Advances in Psychological Science ›› 2024, Vol. 32 ›› Issue (3): 499-513.doi: 10.3724/SP.J.1042.2024.00499
• Regular Articles • Previous Articles Next Articles
HU Yanbing1, JIANG Xiaoming1,2()
Received:
2023-08-04
Online:
2024-03-15
Published:
2024-01-19
CLC Number:
HU Yanbing, JIANG Xiaoming. Multi-stage model of neurocognitive processing for vocal imitation[J]. Advances in Psychological Science, 2024, 32(3): 499-513.
[1] |
蔡笑, 张清芳. (2020). 言语运动系统中前馈和反馈控制整合加工的作用机制. 心理科学进展, 28(4), 588-603.
doi: 10.3724/SP.J.1042.2020.00588 |
[2] |
Adank, P., Hagoort, P., & Bekkering, H. (2010). Imitation improves language comprehension. Psychological Science, 21(12), 1903-1909.
doi: 10.1177/0956797610389192 pmid: 21135202 |
[3] |
Belyk, M., Brown, R., Beal, D. S., Roebroeck, A., McGettigan, C., Guldner, S., & Kotz, S. A. (2021). Human larynx motor cortices coordinate respiration for vocal- motor control. NeuroImage, 239, 118326.
doi: 10.1016/j.neuroimage.2021.118326 URL |
[4] |
Belyk, M., & Brown, S. (2017). The origins of the vocal brain in humans. Neuroscience & Biobehavioral Reviews, 77, 177-193.
doi: 10.1016/j.neubiorev.2017.03.014 URL |
[5] | Belyk, M., Eichert, N., & McGettigan, C. (2021). A dual larynx motor networks hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1840), 20200392. |
[6] |
Belyk, M., Johnson, J. F., & Kotz, S. A. (2018). Poor neuro-motor tuning of the human larynx: A comparison of sung and whistled pitch imitation. Royal Society Open Science, 5(4), 171544.
doi: 10.1098/rsos.171544 URL |
[7] |
Belyk, M., Lee, Y. S., & Brown, S. (2018). How does human motor cortex regulate vocal pitch in singers? Royal Society Open Science, 5(8), 172208.
doi: 10.1098/rsos.172208 URL |
[8] | Belyk, M., & McGettigan, C. (2022). Real-time magnetic resonance imaging reveals distinct vocal tract configurations during spontaneous and volitional laughter. Philosophical Transactions of the Royal Society B, 377(1863), 20210511. |
[9] |
Belyk, M., Pfordresher, P. Q., Liotti, M., & Brown, S. (2016). The neural basis of vocal pitch imitation in humans. Journal of Cognitive Neuroscience, 28(4), 621-635.
doi: 10.1162/jocn_a_00914 pmid: 26696298 |
[10] | Belyk, M., Schultz, B. G., Correia, J., Beal, D. S., & Kotz, S. A. (2019). Whistling shares a common tongue with speech: Bioacoustics from real-time MRI of the human vocal tract. Proceedings of the Royal Society B: Biological Sciences, 286(1911), 20191116. |
[11] |
Bernhold, Q. S., & Giles, H. (2020). Vocal accommodation and mimicry. Journal of Nonverbal Behavior, 44(1), 41-62.
doi: 10.1007/s10919-019-00317-y |
[12] |
Bono, D., Belyk, M., Longo, M. R., & Dick, F. (2022). Beyond language: The unspoken sensory-motor representation of the tongue in non-primates, non-human and human primates. Neuroscience & Biobehavioral Reviews, 139, 104730.
doi: 10.1016/j.neubiorev.2022.104730 URL |
[13] | Brown, S., Yuan, Y., & Belyk, M. (2021). Evolution of the speech-ready brain: The voice/jaw connection in the human motor cortex. Journal of Comparative Neurology, 529(5), 1018-1028. |
[14] |
Cartei, V., Oakhill, J., Garnham, A., Banerjee, R., & Reby, D. (2020). “This is what a mechanic sounds like”: Children’s vocal control reveals implicit occupational stereotypes. Psychological Science, 31(8), 957-967.
