Advances in Psychological Science ›› 2024, Vol. 32 ›› Issue (2): 287-299.doi: 10.3724/SP.J.1042.2024.00287
• Regular Articles • Previous Articles Next Articles
PENG Zhilin1, ZHENG Ruoying2, HU Xiaoqing2, ZHANG Dandan1()
Received:
2023-06-15
Online:
2024-02-15
Published:
2023-11-23
Contact:
ZHANG Dandan
E-mail:zhangdd05@gmail.com
CLC Number:
PENG Zhilin, ZHENG Ruoying, HU Xiaoqing, ZHANG Dandan. The role of sleep in consolidating memory of learning in infants and toddlers[J]. Advances in Psychological Science, 2024, 32(2): 287-299.
论文信息 | 设计类型及样本量 | 被试 年龄 | 实验任务 | 记忆测试时间 | 睡眠类型 | 主要发现 |
---|---|---|---|---|---|---|
Axelsson et al., First Language, | 混合设计, 40 | 2.5岁 | 快速映射 | 即时、4小时延迟、24小时延迟 | 白天小睡、夜间睡眠 | 回忆正确率:睡眠组>清醒组 |
Axelsson et al., Brain Sciences, | 混合设计, 40 | 2.5岁 | 快速映射 | 即时、5小时延迟、24小时延迟 | 白天小睡、夜间睡眠 | 回忆正确率:睡眠组>清醒组 |
Friedrich et al., Nature Communications, | 混合设计, 90 | 16、19月 | 物体−类别 | 1.5小时延迟 | 白天小睡 | 睡眠组出现N400、N200-500 |
Friedrich et al., Current Biology, | 混合设计, 107 | 6~8月 | 物体−类别 | 1小时延迟 | 白天小睡 | 浅睡组出现晚期正成分、深睡组出现N400 |
Friedrich et al., Nature Communications, | 混合设计, 60 | 14~17月 | 物体−类别 | 1小时延迟 | 白天小睡 | 睡眠组N400消失, 出现FTMR |
Gómez et al., Psychological Science, | 混合设计, 48 | 15月 | 习惯化−转头偏好 | 4小时延迟 | 白天小睡 | 注视时间:睡眠组<控制组<清醒组 |
Hupbach et al., Developmental Science, | 组内设计, 两个实验各24 | 15月 | 习惯化−转头偏好 | 24小时延迟 | 实验1:白天小睡, 实验2:夜间睡眠 | 注视时间:睡眠组<清醒组 |
Horváth et al., Journal of Sleep Research, | 混合设计, 31 | 16月 | 跨模态注视偏好 | 即时、2小时延迟 | 白天小睡 | 注视时间:睡眠组<清醒组 |
Horváth et al., Sleep, | 混合设计, 28 | 16月 | 跨模态注视偏好 | 即时、1.5小时延迟 | 白天小睡 | 注视时间:睡眠组<清醒组 |
Horváth et al., Developmental Science, | 组间设计, 45 | 3月 | 视觉配对比较 | 1.5小时延迟 | 白天小睡 | 注视时间:睡眠组<清醒组 |
Johnson et al., Current Biology, | 组内设计, 28 | 2岁 | 目标记忆重激活 | 即时、一周后延迟 | 夜间睡眠 | 左侧海马、左侧前内侧颞叶激活:目标单词>新异单词 |
Kurdziel et al., PANS, | 混合设计, 40 | 3~6岁 | 视觉空间学习 | 即时、5小时延迟、24小时延迟 | 白天小睡、夜间睡眠 | 回忆正确率:睡眠组>清醒组 |
Konrad et al., Neurobiology of Learning and Memory, | 混合设计, 60 | 12月 | 延迟模仿 | 4小时延迟、24小时延迟 | 白天小睡、夜间睡眠 | 回忆正确率:睡眠组>清醒组>基线组 |
Konrad et al., Developmental Psychobiology, | 混合设计, 48 | 12月 | 延迟模仿 | 4小时延迟 | 白天小睡、夜间睡眠 | 回忆正确率:睡眠组>清醒组>基线组 |
Konrad et al., Journal of Sleep Research, | 混合设计, 96 | 15、24月 | 延迟模仿 | 24小时延迟 | 白天小睡、夜间睡眠 | 无关动作回忆正确率:基线组<睡眠组<清醒组 |
Lokhandwala & Spencer, Developmental Science, | 混合设计, 22 | 3~6岁 | 卡通图片序列记忆 | 即时、4小时延迟、24小时延迟 | 白天小睡、夜间睡眠 | 回忆正确率:睡眠组>清醒组 |
Mooney et al., Developmental Cognitive Neuroscience, | 组内设计, 48 | 2岁 | 目标记忆重激活 | 一周后延迟 | 夜间睡眠 | 右侧海马激活:目标歌曲>新异歌曲 |
Prabhakar et al., PNAS, | 组内设计, 22 | 2岁 | 目标记忆重激活 | 一周后延迟 | 夜间睡眠 | 双侧海马激活:目标歌曲>新异歌曲 |
Seehagen et al., PNAS, | 组间设计, 实验1和2为120和96 | 6、12月 | 延迟模仿 | 实验1:4小时延迟; 实验2:24小时延迟 | 实验1:白天小睡, 实验2:夜间睡眠 | 回忆正确率:睡眠组>清醒组>基线组 |
