, S. M., Daley, R. T., Kensinger, E. A., & Payne, J. D. (2022). Slow oscillation-spindle coupling is negatively associated with emotional memory formation following stress. European Journal of Neuroscience, 55(9-10), 2632-2650. |
[43] |
Dewar, M., Garcia, Y. F., Cowan, N., & Sala, S. D. (2009). Delaying interference enhances memory consolidation in amnesic patients. Neuropsychology, 23(5), 627-634.
doi: 10.1037/a0015568 pmid: 19702416 |
[44] |
Diana, R. A., Yonelinas, A. P., & Ranganath, C. (2007). Imaging recollection and familiarity in the medial temporal lobe: A three-component model. Trends in Cognitive Sciences, 11(9), 379-386.
doi: 10.1016/j.tics.2007.08.001 pmid: 17707683 |
[45] |
Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature Reviews Neuroscience, 11(2), 114-126.
doi: 10.1038/nrn2762 pmid: 20046194 |
[46] |
Dudai, Y. (2012). The restless engram: Consolidations never end. Annual Review of Neuroscience, 35, 227-247.
doi: 10.1146/annurev-neuro-062111-150500 pmid: 22443508 |
[47] |
Dudai, Y., Karni, A., & Born, J. (2015). The consolidation and transformation of memory. Neuron, 88(1), 20-32.
doi: 10.1016/j.neuron.2015.09.004 pmid: 26447570 |
[48] | Duff, M. C., Covington, N. V., Hilverman, C., & Cohen, N. J. (2020). Semantic memory and the hippocampus: Revisiting, reaffirming, and extending the reach of their critical relationship. Frontiers in Human Neuroscience, 13, 471. |
[49] |
Dumay, N., & Gaskell, M. G. (2007). Sleep-associated changes in the mental representation of spoken words. Psychological Science, 18(1), 35-39.
doi: 10.1111/j.1467-9280.2007.01845.x pmid: 17362375 |
[50] |
Eichenbaum, H. (2017). On the integration of space, time, and memory. Neuron, 95(5), 1007-1018.
doi: S0896-6273(17)30560-3 pmid: 28858612 |
[51] | Ellenbogen, J. M., Hu, P. T., Payne, J. D., Titone, D., & Walker, M. P. (2007). Human relational memory requires time and sleep. Proceedings of the National Academy of Sciences, 104(18), 7723-7728. |
[52] |
Elward, R. L., Dzieciol, A. M., & Vargha-Khadem, F. (2019). Little evidence for fast mapping in adults with developmental amnesia. Cognitive Neuroscience, 10(4), 215-217.
doi: 10.1080/17588928.2019.1593123 pmid: 30894071 |
[53] |
Fernández-Ruiz, A., Oliva, A., Fermino de Oliveira, E., Rocha-Almeida, F., Tingley, D., & Buzsáki, G. (2019). Long-duration hippocampal sharp wave ripples improve memory. Science, 364(6445), 1082-1086.
doi: 10.1126/science.aax0758 pmid: 31197012 |
[54] | Ferreira, C. S., Charest, I., & Wimber, M. (2019). Retrieval aids the creation of a generalised memory trace and strengthens episode-unique information. NeuroImage, 201, 115996. |
[55] | Ferreira, C. S., & Wimber, M. (2023). The testing effect for visual materials depends on preexisting knowledge. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(10), 1557-1571. |
[56] | Fitzroy, A. B., Kainec, K. A., Seo, J., & Spencer, R. M. C. (2021). Encoding and consolidation of motor sequence learning in young and older adults. Neurobiology of Learning and Memory, 185, 107508. |
[57] |
Frankland, P. W., & Bontempi, B. (2005). The organization of recent and remote memories. Nature Reviews Neuroscience, 6(2), 119-130.
doi: 10.1038/nrn1607 pmid: 15685217 |
[58] | Friedrich, M., Wilhelm, I., Born, J., & Friederici, A. D. (2015). Generalization of word meanings during infant sleep. Nature Communications, 6(1), 6004. |
[59] | Gais, S., Albouy, G., Boly, M., Dang-Vu, T. T., Darsaud, A., Desseilles, M.,... Peigneux, P. (2007). Sleep transforms the cerebral trace of declarative memories. Proceedings of the National Academy of Sciences, 104(47), 18778-18783. |
[60] | Galarza Vallejo, A., Kroes, M. C., Rey, E., Acedo, M. V., Moratti, S., Fernández, G., & Strange, B. A. (2019). Propofol-induced deep sedation reduces emotional episodic memory reconsolidation in humans. Science Advances, 5(3), eaav3801. |
[61] |
Ghosh, V. E., & Gilboa, A. (2014). What is a memory schema? A historical perspective on current neuroscience literature. Neuropsychologia, 53, 104-114.
doi: 10.1016/j.neuropsychologia.2013.11.010 pmid: 24280650 |
[62] |
Gilboa, A., & Marlatte, H. (2017). Neurobiology of schemas and schema-mediated memory. Trends in Cognitive Sciences, 21(8), 618-631.
doi: S1364-6613(17)30086-4 pmid: 28551107 |
[63] |
Gilboa, A., & Moscovitch, M. (2021). No consolidation without representation: Correspondence between neural and psychological representations in recent and remote memory. Neuron, 109(14), 2239-2255.
doi: 10.1016/j.neuron.2021.04.025 pmid: 34015252 |
[64] |
Girardeau, G., Benchenane, K., Wiener, S. I., Buzsáki, G., & Zugaro, M. B. (2009). Selective suppression of hippocampal ripples impairs spatial memory. Nature Neuroscience, 12(10), 1222-1223.