doi: 10.1177/0956797620929297 URL |
[15] | Chen, T., Lammert, A. C., & Parrell, B. (2021). Modeling sensorimotor adaptation in speech through alterations to forward and inverse models. Interspeech, 3201-3205. |
[16] | Chomsky, N., & Lightfoot, D. W. (2002). Syntactic structures. Walter de Gruyter. |
[17] |
Cohn, M., Segedin, B. F., & Zellou, G. (2022). Acoustic- phonetic properties of Siri- and human-directed speech. Journal of Phonetics, 90, 101123.
doi: 10.1016/j.wocn.2021.101123 URL |
[18] |
Cracco, E., Bardi, L., Desmet, C., Genschow, O., Rigoni, D., de Coster, L.,... Brass, M. J. P. B. (2018). Automatic imitation: A meta-analysis. Psychological Bulletin, 144(5), 453-500.
doi: 10.1037/bul0000143 pmid: 29517262 |
[19] |
Drake, E., & Corley, M. (2015). Articulatory imaging implicates prediction during spoken language comprehension. Memory & Cognition, 43(8), 1136-1147.
doi: 10.3758/s13421-015-0530-6 URL |
[20] |
Dufour, S., & Nguyen, N. (2013). How much imitation is there in a shadowing task? Frontiers in Psychology, 4, 346.
doi: 10.3389/fpsyg.2013.00346 pmid: 23801974 |
[21] |
Frühholz, S., & Schweinberger, S. R. (2021). Nonverbal auditory communication - Evidence for integrated neural systems for voice signal production and perception. Progress in Neurobiology, 199, 101948.
doi: 10.1016/j.pneurobio.2020.101948 URL |
[22] |
Galantucci, B., Fowler, C. A., & Goldstein, L. (2009). Perceptuomotor compatibility effects in speech. Attention, Perception, & Psychophysics, 71(5), 1138-1149.
doi: 10.3758/APP.71.5.1138 URL |
[23] |
Gambi, C., van de Cavey, J., & Pickering, M. J. (2022). Representation of others’ synchronous and asynchronous sentences interferes with sentence production. Quarterly Journal of Experimental Psychology, 76(1), 180-195.
doi: 10.1177/17470218221080766 URL |
[24] | Gandolfi, G., Pickering, M. J., & Garrod, S. (2022). Mechanisms of alignment: Shared control, social cognition and metacognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 378(1870), 20210362. |
[25] |
Garnier, M., Lamalle, L., & Sato, M. (2013). Neural correlates of phonetic convergence and speech imitation. Frontiers in Psychology, 4, 600.
doi: 10.3389/fpsyg.2013.00600 pmid: 24062704 |
[26] |
Goldinger, S. D. (1998). Echoes of echoes? An episodic theory of lexical access. Psychological Review, 105(2), 251-279.
pmid: 9577239 |
[27] |
Herbst, C. T. (2020). Electroglottography - An update. Journal of Voice, 34(4), 503-526.
doi: S0892-1997(18)30461-2 pmid: 30871855 |
[28] |
Heyes, C. (2001). Causes and consequences of imitation. Trends in Cognitive Sciences, 5(6), 253-261.
pmid: 11390296 |
[29] |
Heyes, C. (2011). Automatic imitation. Psychological Bulletin, 137(3), 463-483.
doi: 10.1037/a0022288 pmid: 21280938 |
[30] | Heyes, C. (2021). Imitation. Current Biology, 31(5), R228- R232. |
[31] |
Hickok, G., & Poeppel, D. (2000). Towards a functional neuroanatomy of speech perception. Trends in Cognitive Sciences, 4(4), 131-138.
pmid: 10740277 |
[32] |
Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: A framework for understanding aspects of the functional anatomy of language. Cognition, 92(1-2), 67-99.
doi: 10.1016/j.cognition.2003.10.011 pmid: 15037127 |
[33] |
Janssen, N., Kessels, R. P. C., Mars, R. B., Llera, A., Beckmann, C. F., & Roelofs, A. (2023). Dissociating the functional roles of arcuate fasciculus subtracts in speech production. Cerebral Cortex, 33(6), 2539-2547.