Simon et al., Brain Language, | 混合设计, 37 | 6.5月 | 习惯化−转头偏好 | 1小时延迟 | 白天小睡 | 注视时间:睡眠组<控制组<清醒组 |
Spanò et al. PNAS, | 混合设计, 50 | 1~4岁 | 物体−类别 | 1小时延迟 | 白天小睡 | 睡眠组N400消失, 出现FTMR |
Williams & Horst, Frontiers in Psychology, | 混合设计, 48 | 3岁 | 故事阅读 | 即时、2.5小时延迟、24小时延迟、一周后延迟 | 白天小睡、夜间睡眠 | 回忆正确率:睡眠组>清醒组 |
论文信息 | 设计类型及样本量 | 被试 年龄 | 实验任务 | 记忆测试时间 | 睡眠类型 | 主要发现 |
---|---|---|---|---|---|---|
Axelsson et al., First Language, | 混合设计, 40 | 2.5岁 | 快速映射 | 即时、4小时延迟、24小时延迟 | 白天小睡、夜间睡眠 | 回忆正确率:睡眠组>清醒组 |
Axelsson et al., Brain Sciences, | 混合设计, 40 | 2.5岁 | 快速映射 | 即时、5小时延迟、24小时延迟 | 白天小睡、夜间睡眠 | 回忆正确率:睡眠组>清醒组 |
Friedrich et al., Nature Communications, | 混合设计, 90 | 16、19月 | 物体−类别 | 1.5小时延迟 | 白天小睡 | 睡眠组出现N400、N200-500 |
Friedrich et al., Current Biology, | 混合设计, 107 | 6~8月 | 物体−类别 | 1小时延迟 | 白天小睡 | 浅睡组出现晚期正成分、深睡组出现N400 |
Friedrich et al., Nature Communications, | 混合设计, 60 | 14~17月 | 物体−类别 | 1小时延迟 | 白天小睡 | 睡眠组N400消失, 出现FTMR |
Gómez et al., Psychological Science, | 混合设计, 48 | 15月 | 习惯化−转头偏好 | 4小时延迟 | 白天小睡 | 注视时间:睡眠组<控制组<清醒组 |
Hupbach et al., Developmental Science, | 组内设计, 两个实验各24 | 15月 | 习惯化−转头偏好 | 24小时延迟 | 实验1:白天小睡, 实验2:夜间睡眠 | 注视时间:睡眠组<清醒组 |
Horváth et al., Journal of Sleep Research, | 混合设计, 31 | 16月 | 跨模态注视偏好 | 即时、2小时延迟 | 白天小睡 | 注视时间:睡眠组<清醒组 |
Horváth et al., Sleep, | 混合设计, 28 | 16月 | 跨模态注视偏好 | 即时、1.5小时延迟 | 白天小睡 | 注视时间:睡眠组<清醒组 |
Horváth et al., Developmental Science, | 组间设计, 45 | 3月 | 视觉配对比较 | 1.5小时延迟 | 白天小睡 | 注视时间:睡眠组<清醒组 |
Johnson et al., Current Biology, | 组内设计, 28 | 2岁 | 目标记忆重激活 | 即时、一周后延迟 | 夜间睡眠 | 左侧海马、左侧前内侧颞叶激活:目标单词>新异单词 |
Kurdziel et al., PANS, | 混合设计, 40 | 3~6岁 | 视觉空间学习 | 即时、5小时延迟、24小时延迟 | 白天小睡、夜间睡眠 | 回忆正确率:睡眠组>清醒组 |
Konrad et al., Neurobiology of Learning and Memory, | 混合设计, 60 | 12月 | 延迟模仿 | 4小时延迟、24小时延迟 | 白天小睡、夜间睡眠 | 回忆正确率:睡眠组>清醒组>基线组 |
Konrad et al., Developmental Psychobiology, | 混合设计, 48 | 12月 | 延迟模仿 | 4小时延迟 | 白天小睡、夜间睡眠 | 回忆正确率:睡眠组>清醒组>基线组 |
Konrad et al., Journal of Sleep Research, | 混合设计, 96 | 15、24月 | 延迟模仿 | 24小时延迟 | 白天小睡、夜间睡眠 | 无关动作回忆正确率:基线组<睡眠组<清醒组 |
Lokhandwala & Spencer, Developmental Science, | 混合设计, 22 | 3~6岁 | 卡通图片序列记忆 | 即时、4小时延迟、24小时延迟 | 白天小睡、夜间睡眠 | 回忆正确率:睡眠组>清醒组 |
Mooney et al., Developmental Cognitive Neuroscience, | 组内设计, 48 | 2岁 | 目标记忆重激活 | 一周后延迟 | 夜间睡眠 | 右侧海马激活:目标歌曲>新异歌曲 |
Prabhakar et al., PNAS, | 组内设计, 22 | 2岁 | 目标记忆重激活 | 一周后延迟 | 夜间睡眠 | 双侧海马激活:目标歌曲>新异歌曲 |
Seehagen et al., PNAS, | 组间设计, 实验1和2为120和96 | 6、12月 | 延迟模仿 | 实验1:4小时延迟; 实验2:24小时延迟 | 实验1:白天小睡, 实验2:夜间睡眠 | 回忆正确率:睡眠组>清醒组>基线组 |
Simon et al., Brain Language, | 混合设计, 37 | 6.5月 | 习惯化−转头偏好 | 1小时延迟 | 白天小睡 | 注视时间:睡眠组<控制组<清醒组 |
Spanò et al. PNAS, | 混合设计, 50 | 1~4岁 | 物体−类别 | 1小时延迟 | 白天小睡 | 睡眠组N400消失, 出现FTMR |
Williams & Horst, Frontiers in Psychology, | 混合设计, 48 | 3岁 | 故事阅读 | 即时、2.5小时延迟、24小时延迟、一周后延迟 | 白天小睡、夜间睡眠 | 回忆正确率:睡眠组>清醒组 |