doi: 10.1038/nn.2384 pmid: 19749750 |
[65] |
Gisquet-Verrier, P., & Riccio, D. C. (2019). Memory integration as a challenge to the consolidation/ reconsolidation hypothesis: Similarities, differences and perspectives. Frontiers in Systems Neuroscience, 12, 71.
doi: 10.3389/fnsys.2018.00071 |
[66] |
Giuliano, A. E., Bonasia, K., Ghosh, V. E., Moscovitch, M., & Gilboa, A. (2021). Differential influence of ventromedial prefrontal cortex lesions on neural representations of schema and semantic category knowledge. Journal of Cognitive Neuroscience, 33(9), 1928-1955.
doi: 10.1162/jocn_a_01746 pmid: 34375423 |
[67] |
González-Rueda, A., Pedrosa, V., Feord, R. C., Clopath, C., & Paulsen, O. (2018). Activity-dependent downscaling of subthreshold synaptic inputs during slow-wave-sleep-like activity in vivo. Neuron, 97(6), 1244-1252.
doi: S0896-6273(18)30072-2 pmid: 29503184 |
[68] | Gordon, L. T., Bilolikar, V. K., Hodhod, T., & Thomas, A. K. (2020). How prior testing impacts misinformation processing: A dual-task approach. Memory & Cognition, 48(2), 314-324. |
[69] | Graf, P., & Schacter, D. L. (1989). Unitization and grouping mediate dissociations in memory for new associations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(5), 930-940. |
[70] | Greve, A., Cooper, E., & Henson, R. N. (2014). No evidence that ‘fast-mapping’ benefits novel learning in healthy older adults. Neuropsychologia, 60, 52-59. |
[71] | Greve, A., Cooper, E., Tibon, R., & Henson, R. N. (2019). Knowledge is power: Prior knowledge aids memory for both congruent and incongruent events, but in different ways. Journal of Experimental Psychology: General, 148(2), 325-341. |
[72] |
Greve, A., van Rossum, M. C., & Donaldson, D. I. (2007). Investigating the functional interaction between semantic and episodic memory: Convergent behavioral and electrophysiological evidence for the role of familiarity. Neuroimage, 34(2), 801-814.
pmid: 17112741 |
[73] | Guo, D., Chen, G., & Yang, J. (2023). Effects of schema on the relationship between post-encoding brain connectivity and subsequent durable memory. Scientific Reports, 13(1), 8736. |
[74] |
Guo, D., & Yang, J. (2020). Interplay of the long axis of the hippocampus and ventromedial prefrontal cortex in schema-related memory retrieval. Hippocampus, 30(3), 263-277.
doi: 10.1002/hipo.23154 pmid: 31490611 |
[75] |
Halberda, J. (2006). Is this a dax which I see before me? Use of the logical argument disjunctive syllogism supports word-learning in children and adults. Cognitive Psychology, 53(4), 310-344.
pmid: 16875685 |
[76] |
Hardt, O., Einarsson, E. Ö., & Nader, K. (2010). A bridge over troubled water: Reconsolidation as a link between cognitive and neuroscientific memory research traditions. Annual Review of Psychology, 61, 141-167.
doi: 10.1146/annurev.psych.093008.100455 pmid: 19575608 |
[77] | Head, B. Y. H., & Holmes, G. (1911). Sensory disturbances from cerebral lesions. Brain, 34(2), 103-254. |
[78] |
Hebscher, M., Wing, E., Ryan, J., & Gilboa, A. (2019). Rapid cortical plasticity supports long-term memory formation. Trends in Cognitive Sciences, 23(12), 989-1002.
doi: S1364-6613(19)30233-5 pmid: 31703929 |
[79] | Helfrich, R. F., Lendner, J. D., Mander, B. A., Guillen, H., Paff, M., Mnatsakanyan, L.,... Knight, R. T. (2019). Bidirectional prefrontal-hippocampal dynamics organize information transfer during sleep in humans. Nature Communications, 10(1), 3572. |
[80] |
Hennies, N., Ralph, M. A. L., Kempkes, M., Cousins, J. N., & Lewis, P. A. (2016). Sleep spindle density predicts the effect of prior knowledge on memory consolidation. Journal of Neuroscience, 36(13), 3799-3810.
doi: 10.1523/JNEUROSCI.3162-15.2016 pmid: 27030764 |
[81] | Herbert, D. M., & Burt, J. S. (2004). What do students remember? Episodic memory and the development of schematization. Applied Cognitive Psychology, 18(1), 77-88. |
[82] | Himmer, L., Schönauer, M., Heib, D. P. J., Schabus, M., & Gais, S. (2019). Rehearsal initiates systems memory consolidation, sleep makes it last. Science Advances, 5(4), eaav1695. |
[83] |
Hu, X., Cheng, L. Y., Chiu, M. H., & Paller, K. A. (2020). Promoting memory consolidation during sleep: A meta-analysis of targeted memory reactivation. Psychological Bulletin, 146(3), 218-244.
doi: 10.1037/bul0000223 pmid: 32027149 |
[84] | Jenkins, J. G., & Dallenbach, K. M. (1924). Obliviscence during sleep and waking. The American Journal of Psychology, 35(4), 605-612. |
[85] |
Jones, B. J., Fitzroy, A. B., & Spencer, R. M. (2019). Emotional memory moderates the relationship between sigma activity and sleep-related improvement in affect. Frontiers in Psychology, 10, 500.
doi: 10.3389/fpsyg.2019.00500 pmid: 30915002 |
[86] |
Karlsson, M. P., & Frank, L. M. (2008). Network dynamics underlying the formation of sparse, informative representations in the hippocampus. Journal of Neuroscience, 28(52), 14271-14281.