doi: 10.1093/cercor/bhac224 URL |
[34] |
Kim, D., & Clayards, M. (2019). Individual differences in the link between perception and production and the mechanisms of phonetic imitation. Language, Cognition and Neuroscience, 34(6), 769-786.
doi: 10.1080/23273798.2019.1582787 URL |
[35] |
Kinzler, K. D. (2021). Language as a social cue. Annual Review of Psychology, 72(1), 241-264.
doi: 10.1146/psych.2021.72.issue-1 URL |
[36] | Kuhlen, A. K., & Abdel Rahman, R. (2023). Beyond speaking: Neurocognitive perspectives on language production in social interaction. Philosophical Transactions of the Royal Society B: Biological Sciences, 378(1875), 20210483. |
[37] |
Lin, J.-F. L., Imada, T., Meltzoff, A. N., Hiraishi, H., Ikeda, T., Takahashi, T.,... Kuhl, P. K. (2023). Dual-MEG interbrain synchronization during turn-taking verbal interactions between mothers and children. Cerebral Cortex, 33(7), 4116-4134.
doi: 10.1093/cercor/bhac330 URL |
[38] | Liu, Y., Zhao, Z., Xu, M., Yu, H., Zhu, Y., Zhang, J.,... Wu, J. (2023). Decoding and synthesizing tonal language speech from brain activity. Science Advances, 9(23), eadh0478. |
[39] |
Mai, G., & Howell, P. (2023). The possible role of early- stage phase-locked neural activities in speech-in-noise perception in human adults across age and hearing loss. Hearing Research, 427, 108647.
doi: 10.1016/j.heares.2022.108647 URL |
[40] |
Martin, C. D., Branzi, F. M., & Bar, M. (2018). Prediction is production: The missing link between language production and comprehension. Scientific Reports, 8(1), 1079.
doi: 10.1038/s41598-018-19499-4 pmid: 29348611 |
[41] | Mercado, E., Mantell, J. T., & Pfordresher, P. Q. (2014). Imitating sounds: A cognitive approach to understanding vocal imitation. Comparative Cognition & Behavior Reviews, 9, 1-57. |
[42] |
Mousikou, P., Strycharczuk, P., Turk, A., & Scobbie, J. M. (2021). Coarticulation across morpheme boundaries: An ultrasound study of past-tense inflection in Scottish English. Journal of Phonetics, 88, 101101.
doi: 10.1016/j.wocn.2021.101101 URL |
[43] |
Nguyen, N., & Delvaux, V. (2015). Role of imitation in the emergence of phonological systems. Journal of Phonetics, 53, 46-54.
doi: 10.1016/j.wocn.2015.08.004 URL |
[44] |
Pardo, J. S., Jordan, K., Mallari, R., Scanlon, C., & Lewandowski, E. (2013). Phonetic convergence in shadowed speech: The relation between acoustic and perceptual measures. Journal of Memory and Language, 69(3), 183-195.
doi: 10.1016/j.jml.2013.06.002 URL |
[45] |
Pardo, J. S., Pellegrino, E., Dellwo, V., & Möbius, B. (2022). Special issue: Vocal accommodation in speech communication. Journal of Phonetics, 95, 101196.
doi: 10.1016/j.wocn.2022.101196 URL |
[46] | Pardo, J. S., & Remez, R. E. (2021). On the relation between speech perception and speech production. In J. S. Pardo, L. C. Nygaard, R. E. Remez, & D. B. Pisoni (Eds.), The Handbook of Speech Perception (pp.632-655). Wiley Online Library. https://doi.org/10.1002/9781119184096.ch23 |
[47] |
Pardo, J. S., Urmanche, A., Wilman, S., & Wiener, J. (2017). Phonetic convergence across multiple measures and model talkers. Attention, Perception, & Psychophysics, 79(2), 637-659.