论文信息 | 设计类型 及样本量 | 被试年龄 | 实验任务 | 记忆测试时间 | 睡眠类型 | 主要发现 |
---|---|---|---|---|---|---|
Berger & Scher, Journal of Experimental Child Psychology, | 混合设计, 28 | 9~16月 | 隧道任务 | 即时、6小时延迟 | 白天小睡 | 提示数量:睡眠组<清醒组 |
Csábi et al., Frontiers in Human Neuroscience, | 混合设计, 32 | 8~11岁 | 序列反应时 | 即时、12小时延迟 | 夜间睡眠 | 回忆正确率:睡眠组>清醒组; 反应时:睡眠组<清醒组 |
DeMasi et al., Infant Behavior & Development, | 混合设计, 29 | 10~19月 | 隧道任务 | 6小时延迟 | 白天小睡 | 提示数量:立即小睡组<延迟小睡组; 姿势切换数量:立即小睡组<延迟小睡组 |
DeMasi et al., Infancy, | 被试间设计, 78 | 10~19月 | 无 | 无 | 夜间睡眠 | 不规律的运动数量:高行走经验组>低行走经验组 |
Desrochers et al., Experimental Brain Research, | 混合设计, 36 | 3~6岁 | 序列反应时 | 即时、5小时延迟、24小时延迟 | 白天小睡、夜间睡眠 | 反应时:睡眠组<清醒组 |
Fagen & Rovee-Collier, Science, | 被试内设计, 16 | 3月 | 踢腿任务 | 连续两周 | 夜间睡眠 | 踢腿率与睡眠时间呈正相关 |
Gibson et al., Sleep and Biological Rhythms, | 被试内设计, 52 | 12月 | 无 | 连续一周 | 夜间睡眠 | 夜间睡眠效率与解决问题技能和精细运动能力呈正相关 |
Wilhelm et al., Developmental Science, | 混合设计, 35 | 4~6岁 | 序列反应时 | 30分钟延迟、2小时延迟 | 白天小睡 | 反应时:睡眠组<清醒组 |
Satomaa et al., Sleep, | 混合设计, 36 | 8月 | 无 | 无 | 夜间睡眠 | 左侧额叶和枕叶的睡眠慢波与精细运动能力呈正相关 |
Page et al., Sleep, | 混合设计, 36 | 12~30月 | 无 | 无 | 夜间睡眠 | 精细运动能力与theta节律呈正相关, 与delta节律呈负相关 |
论文信息 | 设计类型 及样本量 | 被试年龄 | 实验任务 | 记忆测试时间 | 睡眠类型 | 主要发现 |
---|---|---|---|---|---|---|
Berger & Scher, Journal of Experimental Child Psychology, | 混合设计, 28 | 9~16月 | 隧道任务 | 即时、6小时延迟 | 白天小睡 | 提示数量:睡眠组<清醒组 |
Csábi et al., Frontiers in Human Neuroscience, | 混合设计, 32 | 8~11岁 | 序列反应时 | 即时、12小时延迟 | 夜间睡眠 | 回忆正确率:睡眠组>清醒组; 反应时:睡眠组<清醒组 |
DeMasi et al., Infant Behavior & Development, | 混合设计, 29 | 10~19月 | 隧道任务 | 6小时延迟 | 白天小睡 | 提示数量:立即小睡组<延迟小睡组; 姿势切换数量:立即小睡组<延迟小睡组 |
DeMasi et al., Infancy, | 被试间设计, 78 | 10~19月 | 无 | 无 | 夜间睡眠 | 不规律的运动数量:高行走经验组>低行走经验组 |
Desrochers et al., Experimental Brain Research, | 混合设计, 36 | 3~6岁 | 序列反应时 | 即时、5小时延迟、24小时延迟 | 白天小睡、夜间睡眠 | 反应时:睡眠组<清醒组 |
Fagen & Rovee-Collier, Science, | 被试内设计, 16 | 3月 | 踢腿任务 | 连续两周 | 夜间睡眠 | 踢腿率与睡眠时间呈正相关 |
Gibson et al., Sleep and Biological Rhythms, | 被试内设计, 52 | 12月 | 无 | 连续一周 | 夜间睡眠 | 夜间睡眠效率与解决问题技能和精细运动能力呈正相关 |
Wilhelm et al., Developmental Science, | 混合设计, 35 | 4~6岁 | 序列反应时 | 30分钟延迟、2小时延迟 | 白天小睡 | 反应时:睡眠组<清醒组 |
Satomaa et al., Sleep, | 混合设计, 36 | 8月 | 无 | 无 | 夜间睡眠 | 左侧额叶和枕叶的睡眠慢波与精细运动能力呈正相关 |
Page et al., Sleep, | 混合设计, 36 | 12~30月 | 无 | 无 | 夜间睡眠 | 精细运动能力与theta节律呈正相关, 与delta节律呈负相关 |
[1] | Ackermann, S., & Rasch, B. (2014). Differential effects of non-REM and REM sleep on memory consolidation? Current Neurology and Neuroscience Reports, 14(2), 430. |
[2] |
Al-Sharman, A., & Siengsukon, C. F. (2014). Time rather than sleep appears to enhance off-line learning and transfer of learning of an implicit continuous task. Nature and Science of Sleep, 6, 27-36.