doi: 10.1523/JNEUROSCI.4261-08.2008 pmid: 19109508 |
[87] |
Karpicke, J. D., & Blunt, J. R. (2011). Retrieval practice produces more learning than elaborative studying with concept mapping. Science, 331(6018), 772-775.
doi: 10.1126/science.1199327 pmid: 21252317 |
[88] | Kim, G., Kwon, M., Kang, W., & Lee, S. H. (2021). Is reconsolidation a general property of memory? Frontiers in Human Neuroscience, 15, 643106. |
[89] |
Klinzing, J. G., Niethard, N., & Born, J. (2019). Mechanisms of systems memory consolidation during sleep. Nature Neuroscience, 22(10), 1598-1610.
doi: 10.1038/s41593-019-0467-3 pmid: 31451802 |
[90] | Kornell, N., Bjork, R. A., & Garcia, M. A. (2011). Why tests appear to prevent forgetting: A distribution-based bifurcation model. Journal of Memory and Language, 65(2), 85-97. |
[91] |
Kumaran, D., Hassabis, D., & McClelland, J. L. (2016). What learning systems do intelligent agents need? Complementary learning systems theory updated. Trends in Cognitive Sciences, 20(7), 512-534.
doi: S1364-6613(16)30043-2 pmid: 27315762 |
[92] |
Kuriyama, K., Soshi, T., & Kim, Y. (2010). Sleep deprivation facilitates extinction of implicit fear generalization and physiological response to fear. Biological Psychiatry, 68(11), 991-998.
doi: 10.1016/j.biopsych.2010.08.015 pmid: 20889142 |
[93] | Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: Finding meaning in the N400 component of the event-related brain potential (ERP). Annual Review of Psychology, 62(1), 621-647. |
[94] | Lambon Ralph, M. A., Ehsan, S., Baker, G. A., & Rogers, T. T. (2012). Semantic memory is impaired in patients with unilateral anterior temporal lobe resection for temporal lobe epilepsy. Brain, 135(1), 242-258. |
[95] | Lehmann, H., Sparks, F. T., Spanswick, S. C., Hadikin, C., McDonald, R. J., & Sutherland, R. J. (2009). Making context memories independent of the hippocampus. Learning & Memory, 16(7), 417-420. |
[96] |
Lerner, I., & Gluck, M. A. (2019). Sleep and the extraction of hidden regularities: A systematic review and the importance of temporal rules. Sleep Medicine Reviews, 47, 39-50.
doi: S1087-0792(18)30162-X pmid: 31252335 |
[97] | Lerner, I., & Gluck, M. A. (2022). Sleep facilitates extraction of temporal regularities with varying timescales. Frontiers in Behavioral Neuroscience, 16, 847083. |
[98] |
Lewis, P. A., & Durrant, S. J. (2011). Overlapping memory replay during sleep builds cognitive schemata. Trends in Cognitive Sciences, 15(8), 343-351.
doi: 10.1016/j.tics.2011.06.004 pmid: 21764357 |
[99] |
Li, W., Ma, L., Yang, G., & Gan, W.-B. (2017). REM sleep selectively prunes and maintains new synapses in development and learning. Nature Neuroscience, 20(3), 427-437.
doi: 10.1038/nn.4479 pmid: 28092659 |
[100] | Lifanov, J., Linde-Domingo, J., & Wimber, M. (2021). Feature-specific reaction times reveal a semanticisation of memories over time and with repeated remembering. Nature Communications, 12(1), 3177. |
[101] | Liu, Z.-X., Grady, C., & Moscovitch, M. (2017). Effects of prior-knowledge on brain activation and connectivity during associative memory encoding. Cerebral Cortex, 27(3), 1991-2009. |
[102] | Liu, Z.-X., Grady, C., & Moscovitch, M. (2018). The effect of prior knowledge on post-encoding brain connectivity and its relation to subsequent memory. NeuroImage, 167, 211-223. |
[103] |
Lu, B., Liu, Z., Wang, Y., & Guo, C. (2020). The different effects of concept definition and interactive imagery encoding on associative recognition for word and picture stimuli. International Journal of Psychophysiology, 158, 178-189.
doi: 10.1016/j.ijpsycho.2020.09.012 pmid: 33080290 |
[104] | Mankin, E. A., Sparks, F. T., Slayyeh, B., Sutherland, R. J., Leutgeb, S., & Leutgeb, J. K. (2012). Neuronal code for extended time in the hippocampus. Proceedings of the National Academy of Sciences, 109(47), 19462-19467. |
[105] |
Manns, J. R., Hopkins, R. O., & Squire, L. R. (2003). Semantic memory and the human hippocampus. Neuron, 38(1), 127-133.
pmid: 12691670 |
[106] | McClelland, J. L. (2013). Incorporating rapid neocortical learning of new schema-consistent information into complementary learning systems theory. Journal of Experimental Psychology: General, 142(4), 1190-1210. |
[107] |
McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102(3), 419-457.
doi: 10.1037/0033-295X.102.3.419 pmid: 7624455 |
[108] | McDermott, K. B. (2021). Practicing retrieval facilitates learning. Annual Review of Psychology, 72(1), 609-633. |
[109] |
McKenzie, S., & Eichenbaum, H. (2011). Consolidation and reconsolidation: Two lives of memories? Neuron, 71(2), 224-233.
doi: 10.1016/j.neuron.2011.06.037 pmid: 21791282 |
[110] | Meßmer, J. A., Bader, R., & Mecklinger, A. (2021). The more you know: Schema-congruency supports associative encoding of novel compound words. Evidence from event- related potentials. Brain and Cognition, 155, 105813. |
[111] | Meßmer, J. A., Bader, R., & Mecklinger, A. (2023). Schema-congruency supports the formation of unitized representations: Evidence from event-related potentials. Neuropsychologia, 194, 108782. |
[112] |
Merhav, M., Karni, A., & Gilboa, A. (2014). Neocortical catastrophic interference in healthy and amnesic adults: A paradoxical matter of time. Hippocampus, 24(12), 1653-1662.