doi: 10.3758/s13414-016-1226-0 URL |
[48] |
Paroni, A., Henrich Bernardoni, N., Savariaux, C., Lœvenbruck, H., Calabrese, P., Pellegrini, T.,... Gerber, S. (2021). Vocal drum sounds in human beatboxing: An acoustic and articulatory exploration using electromagnetic articulography. The Journal of the Acoustical Society of America, 149(1), 191-206.
doi: 10.1121/10.0002921 URL |
[49] |
Perrachione, T. K., Del Tufo, S. N., & Gabrieli, J. D. (2011). Human voice recognition depends on language ability. Science, 333(6042), 595.
doi: 10.1126/science.1207327 pmid: 21798942 |
[50] |
Peschke, C., Ziegler, W., Kappes, J., & Baumgaertner, A. (2009). Auditory-motor integration during fast repetition: The neuronal correlates of shadowing. NeuroImage, 47(1), 392-402.
doi: 10.1016/j.neuroimage.2009.03.061 pmid: 19345269 |
[51] |
Pfordresher, P. Q., & Mantell, J. T. (2014). Singing with yourself: Evidence for an inverse modeling account of poor-pitch singing. Cognitive Psychology, 70, 31-57.
doi: 10.1016/j.cogpsych.2013.12.005 pmid: 24480454 |
[52] |
Pickering, M. J., & Gambi, C. (2018). Predicting while comprehending language: A theory and review. Psychological Bulletin, 144(10), 1002-1044.
doi: 10.1037/bul0000158 pmid: 29952584 |
[53] |
Pickering, M. J., & Garrod, S. (2004). Toward a mechanistic psychology of dialogue. Behavioral and Brain Sciences, 27(2), 169-190.
pmid: 15595235 |
[54] |
Pickering, M. J., & Garrod, S. (2013). An integrated theory of language production and comprehension. Behavioral and Brain Sciences, 36(4), 329-347.
doi: 10.1017/S0140525X12001495 pmid: 23789620 |
[55] |
Pisanski, K., Cartei, V., McGettigan, C., Raine, J., & Reby, D. (2016). Voice modulation: A window into the origins of human vocal control? Trends in Cognitive Sciences, 20(4), 304-318.
doi: S1364-6613(16)00020-6 pmid: 26857619 |
[56] |
Shmuelof, L., & Krakauer, J. W. (2011). Are we ready for a natural history of motor learning? Neuron, 72(3), 469-476.
doi: 10.1016/j.neuron.2011.10.017 pmid: 22078506 |
[57] |
Stansbury, A. L., & Janik, V. M. (2019). Formant modification through vocal production learning in gray seals. Current Biology, 29(13), 2244-2249.e4.
doi: S0960-9822(19)30685-2 pmid: 31231051 |
[58] |
Stoeger, A. S., Mietchen, D., Oh, S., de Silva, S., Herbst, C. T., Kwon, S., & Fitch, W. T. (2012). An Asian elephant imitates human speech. Current Biology, 22(22), 2144-2148.
doi: 10.1016/j.cub.2012.09.022 pmid: 23122846 |
[59] |
Virhia, J., Kotz, S. A., & Adank, P. (2019). Emotional state dependence facilitates automatic imitation of visual speech. Quarterly Journal of Experimental Psychology, 72(12), 2833-2847.
doi: 10.1177/1747021819867856 URL |
[60] | Waters, S., Kanber, E., Lavan, N., Belyk, M., Carey, D., Cartei, V.,... McGettigan, C. (2021). Singers show enhanced performance and neural representation of vocal imitation. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1840), 20200399. |
[61] |
Wilt, H., Wu, Y., Trotter, A., & Adank, P. (2023). Automatic imitation of human and computer-generated vocal stimuli. Psychonomic Bulletin & Review, 30(3), 1093-1102.
doi: 10.3758/s13423-022-02218-6 |
[62] |
Wu, Y., Evans, B. G., & Adank, P. (2019). Sensorimotor training modulates automatic imitation of visual speech. Psychonomic Bulletin & Review, 26(5), 1711-1718.