doi: 10.2147/NSS.S53789 pmid: 24624000 |
[3] |
Albouy, G., Sterpenich, V., Balteau, E., Vandewalle, G., Desseilles, M., Dang-Vu, T.,... Maquet, P. (2008). Both the hippocampus and striatum are involved in consolidation of motor sequence memory. Neuron, 58(2), 261-272.
doi: 10.1016/j.neuron.2008.02.008 pmid: 18439410 |
[4] | Axelsson, E. L., Swinton, J., Jiang, I. Y., Parker, E. V., & Horst, J. S. (2021). Prior exposure and toddlers' sleep- related memory for novel words. Brain Sciences, 11(10), 1366. |
[5] |
Axelsson, E. L., Swinton, J., Winiger, A. I., & Horst, J. S. (2018). Napping and toddlers’ memory for fast-mapped words. First Language, 38(6), 582-595.
doi: 10.1177/0142723718785490 URL |
[6] |
Berger, S. E., & Scher, A. (2017). Naps improve new walkers' locomotor problem solving. Journal of Experimental Child Psychology, 162, 292-300.
doi: S0022-0965(17)30027-9 pmid: 28599953 |
[7] | Brawn, T. P., Fenn, K. M., Nusbaum, H. C., & Margoliash, D. (2008). Consolidation of sensorimotor learning during sleep. Learning & Memory, 15(11), 815-819. |
[8] | Bremner, G., & Fogel, A. (Eds.). (2004). Blackwell handbook of infant development. Blackwell Publishing. |
[9] |
Campbell, I. G., & Feinberg, I. (2009). Longitudinal trajectories of non-rapid eye movement delta and theta EEG as indicators of adolescent brain maturation. Proceedings of the National Academy of Sciences of the United States of America, 106(13), 5177-5180.
doi: 10.1073/pnas.0812947106 pmid: 19307577 |
[10] | Clawson, B. C., Durkin, J., & Aton, S. J. (2016). Form and function of sleep spindles across the lifespan. Neural Plasticity, 2016, 6936381. |
[11] | Cousins, J. N., El-Deredy, W., Parkes, L. M., Hennies, N., & Lewis, P. A. (2016). Cued reactivation of motor learning during sleep leads to overnight changes in functional brain activity and connectivity. PLoS Biology, 14(5), e1002451. |
[12] | Csábi, E., Benedek, P., Janacsek, K., Zavecz, Z., Katona, G., & Nemeth, D. (2016). Declarative and non-declarative memory consolidation in children with sleep disorder. Frontiers in Human Neuroscience, 9, 709. |
[13] |
D'Atri, A., Novelli, L., Ferrara, M., Bruni, O., & De Gennaro, L. (2018). Different maturational changes of fast and slow sleep spindles in the first four years of life. Sleep Medicine, 42, 73-82.
doi: S1389-9457(17)31583-6 pmid: 29458750 |
[14] |
Davis, K. F., Parker, K. P., & Montgomery, G. L. (2004). Sleep in infants and young children: Part one: Normal sleep. Journal of Pediatric Health Care, 18(2), 65-71.
pmid: 15007289 |
[15] | DeMasi, A., Horger, M. N., Allia, A. M., Scher, A., & Berger, S. E. (2021). Nap timing makes a difference: Sleeping sooner rather than later after learning improves infants' locomotor problem solving. Infant Behavior & Development, 65, 101652. |
[16] |
DeMasi, A., Horger, M. N., Scher, A., & Berger, S. E. (2023). Infant motor development predicts the dynamics of movement during sleep. Infancy, 28(2), 367-387.
doi: 10.1111/infa.v28.2 URL |
[17] |
Desrochers, P. C., Kurdziel, L. B., & Spencer, R. M. (2016). Delayed benefit of naps on motor learning in preschool children. Experimental Brain Research, 234(3), 763-772.
doi: 10.1007/s00221-015-4506-3 pmid: 26645305 |
[18] |
Diekelmann, S., Wilhelm, I., & Born, J. (2009). The whats and whens of sleep-dependent memory consolidation. Sleep Medicine Reviews, 13(5), 309-321.