doi: 10.1002/hipo.22353 pmid: 25154723 |
[113] |
Merhav, M., Karni, A., & Gilboa, A. (2015). Not all declarative memories are created equal: Fast Mapping as a direct route to cortical declarative representations. NeuroImage, 117, 80-92.
doi: 10.1016/j.neuroimage.2015.05.027 pmid: 25988227 |
[114] |
Michelmann, S., Staresina, B. P., Bowman, H., & Hanslmayr, S. (2019). Speed of time-compressed forward replay flexibly changes in human episodic memory. Nature Human Behaviour, 3(2), 143-154.
doi: 10.1038/s41562-018-0491-4 pmid: 30944439 |
[115] | Miller, T. D., Chong, T. T., Aimola Davies, A. M., Johnson, M. R., Irani, S. R., Husain, M.,... Rosenthal, C. R. (2020). Human hippocampal CA3 damage disrupts both recent and remote episodic memories. elife, 9, e41836. |
[116] |
Milton, A. L., & Everitt, B. J. (2010). The psychological and neurochemical mechanisms of drug memory reconsolidation: Implications for the treatment of addiction. European Journal of Neuroscience, 31(12), 2308-2319.
doi: 10.1111/j.1460-9568.2010.07249.x pmid: 20497475 |
[117] | Morris, C. D., Bransford, J. D., & Franks, J. J. (1977). Levels of processing versus transfer appropriate processing. Journal of Verbal Learning and Verbal Behavior, 16(5), 519-533. |
[118] |
Nadel, L., & Moscovitch, M. (1997). Memory consolidation, retrograde amnesia and the hippocampal complex. Current Opinion in Neurobiology, 7(2), 217-227.
doi: 10.1016/s0959-4388(97)80010-4 pmid: 9142752 |
[119] |
Nakashiba, T., Buhl, D. L., McHugh, T. J., & Tonegawa, S. (2009). Hippocampal CA3 output is crucial for ripple-associated reactivation and consolidation of memory. Neuron, 62(6), 781-787.
doi: 10.1016/j.neuron.2009.05.013 pmid: 19555647 |
[120] | Navarrete, M., Valderrama, M., & Lewis, P. A. (2020). The role of slow-wave sleep rhythms in the cortical-hippocampal loop for memory consolidation. Current Opinion in Behavioral Sciences, 32, 102-110. |
[121] | Ngo, H.-V. V., & Staresina, B. P. (2022). Shaping overnight consolidation via slow-oscillation closed-loop targeted memory reactivation. Proceedings of the National Academy of Sciences, 119(44), e2123428119. |
[122] | Nitzan, N., Swanson, R., Schmitz, D., & Buzsáki, G. (2022). Brain-wide interactions during hippocampal sharp wave ripples. Proceedings of the National Academy of Sciences, 119(20), e2200931119. |
[123] |
Norman, K. A., Newman, E. L., & Detre, G. (2007). A neural network model of retrieval-induced forgetting. Psychological Review, 114(4), 887-953.
pmid: 17907868 |
[124] | O’Connor, R. J., & Riggs, K. J. (2019). Adult fast-mapping memory research is based on a misinterpretation of developmental-word-learning data. Current Directions in Psychological Science, 28(6), 528-533. |
[125] |
O’Neill, J., Pleydell-Bouverie, B., Dupret, D., & Csicsvari, J. (2010). Play it again: Reactivation of waking experience and memory. Trends in Neurosciences, 33(5), 220-229.
doi: 10.1016/j.tins.2010.01.006 pmid: 20207025 |
[126] |
Pace-Schott, E. F., Germain, A., & Milad, M. R. (2015). Effects of sleep on memory for conditioned fear and fear extinction. Psychological Bulletin, 141(4), 835-857.
doi: 10.1037/bul0000014 pmid: 25894546 |
[127] | Paller, K. A., Creery, J. D., & Schechtman, E. (2021). Memory and sleep: How sleep cognition can change the waking mind for the better. Annual Review of Psychology, 72, 123-150. |
[128] | Pan, S. C., & Rickard, T. C. (2018). Transfer of test- enhanced learning: Meta-analytic review and synthesis. Psychological Bulletin, 144(7), 710-756. |
[129] | Parks, C. M. (2013). Transfer-appropriate processing in recognition memory: Perceptual and conceptual effects on recognition memory depend on task demands. Journal of Experimental Psychology: Learning Memory and Cognition, 39(4), 1280-1286. |
[130] | Pedrosa, R., Nazari, M., Mohajerani, M. H., Knöpfel, T., Stella, F., & Battaglia, F. P. (2022). Hippocampal gamma and sharp wave/ripples mediate bidirectional interactions with cortical networks during sleep. Proceedings of the National Academy of Sciences, 119(44), e2204959119. |
[131] | Penfield, W., & Milner, B. (1958). Memory deficit produced by bilateral lesions in the hippocampal zone. AMA Archives of Neurology & Psychiatry, 79(5), 475-497. |
[132] | Piaget, J. (1952). The origins of intelligence in children. New York: International Universities Press. |
[133] |
Poe, G. R. (2017). Sleep is for forgetting. Journal of Neuroscience, 37(3), 464-473.