doi: 10.3758/s13423-019-01623-8 |
[63] | Yu, A. C. L., Abrego-Collier, C., & Sonderegger, M. (2013). Phonetic imitation from an individual-difference perspective: Subjective attitude, personality and “autistic” traits. PLOS ONE, 8(9), e74746. |
[64] |
Zellou, G., Cohn, M., & Kline, T. (2021). The influence of conversational role on phonetic alignment toward voice-AI and human interlocutors. Language, Cognition and Neuroscience, 36(10), 1298-1312.
doi: 10.1080/23273798.2021.1931372 URL |
[65] |
Zhang, J., Liu, D.-Q., Qian, S., Qu, X., Zhang, P., Ding, N., & Zang, Y.-F. (2022). The neural correlates of amplitude of low-frequency fluctuation: A multimodal resting-state MEG and fMRI-EEG study. Cerebral Cortex, 33(4), 1119-1129.
doi: 10.1093/cercor/bhac124 URL |
[66] | Zhang, L., Wang, X., Alain, C., & Du, Y. (2023). Successful aging of musicians: Preservation of sensorimotor regions aids audiovisual speech-in-noise perception. Science Advances, 9(17), eadg7056. |
[1] | ZHANG Fengxiang, CHEN Meixuan, PU Yi, KONG Xiang-Zhen. Individual differences in spatial navigation: A multi-scale perspective [J]. Advances in Psychological Science, 2023, 31(9): 1642-1664. |
[2] | WEI Zhenyu, DENG Xiangshu, ZHAO Zhiying. The effect of conformity tendency on prosocial behaviors [J]. Advances in Psychological Science, 2021, 29(3): 531-539. |
[3] | ZHANG Xiuping; YANG Xiaohong; YANG Yufang. The Neural Mechanism and Influential Factors of Semantic Unification in Discourse Comprehension [J]. Advances in Psychological Science, 2015, 23(7): 1130-1141. |
[4] | JIANG Jun;WANG Zimeng;WAN Xuan;JIANG Cunmei. Temporal Processing in Music: Effects of Musical Elements and Individual Differences [J]. Advances in Psychological Science, 2014, 22(4): 650-658. |
[5] | CHEN Jiangtao; TANG Dandan; LIU Congcong; CHEN Antao. Individual Differences in Attentional Blink [J]. Advances in Psychological Science, 2014, 22(10): 1564-1572. |
[6] | ZHOU Lei;LI Shu;XU Yan;LIANG Zhuyuan. Theoretical Construction of Decision-Making Styles: An Information-Processing Approach [J]. Advances in Psychological Science, 2014, 22(1): 112-121. |
[7] | XU Xi-Zheng;ZHANG Jing-Huan;LIU Gui-Rong;LI Ying. The Influence of Rewards on Creativity and Its Mechanisms [J]. Advances in Psychological Science, 2012, 20(9): 1419-1425. |
[8] | WANG Song;LI Jing-Guang;LIU Jia. The Genetic Basis of Individual Differences in Reading Ability: A Mata-analysis of Twins Studies [J]. , 2011, 19(9): 1267-1280. |
[9] | HE Jin-Lian;GUO Shao-Dan;ZHANG Li-Yan. Generativity:Individual Differences and Influencing Factors [J]. , 2009, 17(5): 996-1001. |
[10] |
Ma Yanyan;Li Shouxin . Electrophysiological Basis of Individual Differences of Intelligence: Evidence from EEG and ERP Data [J]. , 2007, 15(6): 872-877. |
[11] | Zhang Hongyu;Xu Yan; Liu Hengchao. Social Relation Model (SRM): A New Strategy for Individual Difference Research [J]. , 2007, 15(6): 968-973. |
[12] |
Liang Zhuyuan;Xu Yan;Jiang Jiang . The Individual Differences Research in Decision Making [J]. , 2007, 15(4): 689-694. |
[13] | Zheng Xigeng;Li Yonghui;Sui Nan. The Brain Mechanisms of Psychological Dependence and Relapse of Abusive Drugs [J]. , 2006, 14(4): 522-531. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||