doi: 10.1016/j.smrv.2008.08.002 pmid: 19251443 |
[19] |
Ednick, M., Cohen, A. P., McPhail, G. L., Beebe, D., Simakajornboon, N., & Amin, R. S. (2009). A review of the effects of sleep during the first year of life on cognitive, psychomotor, and temperament development. Sleep, 32(11), 1449-1458.
doi: 10.1093/sleep/32.11.1449 pmid: 19928384 |
[20] | Eichenlaub, J. B., Jarosiewicz, B., Saab, J., Franco, B., Kelemen, J., Halgren, E., Hochberg, L. R., & Cash, S. S. (2020). Replay of learned neural firing sequences during rest in human motor cortex. Cell Reports, 31(5), 107581. |
[21] |
Ekinci, O., Isik, U., Gunes, S., & Ekinci, N. (2016). Understanding sleep problems in children with epilepsy: Associations with quality of life, Attention-Deficit Hyperactivity Disorder and maternal emotional symptoms. Seizure, 40, 108-113.
doi: 10.1016/j.seizure.2016.06.011 pmid: 27394056 |
[22] |
Fagen, J. W., & Rovee-Collier, C. (1983). Memory retrieval: A time-locked process in infancy. Science, 222(4630), 1349-1351.
pmid: 6658456 |
[23] |
Farhadian, N., Khazaie, H., Nami, M., & Khazaie, S. (2021). The role of daytime napping in declarative memory performance: A systematic review. Sleep Medicine, 84, 134-141.
doi: 10.1016/j.sleep.2021.05.019 pmid: 34148000 |
[24] |
Fattinger, S., Jenni, O. G., Schmitt, B., Achermann, P., & Huber, R. (2014). Overnight changes in the slope of sleep slow waves during infancy. Sleep, 37(2), 245-253.
doi: 10.5665/sleep.3390 pmid: 24497653 |
[25] | Friedrich, M., Mölle, M., Friederici, A. D., & Born, J. (2019). The reciprocal relation between sleep and memory in infancy: Memory-dependent adjustment of sleep spindles and spindle-dependent improvement of memories. Developmental Science, 22(2), e12743. |
[26] | Friedrich, M., Mölle, M., Friederici, A. D., & Born, J. (2020). Sleep-dependent memory consolidation in infants protects new episodic memories from existing semantic memories. Nature Communications, 11(1), 1298. |
[27] |
Friedrich, M., Wilhelm, I., Born, J., & Friederici, A. D. (2015). Generalization of word meanings during infant sleep. Nature Communications, 6, 6004.
doi: 10.1038/ncomms7004 pmid: 25633407 |
[28] |
Friedrich, M., Wilhelm, I., Mölle, M., Born, J., & Friederici, A. D. (2017). The sleeping infant brain anticipates development. Current Biology, 27(15), 2374-2380.e3.
doi: S0960-9822(17)30807-2 pmid: 28756948 |
[29] |
Galland, B. C., Taylor, B. J., Elder, D. E., & Herbison, P. (2012). Normal sleep patterns in infants and children: A systematic review of observational studies. Sleep Medicine Reviews, 16(3), 213-222.
doi: 10.1016/j.smrv.2011.06.001 pmid: 21784676 |
[30] |
Gibson, R., Elder, D., & Gander, P. (2011). Actigraphic sleep and developmental progress of one-year-old infants. Sleep and Biological Rhythms, 10(2), 77-83.
doi: 10.1111/sbr.2012.10.issue-2 URL |
[31] |
Golinkoff, R. M., Hirsh-Pasek, K., Cauley, K. M., & Gordon, L. (1987). The eyes have it: Lexical and syntactic comprehension in a new paradigm. Journal of Child Language, 14(1), 23-45.
pmid: 3558524 |
[32] |
Gómez, R. L., Bootzin, R. R., & Nadel, L. (2006). Naps promote abstraction in language-learning infants. Psychological Science, 17(8), 670-674.
doi: 10.1111/j.1467-9280.2006.01764.x pmid: 16913948 |
[33] |
Grigg-Damberger, M., Gozal, D., Marcus, C. L., Quan, S. F., Rosen, C. L., Chervin, R. D.,... Iber, C. (2007). The visual scoring of sleep and arousal in infants and children. Journal of Clinical Sleep Medicine, 3(2), 201-240.
pmid: 17557427 |
[34] |
Hatzinger, M., Brand, S., Perren, S., von Wyl, A., Stadelmann, S., von Klitzing, K., & Holsboer-Trachsler, E. (2013). In pre-school children, sleep objectively assessed via sleep- EEGs remains stable over 12 months and is related to psychological functioning, but not to cortisol secretion. Journal of Psychiatric Research, 47(11), 1809-1814.
doi: 10.1016/j.jpsychires.2013.08.007 pmid: 24011863 |
[35] |
Hatzinger, M., Brand, S., Perren, S., von Wyl, A., Stadelmann, S., von Klitzing, K., & Holsboer-Trachsler, E. (2014). In pre-school children, sleep objectively assessed via actigraphy remains stable over 12 months and is related to psychological functioning, but not to cortisol secretion. Journal of Psychiatric Research, 55, 22-28.