doi: 10.1523/JNEUROSCI.0820-16.2017 pmid: 28100731 |
[134] | Pöhlchen, D., & Schönauer, M. (2020). Sleep-dependent memory consolidation in the light of rapid neocortical plasticity. Current Opinion in Behavioral Sciences, 33, 118-125. |
[135] | Preston, A. R., & Eichenbaum, H. (2013). Interplay of hippocampus and prefrontal cortex in memory. Current Biology, 23(17), R764-R773. |
[136] | Pyc, M. A., & Rawson, K. A. (2009). Testing the retrieval effort hypothesis: Does greater difficulty correctly recalling information lead to higher levels of memory? Journal of Memory and Language, 60(4), 437-447. |
[137] |
Pyc, M. A., & Rawson, K. A. (2010). Why testing improves memory: Mediator effectiveness hypothesis. Science, 330(6002), 335-335.
doi: 10.1126/science.1191465 pmid: 20947756 |
[138] |
Quamme, J. R., Yonelinas, A. P., & Norman, K. A. (2007). Effect of unitization on associative recognition in amnesia. Hippocampus, 17(3), 192-200.
pmid: 17203466 |
[139] | Rakowska, M., Abdellahi, M. E. A., Bagrowska, P., Navarrete, M., & Lewis, P. A. (2021). Long term effects of cueing procedural memory reactivation during NREM sleep. NeuroImage, 244, 118573. |
[140] |
Rasch, B., Büchel, C., Gais, S., & Born, J. (2007). Odor cues during slow-wave sleep prompt declarative memory consolidation. Science, 315(5817), 1426-1429.
doi: 10.1126/science.1138581 pmid: 17347444 |
[141] | Reagh, Z. M., & Yassa, M. A. (2014). Repetition strengthens target recognition but impairs similar lure discrimination: Evidence for trace competition. Learning & Memory, 21(7), 342-346. |
[142] |
Renoult, L., Irish, M., Moscovitch, M., & Rugg, M. D. (2019). From knowing to remembering: The semantic- episodic distinction. Trends in Cognitive Sciences, 23(12), 1041-1057.
doi: S1364-6613(19)30232-3 pmid: 31672430 |
[143] |
Ritvo, V. J. H., Turk-Browne, N. B., & Norman, K. A. (2019). Nonmonotonic plasticity: How memory retrieval drives learning. Trends in Cognitive Sciences, 23(9), 726-742.
doi: S1364-6613(19)30159-7 pmid: 31358438 |
[144] | Robin, J., & Moscovitch, M. (2017). Details, gist and schema: Hippocampal-neocortical interactions underlying recent and remote episodic and spatial memory. Current Opinion in Behavioral Sciences, 17, 114-123. |
[145] | Roediger III, H. L., & Abel, M. (2022). The double-edged sword of memory retrieval. Nature Reviews Psychology, 1(12), 708-720. |
[146] |
Roediger, H. L., & Karpicke, J. D. (2006). Test-enhanced learning: Taking memory tests improves long-term retention. Psychological Science, 17(3), 249-255.
doi: 10.1111/j.1467-9280.2006.01693.x pmid: 16507066 |
[147] | Roediger, H. L., & McDermott, K. B. (1995). Creating false memories: Remembering words not presented in lists. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(4), 803-814. |
[148] |
Rolls, E. T., & Kesner, R. P. (2006). A computational theory of hippocampal function, and empirical tests of the theory. Progress in Neurobiology, 79(1), 1-48.
doi: 10.1016/j.pneurobio.2006.04.005 pmid: 16781044 |
[149] |
Rowland, C. A. (2014). The effect of testing versus restudy on retention: A meta-analytic review of the testing effect. Psychological Bulletin, 140(6), 1432-1463.
doi: 10.1037/a0037559 pmid: 25150680 |
[150] |
Rugg, M. D., & Curran, T. (2007). Event-related potentials and recognition memory. Trends in Cognitive Sciences, 11(6), 251-257.
doi: 10.1016/j.tics.2007.04.004 pmid: 17481940 |
[151] |
Ryan, J. D., Moses, S. N., Barense, M., & Shayna Rosenbaum, R. (2013). Intact learning of new relations in amnesia as achieved through unitization. Journal of Neuroscience, 33(23), 9601-9613.
doi: 10.1523/JNEUROSCI.0169-13.2013 pmid: 23739957 |
[152] |
Sanders, K. E. G., Osburn, S., Paller, K. A., & Beeman, M. (2019). Targeted memory reactivation during sleep improves next-day problem solving. Psychological Science, 30(11), 1616-1624.
doi: 10.1177/0956797619873344 pmid: 31603738 |
[153] | Schapiro, A. C., McDevitt, E. A., Chen, L., Norman, K. A., Mednick, S. C., & Rogers, T. T. (2017). Sleep benefits memory for semantic category structure while preserving exemplar-specific information. Scientific Reports, 7(1), 14869. |
[154] | Schlichting, M. L., Mumford, J. A., & Preston, A. R. (2015). Learning-related representational changes reveal dissociable integration and separation signatures in the hippocampus and prefrontal cortex. Nature Communications, 6(1), 8151. |
[155] |
Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery, and Psychiatry, 20(1), 11-21.
doi: 10.1136/jnnp.20.1.11 pmid: 13406589 |
[156] |
Sekeres, M. J., Winocur, G., & Moscovitch, M. (2018). The hippocampus and related neocortical structures in memory transformation. Neuroscience Letters, 680, 39-53.
doi: S0304-3940(18)30333-1 pmid: 29733974 |
[157] | Sharon, T., Moscovitch, M., & Gilboa, A. (2011). Rapid neocortical acquisition of long-term arbitrary associations independent of the hippocampus. Proceedings of the National Academy of Sciences, 108(3), 1146-1151. |
[158] | Siler, J., & Benjamin, A. S. (2020). Long-term inference and memory following retrieval practice. Memory & Cognition, 48(4), 645-654. |
[159] |
Skaggs, W. E., & McNaughton, B. L. (1996). Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science, 271(5257), 1870-1873.