doi: 10.1016/j.jpsychires.2014.04.008 pmid: 24814637 |
[36] |
Horger, M. N., DeMasi, A., Allia, A. M., Scher, A., & Berger, S. E. (2023). The unique contributions of day and night sleep to infant motor problem solving. Journal of Experimental Child Psychology, 226, 105536.
doi: 10.1016/j.jecp.2022.105536 URL |
[37] | Horváth, K., Hannon, B., Ujma, P. P., Gombos, F., & Plunkett, K. (2018). Memory in 3-month-old infants benefits from a short nap. Developmental Science, 21(3), e12587. |
[38] |
Horváth, K., Liu, S., & Plunkett, K. (2016). A daytime nap facilitates generalization of word meanings in young toddlers. Sleep, 39(1), 203-207.
doi: 10.5665/sleep.5348 pmid: 26237777 |
[39] |
Horváth, K., Myers, K., Foster, R., & Plunkett, K. (2015). Napping facilitates word learning in early lexical development. Journal of Sleep Research, 24(5), 503-509.
doi: 10.1111/jsr.12306 pmid: 25950233 |
[40] | Horváth, K., & Plunkett, K. (2016). Frequent daytime naps predict vocabulary growth in early childhood. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 57( 9), 1008-1017. |
[41] |
Horváth, K., & Plunkett, K. (2018). Spotlight on daytime napping during early childhood. Nature and Science of Sleep, 10, 97-104.
doi: 10.2147/NSS.S126252 pmid: 29576733 |
[42] |
Hu, X., Cheng, L. Y., Chiu, M. H., & Paller, K. A. (2020). Promoting memory consolidation during sleep: A meta- analysis of targeted memory reactivation. Psychological Bulletin, 146(3), 218-244.
doi: 10.1037/bul0000223 URL |
[43] |
Hupbach, A., Gomez, R. L., Bootzin, R. R., & Nadel, L. (2009). Nap-dependent learning in infants. Developmental Science, 12(6), 1007-1012.
doi: 10.1111/j.1467-7687.2009.00837.x pmid: 19840054 |
[44] |
Iglowstein, I., Jenni, O. G., Molinari, L., & Largo, R. H. (2003). Sleep duration from infancy to adolescence: Reference values and generational trends. Pediatrics, 111(2), 302-307.
doi: 10.1542/peds.111.2.302 pmid: 12563055 |
[45] | Jenni, O. G., Borbély, A. A., & Achermann, P. (2004). Development of the nocturnal sleep electroencephalogram in human infants. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 286( 3), R528-538. |
[46] |
Jenni, O. G., Molinari, L., Caflisch, J. A., & Largo, R. H. (2007). Sleep duration from ages 1 to 10 years: Variability and stability in comparison with growth. Pediatrics, 120(4), e769-776.
doi: 10.1542/peds.2006-3300 URL |
[47] |
Johnson, E. G., Mooney, L., Graf Estes, K., Nordahl, C. W., & Ghetti, S. (2021). Activation for newly learned words in left medial-temporal lobe during toddlers' sleep is associated with memory for words. Current Biology, 31(24), 5429-5438.e5.
doi: 10.1016/j.cub.2021.09.058 URL |
[48] | Johnson, E. G., Prabhakar, J., Mooney, L. N., & Ghetti, S. (2020). Neuroimaging the sleeping brain: Insight on memory functioning in infants and toddlers. Infant Behavior & Development, 58, 101427. |
[49] | Konrad, C., Dirks, N. D., Warmuth, A., Herbert, J. S., Schneider, S., & Seehagen, S. (2019). Sleep-dependent selective imitation in infants. Journal of Sleep Research, 28(1), e12777. |
[50] |
Konrad, C., Herbert, J. S., Schneider, S., & Seehagen, S. (2016). Gist extraction and sleep in 12-month-old infants. Neurobiology of Learning and Memory, 134(Pt B),216-220.
doi: 10.1016/j.nlm.2016.08.021 URL |
[51] |
Konrad, C., Seehagen, S., Schneider, S., & Herbert, J. S. (2016). Naps promote flexible memory retrieval in 12- month-old infants. Developmental Psychobiology, 58(7), 866-874.
doi: 10.1002/dev.v58.7 URL |
[52] |
Kurdziel, L., Duclos, K., & Spencer, R. M. (2013). Sleep spindles in midday naps enhance learning in preschool children. Proceedings of the National Academy of Sciences of the United States of America, 110(43), 17267-17272.
doi: 10.1073/pnas.1306418110 pmid: 24062429 |
[53] |
Kurth, S., Olini, N., Huber, R., & LeBourgeois, M. (2015). Sleep and early cortical development. Current Sleep Medicine Reports, 1(1), 64-73.
pmid: 26807347 |
[54] |
Lewis, P. A., & Durrant, S. J. (2011). Overlapping memory replay during sleep builds cognitive schemata. Trends in cognitive sciences, 15(8), 343-351.
doi: 10.1016/j.tics.2011.06.004 pmid: 21764357 |
[55] | Lokhandwala, S., & Spencer, R. M. C. (2021). Slow wave sleep in naps supports episodic memories in early childhood. Developmental Science, 24(2), e13035. |
[56] |
Lokhandwala, S., & Spencer, R. M. C. (2022). Relations between sleep patterns early in life and brain development: A review. Developmental Cognitive Neuroscience, 56, 101130.
doi: 10.1016/j.dcn.2022.101130 URL |
[57] |
Mason, G. M., Lokhandwala, S., Riggins, T., & Spencer, R. M. C. (2021). Sleep and human cognitive development. Sleep Medicine Reviews, 57, 101472.
doi: 10.1016/j.smrv.2021.101472 URL |
[58] |
McCarley, R. W. (2007). Neurobiology of REM and NREM sleep. Sleep Medicine, 8(4), 302-330.
pmid: 17468046 |
[59] |
McDonough, L., Mandler, J. M., McKee, R. D., & Squire, L. R. (1995). The deferred imitation task as a nonverbal measure of declarative memory. Proceedings of the National Academy of Sciences of the United States of America, 92(16), 7580-7584.
doi: 10.1073/pnas.92.16.7580 pmid: 7638234 |
[60] |
Mooney, L. N., Johnson, E. G., Prabhakar, J., & Ghetti, S. (2021). Memory-related hippocampal activation during sleep and temporal memory in toddlers. Developmental Cognitive Neuroscience, 47, 100908.
doi: 10.1016/j.dcn.2020.100908 URL |
[61] | Page, J., Lustenberger, C., & Frӧhlich, F. (2018). Social, motor, and cognitive development through the lens of sleep network dynamics in infants and toddlers between 12 and 30 months of age. Sleep, 41(4), zsy024. |
[62] |
Plihal, W., & Born, J. (1997). Effects of early and late nocturnal sleep on declarative and procedural memory. Journal of Cognitive Neuroscience, 9(4), 534-547.
doi: 10.1162/jocn.1997.9.4.534 pmid: 23968216 |
[63] |
Prabhakar, J., Johnson, E. G., Nordahl, C. W., & Ghetti, S. (2018). Memory-related hippocampal activation in the sleeping toddler. Proceedings of the National Academy of Sciences of the United States of America, 115(25), 6500-6505.
doi: 10.1073/pnas.1805572115 pmid: 29866845 |
[64] |
Przepiórka, A., Błachnio, A., & Siu, N. Y. (2019). The relationships between self-efficacy, self-control, chronotype, procrastination and sleep problems in young adults. Chronobiology International, 36(8), 1025-1035.
doi: 10.1080/07420528.2019.1607370 pmid: 31070062 |
[65] |
Qian, L., Ru, T., He, M., Li, S., & Zhou, G. (2022). Effects of a brief afternoon nap on declarative and procedural memory. Neurobiology of Learning and Memory, 194, 107662.
doi: 10.1016/j.nlm.2022.107662 URL |
[66] |
Rasch, B., Büchel, C., Gais, S., & Born, J. (2007). Odor cues during slow-wave sleep prompt declarative memory consolidation. Science, 315(5817), 1426-1429.
doi: 10.1126/science.1138581 pmid: 17347444 |
[67] |
Robledo, J. P., Cross, I., Boada-Bayona, L., & Demogeot, N. (2022). Back to basics: Are-evaluation of the relevance of imprinting in the genesis of Bowlby’s attachment theory. Frontiers in Psychology, 13, 1033746.
doi: 10.3389/fpsyg.2022.1033746 URL |
[68] | Satomaa, A. L., Mäkelä, T., Saarenpää-Heikkilä, O., Kylliäinen, A., Huupponen, E., & Himanen, S. L. (2020). Slow-wave activity and sigma activities are associated with psychomotor development at 8 months of age. Sleep, 43(9), zsaa061. |
[69] |
Schmid, D., Erlacher, D., Klostermann, A., Kredel, R., & Hossner, E. J. (2020). Sleep-dependent motor memory consolidation in healthy adults: A meta-analysis. Neuroscience and Biobehavioral Reviews, 118, 270-281.
doi: S0149-7634(20)30497-8 pmid: 32730847 |
[70] |
Seehagen, S., Konrad, C., Herbert, J. S., & Schneider, S. (2015). Timely sleep facilitates declarative memory consolidation in infants. Proceedings of the National Academy of Sciences of the United States of America, 112(5), 1625-1629.
doi: 10.1073/pnas.1414000112 pmid: 25583469 |
[71] |
Seehagen, S., Zmyj, N., & Herbert, J. S. (2019). Remembering in the context of internal states: The role of sleep for infant memory. Child Development Perspectives, 13(2), 110-115.
doi: 10.1111/cdep.12321 |
[72] |
Simon, K. N. S., Werchan, D., Goldstein, M. R., Sweeney, L., Bootzin, R. R., Nadel, L., & Gómez, R. L. (2017). Sleep confers a benefit for retention of statistical language learning in 6.5 month old infants. Brain and Language, 167, 3-12.
doi: 10.1016/j.bandl.2016.05.002 URL |
[73] |
Slot, P. L., Bleses, D., & Jensen, P. (2020). Infants' and toddlers' language, math and socio-emotional development: Evidence for reciprocal relations and differential gender and age effects. Frontiers in Psychology, 11, 580297.