doi: 10.1126/science.271.5257.1870 pmid: 8596957 |
[160] | Skelin, I., Zhang, H., Zheng, J., Ma, S., Mander, B. A., Kim McManus, O.,... Lin, J. J. (2021). Coupling between slow waves and sharp-wave ripples engages distributed neural activity during sleep in humans. Proceedings of the National Academy of Sciences, 118(21), e2012075118. |
[161] | Smith, C. N., Urgolites, Z. J., Hopkins, R. O., & Squire, L. R. (2014). Comparison of explicit and incidental learning strategies in memory-impaired patients. Proceedings of the National Academy of Sciences, 111(1), 475-479. |
[162] | Sommer, T. (2017). The emergence of knowledge and how it supports the memory for novel related information. Cerebral Cortex, 27(3), 1906-1921. |
[163] |
Sommer, T., Hennies, N., Lewis, P. A., & Alink, A. (2022). The assimilation of novel information into schemata and its efficient consolidation. Journal of Neuroscience, 42(30), 5916-5929.
doi: 10.1523/JNEUROSCI.2373-21.2022 pmid: 35710624 |
[164] | Souza, C., Garrido, M. V., Horchak, O. V., & Carmo, J. C. (2022). Conceptual knowledge modulates memory recognition of common items: The selective role of item-typicality. Memory & Cognition, 50(1), 77-94. |
[165] |
Squire, L. R., & Alvarez, P. (1995). Retrograde amnesia and memory consolidation: A neurobiological perspective. Current Opinion in Neurobiology, 5(2), 169-177.
doi: 10.1016/0959-4388(95)80023-9 pmid: 7620304 |
[166] | Squire, L. R., Genzel, L., Wixted, J. T., & Morris, R. G. (2015). Memory consolidation. Cold Spring Harbor Perspectives in Biology, 7(8), a021766. |
[167] |
Squire, L. R., Slater, P. C., & Chace, P. M. (1975). Retrograde amnesia: Temporal gradient in very long term memory following electroconvulsive therapy. Science, 187(4171), 77-79.
pmid: 1109228 |
[168] |
Squire, L. R., Stark, C. E. L., & Clark, R. E. (2004). The medial temporal lobe. Annual Review of Neuroscience, 27, 279-306.
pmid: 15217334 |
[169] |
Squire, L. R., & Zola-Morgan, S. (1991). The medial temporal lobe memory system. Science, 253(5026), 1380-1386.
doi: 10.1126/science.1896849 pmid: 1896849 |
[170] |
Staresina, B. P., Bergmann, T. O., Bonnefond, M., Van Der Meij, R., Jensen, O., Deuker, L.,... Fell, J. (2015). Hierarchical nesting of slow oscillations, spindles and ripples in the human hippocampus during sleep. Nature Neuroscience, 18(11), 1679-1686.
doi: 10.1038/nn.4119 pmid: 26389842 |
[171] |
Staresina, B. P., & Wimber, M. (2019). A neural chronometry of memory recall. Trends in Cognitive Sciences, 23(12), 1071-1085.
doi: S1364-6613(19)30235-9 pmid: 31672429 |
[172] | Sterpenich, V., van Schie, M. K., Catsiyannis, M., Ramyead, A., Perrig, S., Yang, H. D.,... Schwartz, S. (2021). Reward biases spontaneous neural reactivation during sleep. Nature Communications, 12(1), 4162. |
[173] | Sun, W., Advani, M., Spruston, N., Saxe, A., & Fitzgerald, J. E. (2023). Organizing memories for generalization in complementary learning systems. Nature Neuroscience, 26(8), 1438-1448. |
[174] |
Sutherland, R. J., Lee, J. Q., McDonald, R. J., & Lehmann, H. (2020). Has multiple trace theory been refuted? Hippocampus, 30(8), 842-850.
doi: 10.1002/hipo.23162 pmid: 31584226 |
[175] |
Sutherland, R. J., Weisend, M. P., Mumby, D., Astur, R. S., Hanlon, F. M., Koerner, A.,... Hoesing, J. M. (2001). Retrograde amnesia after hippocampal damage: Recent vs. remote memories in two tasks. Hippocampus, 11(1), 27-42.
pmid: 11261770 |
[176] |
Tamminen, J., Davis, M. H., & Rastle, K. (2015). From specific examples to general knowledge in language learning. Cognitive Psychology, 79, 1-39.
doi: 10.1016/j.cogpsych.2015.03.003 pmid: 25898155 |
[177] |
Tamminen, J., Payne, J. D., Stickgold, R., Wamsley, E. J., & Gaskell, M. G. (2010). Sleep spindle activity is associated with the integration of new memories and existing knowledge. Journal of Neuroscience, 30(43), 14356-14360.
doi: 10.1523/JNEUROSCI.3028-10.2010 pmid: 20980591 |
[178] |
Teyler, T. J., & DiScenna, P. (1986). The hippocampal memory indexing theory. Behavioral Neuroscience, 100(2), 147-154.
pmid: 3008780 |
[179] | Tibon, R., Greve, A., & Henson, R. (2018). The missing link? Testing a schema account of unitization. Memory & Cognition, 46(7), 1023-1040. |
[180] | Tibon, R., Gronau, N., Scheuplein, A. L., Mecklinger, A., & Levy, D. A. (2014). Associative recognition processes are modulated by the semantic unitizability of memoranda. Brain and Cognition, 92, 19-31. |
[181] |
Tompary, A., & Davachi, L. (2017). Consolidation promotes the emergence of representational overlap in the hippocampus and medial prefrontal cortex. Neuron, 96(1), 228-241.
doi: S0896-6273(17)30840-1 pmid: 28957671 |
[182] |
Tononi, G., & Cirelli, C. (2014). Sleep and the price of plasticity: From synaptic and cellular homeostasis to memory consolidation and integration. Neuron, 81(1), 12-34.
doi: 10.1016/j.neuron.2013.12.025 pmid: 24411729 |
[183] |
Toppino, T. C., & Cohen, M. S. (2009). The testing effect and the retention interval: Questions and answers. Experimental Psychology, 56(4), 252-257.
doi: 10.1027/1618-3169.56.4.252 pmid: 19439397 |
[184] |
Treves, A., & Rolls, E. T. (1994). Computational analysis of the role of the hippocampus in memory. Hippocampus, 4(3), 374-391.
doi: 10.1002/hipo.450040319 pmid: 7842058 |
[185] |
Tse, D., Langston, R. F., Kakeyama, M., Bethus, I., Spooner, P. A., Wood, E. R.,... Morris, R. G. (2007). Schemas and memory consolidation. Science, 316(5821), 76-82.
doi: 10.1126/science.1135935 pmid: 17412951 |
[186] |
Tse, D., Takeuchi, T., Kakeyama, M., Kajii, Y., Okuno, H., Tohyama, C.,... Morris, R. G. (2011). Schema-dependent gene activation and memory encoding in neocortex. Science, 333(6044), 891-895.
doi: 10.1126/science.1205274 pmid: 21737703 |
[187] | van den Berg, N. H., Pozzobon, A., Fang, Z., Al-Kuwatli, J., Toor, B., Ray, L. B., & Fogel, S. M. (2022). Sleep enhances consolidation of memory traces for complex problem-solving skills. Cerebral Cortex, 32(4), 653-667. |
[188] | van Kesteren, M. T. R., & Meeter, M. (2020). How to optimize knowledge construction in the brain. Npj Science of Learning, 5(1), 5. |
[189] |
van Kesteren, M. T., Rijpkema, M., Ruiter, D. J., & Fernández, G. (2010). Retrieval of associative information congruent with prior knowledge is related to increased medial prefrontal activity and connectivity. Journal of Neuroscience, 30(47), 15888-15894.
doi: 10.1523/JNEUROSCI.2674-10.2010 pmid: 21106827 |
[190] |
van Kesteren, M. T., Ruiter, D. J., Fernandez, G., & Henson, R. N. (2012). How schema and novelty augment memory formation. Trends in Neurosciences, 35(4), 211-219.
doi: 10.1016/j.tins.2012.02.001 pmid: 22398180 |
[191] |
Vaz, A. P., Inati, S. K., Brunel, N., & Zaghloul, K. A. (2019). Coupled ripple oscillations between the medial temporal lobe and neocortex retrieve human memory. Science, 363(6430), 975-978.
doi: 10.1126/science.aau8956 pmid: 30819961 |
[192] | Wagner, U., Gais, S., & Born, J. (2001). Emotional memory formation is enhanced across sleep intervals with high amounts of rapid eye movement sleep. Learning & Memory, 8(2), 112-119. |
[193] | Wang, W. C., Brashier, N. M., Wing, E. A., Marsh, E. J., & Cabeza, R. (2018). Knowledge supports memory retrieval through familiarity, not recollection. Neuropsychologia, 113, 14-21. |
[194] |
Wang, X., Men, W., Gao, J., Caramazza, A., & Bi, Y. (2020). Two forms of knowledge representations in the human brain. Neuron, 107(2), 383-393.
doi: S0896-6273(20)30279-8 pmid: 32386524 |
[195] |
Warren, D. E., Jones, S. H., Duff, M. C., & Tranel, D. (2014). False recall is reduced by damage to the ventromedial prefrontal cortex: Implications for understanding the neural correlates of schematic memory. Journal of Neuroscience, 34(22), 7677-7682.
doi: 10.1523/JNEUROSCI.0119-14.2014 pmid: 24872571 |
[196] |
Weis, S., Specht, K., Klaver, P., Tendolkar, I., Willmes, K., Ruhlmann, J.,... Fernández, G. (2004). Process dissociation between contextual retrieval and item recognition. Neuroreport, 15(18), 2729-2733.
pmid: 15597043 |
[197] |
Wimber, M., Alink, A., Charest, I., Kriegeskorte, N., & Anderson, M. C. (2015). Retrieval induces adaptive forgetting of competing memories via cortical pattern suppression. Nature Neuroscience, 18(4), 582-589.
doi: 10.1038/nn.3973 pmid: 25774450 |
[198] |
Wimmer, G. E., Liu, Y., Vehar, N., Behrens, T. E. J., & Dolan, R. J. (2020). Episodic memory retrieval success is associated with rapid replay of episode content. Nature Neuroscience, 23(8), 1025-1033.
doi: 10.1038/s41593-020-0649-z pmid: 32514135 |
[199] | Wing, E. A., Burles, F., Ryan, J. D., & Gilboa, A. (2022). The structure of prior knowledge enhances memory in experts by reducing interference. Proceedings of the National Academy of Sciences, 119(26), e2204172119. |
[200] | Winocur, G., & Moscovitch, M. (2011). Memory transformation and systems consolidation. Journal of the International Neuropsychological Society, 17(5), 766-780. |
[201] |
Winocur, G., Moscovitch, M., & Bontempi, B. (2010). Memory formation and long-term retention in humans and animals: Convergence towards a transformation account of hippocampal-neocortical interactions. Neuropsychologia, 48(8), 2339-2356.
doi: 10.1016/j.neuropsychologia.2010.04.016 pmid: 20430044 |
[202] |
Winocur, G., Moscovitch, M., & Sekeres, M. (2007). Memory consolidation or transformation: Context manipulation and hippocampal representations of memory. Nature Neuroscience, 10(5), 555-557.
doi: 10.1038/nn1880 pmid: 17396121 |
[203] | Witkowski, S., Noh, S. M., Lee, V., Grimaldi, D., Preston, A. R., & Paller, K. A. (2021). Does memory reactivation during sleep support generalization at the cost of memory specifics? Neurobiology of Learning and Memory, 182, 107442. |
[204] | Wixted, J. T. (2004). The psychology and neuroscience of forgetting. Annual Review of Psychology, 55(1), 235-269. |
[205] | Xue, G. (2022). From remembering to reconstruction: The transformative neural representation of episodic memory. Progress in Neurobiology, 219, 102351. |
[206] | Yonelinas, A. P. (2002). The nature of recollection and familiarity: A review of 30 years of research. Journal of Memory and Language, 46(3), 441-517. |
[207] |
Yonelinas, A. P., Ranganath, C., Ekstrom, A. D., & Wiltgen, B. J. (2019). A contextual binding theory of episodic memory: Systems consolidation reconsidered. Nature Reviews Neuroscience, 20(6), 364-375.
doi: 10.1038/s41583-019-0150-4 pmid: 30872808 |
[208] | Zheng, L., Gao, Z., McAvan, A. S., Isham, E. A., & Ekstrom, A. D. (2021). Partially overlapping spatial environments trigger reinstatement in hippocampus and schema representations in prefrontal cortex. Nature Communications, 12(1), 6231. |
[209] |
Zheng, Z., Li, J., Xiao, F., Ren, W., & He, R. (2016). Unitization improves source memory in older adults: An event-related potential study. Neuropsychologia, 89, 232-244.
doi: S0028-3932(16)30224-X pmid: 27343684 |
[210] |
Zola-Morgan, S. M., & Squire, L. R. (1990). The primate hippocampal formation: Evidence for a time-limited role in memory storage. Science, 250(4978), 288-290.
pmid: 2218534 |
[1] | LIU Wei, CHEN Ruixin, GUO JinPeng. The neural replay mechanisms of episodic memory consolidation under stress in humans [J]. Advances in Psychological Science, 2024, 32(7): 1031-1047. |
[2] | PENG Zhilin, ZHENG Ruoying, HU Xiaoqing, ZHANG Dandan. The role of sleep in consolidating memory of learning in infants and toddlers [J]. Advances in Psychological Science, 2024, 32(2): 287-299. |
[3] | Jiaqi Li, Ling Liu, Huan Luo. Probing Spatiotemporal Neural Dynamics of Working Memory Reactivation [J]. Advances in Psychological Science, 2023, 31(suppl.): 74-74. |
[4] | Ye Xie, Tinghao Zhao, Wei Zhang, Yunxia Li, Yixuan Ku. Hippocampal Deterioration and Frontal Compensation of Amnestic Mild Cognitive Impairment in Visual Short-term Memory [J]. Advances in Psychological Science, 2023, 31(suppl.): 105-105. |
[5] | XIE Zhipeng, QIN Huanyu, WANG Ziye, WANG Jingyuan, HE Yi. Tainted or elegant? Sexy effect on marketing [J]. Advances in Psychological Science, 2023, 31(11): 2200-2218. |
[6] | XUE Bing, WANG Xuejiao, MA Ning, GAO Jun. Effects of oxytocin on psychological resilience: The neurochemical mechanisms in the hippocampus [J]. Advances in Psychological Science, 2021, 29(2): 311-322. |
[7] | GUO Ying, GONG Xianmin, WANG Dahua. The cognitive and neural mechanisms underlying false memory: An information processing perspective [J]. Advances in Psychological Science, 2021, 29(1): 79-92. |
[8] | WEI Hua, WANG Tao, MAO Lei, FENG Wenting, XIONG Shasha. The effect of repeated two-syllable brand name on consumers’ perception and attitude [J]. Advances in Psychological Science, 2020, 28(7): 1071-1082. |
[9] | LONG Fangfang, LI Yuchen, CHEN Xiaoyu, LI Ziyuan, LIANG Tengfei, LIU Qiang. Consolidation processing of visual working memory: Time course, pattern and mechanism [J]. Advances in Psychological Science, 2019, 27(8): 1404-1416. |
[10] | CHENG Gang, JIA Yuncheng, DING Fangyuan, ZHANG Dajun, CHEN Jia, LONG Nü. Moderating effects of facial expression on the babyface schema and its neural mechanism [J]. Advances in Psychological Science, 2019, 27(5): 761-772. |
[11] | YUAN Luyi, CHANG Ruosong, MA Jinfei. Why does a driver can not see a critical event on the road?Interaction between “bottom-up” and “top-down” processing mechanisms [J]. Advances in Psychological Science, 2019, 27(3): 557-570. |
[12] | ZHANG Jiaxin, HAI Lagan, LI Huijie. Measurement of spatial navigation and application research in cognitive aging [J]. Advances in Psychological Science, 2019, 27(12): 2019-2033. |
[13] | PAN Yangu, XIAO Yao, HU Yu, LIU Guangzeng, LI Zhiyang. Effects of secure attachment on empathy and altruistic behavior [J]. Advances in Psychological Science, 2019, 27(12): 2077-2083. |
[14] | BAI Xujia, CHEN Xu . Memory biases of attachment styles: Based on the interpretation of two processing modes [J]. Advances in Psychological Science, 2018, 26(3): 467-475. |
[15] | GAO Zhihua; LU Zhongyi; CUI Xinying. What is the mechanism of negation processes? Introduction and commentary on psychological theories on negation [J]. Advances in Psychological Science, 2017, 25(3): 413-423. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||