doi: 10.3389/fpsyg.2020.580297 URL |
[74] |
Spanò, G., Gómez, R. L., Demara, B. I., Alt, M., Cowen, S. L., & Edgin, J. O. (2018). REM sleep in naps differentially relates to memory consolidation in typical preschoolers and children with Down syndrome. Proceedings of the National Academy of Sciences of the United States of America, 115(46), 11844-11849.
doi: 10.1073/pnas.1811488115 pmid: 30373840 |
[75] |
Squire, L. R., & Alvarez, P. (1995). Retrograde amnesia and memory consolidation: A neurobiological perspective. Current Opinion in Neurobiology, 5(2), 169-177.
doi: 10.1016/0959-4388(95)80023-9 pmid: 7620304 |
[76] |
Stickgold, R. (2005). Sleep-dependent memory consolidation. Nature, 437(7063), 1272-1278.
doi: 10.1038/nature04286 |
[77] | Sugawara, S. K., Tanaka, S., Tanaka, D., Seki, A., Uchiyama, H. T., Okazaki, S., Koeda, T., & Sadato, N. (2014). Sleep is associated with offline improvement of motor sequence skill in children. PLoS One, 9(11), e111635. |
[78] |
Tempesta, D., Socci, V., de Gennaro, L., & Ferrara, M. (2018). Sleep and emotional processing. Sleep Medicine Reviews, 40, 183-195.
doi: S1087-0792(17)30153-3 pmid: 29395984 |
[79] |
Tomasello, M. (2001). Cultural transmission: A view from chimpanzees and human infants. Journal of Cross-Cultural Psychology, 32(2), 135-146.
doi: 10.1177/0022022101032002002 URL |
[80] | Ulrich, D. (2016). Sleep spindles as facilitators of memory formation and learning. Neural Plasticity, 2016, 1796715. |
[81] |
van Dongen, E. V., Takashima, A., Barth, M., Zapp, J., Schad, L. R., Paller, K. A., & Fernández, G. (2012). Memory stabilization with targeted reactivation during human slow-wave sleep. Proceedings of the National Academy of Sciences of the United States of America, 109(26), 10575-10580.
doi: 10.1073/pnas.1201072109 pmid: 22691500 |
[82] |
Veldman, S. L. C., Santos, R., Jones, R. A., Sousa-Sá, E., & Okely, A. D. (2019). Associations between gross motor skills and cognitive development in toddlers. Early Human Development, 132, 39-44.
doi: S0378-3782(18)30746-1 pmid: 30965194 |
[83] |
Walker, M. P. (2005). A refined model of sleep and the time course of memory formation. The Behavioral and Brain Sciences, 28(1), 51-64.
doi: 10.1017/S0140525X05000026 URL |
[84] |
Walker, M. P., Brakefield, T., Morgan, A., Hobson, J. A., & Stickgold, R. (2002). Practice with sleep makes perfect: Sleep-dependent motor skill learning. Neuron, 35(1), 205-211.
doi: 10.1016/s0896-6273(02)00746-8 pmid: 12123620 |
[85] |
Walker, M. P., & van der Helm, E. (2009). Overnight therapy? The role of sleep in emotional brain processing. Psychological Bulletin, 135(5), 731-748.
doi: 10.1037/a0016570 URL |
[86] | Wang, S. Y., Baker, K. C., Culbreth, J. L., Tracy, O., Arora, M., Liu, T.,... Wamsley, E. J. (2021). 'Sleep-dependent' memory consolidation? Brief periods of post-training rest and sleep provide an equivalent benefit for both declarative and procedural memory. Learning & Memory, 28(6), 195-203. |
[87] |
Wilhelm, I., Metzkow-Mészàros, M., Knapp, S., & Born, J. (2012). Sleep-dependent consolidation of procedural motor memories in children and adults: The pre-sleep level of performance matters. Developmental Science, 15(4), 506-515.
doi: 10.1111/j.1467-7687.2012.01146.x pmid: 22709400 |
[88] |
Williams, S. E., & Horst, J. S. (2014). Goodnight book: Sleep consolidation improves word learning via storybooks. Frontiers in Psychology, 5, 184.
doi: 10.3389/fpsyg.2014.00184 pmid: 24624111 |
[89] |
Yang, G., Lai, C. S., Cichon, J., Ma, L., Li, W., & Gan, W. B. (2014). Sleep promotes branch-specific formation of dendritic spines after learning. Science, 344(6188), 1173-1178.
doi: 10.1126/science.1249098 pmid: 24904169 |
[1] | Chengyong Jiang, Xinrong Tan, Qingshuo Meng, Er Chen, Liyuan Cui, Yanyu Xiong, Zixuan Yan, Biao Yan, Jiayi Zhang. Controlling Eye Movements and REM Sleep by Distinct Cholinergic Neurons in Oculomotor Nucleus [J]. Advances in Psychological Science, 2023, 31(suppl.): 143-143. |
[2] | HE Meiheng, RU Taotao, LI Le, LI Siyu, ZHANG Chenze, ZHOU Guofu. The optimization effects of daytime light exposure on sleep and its mechanisms [J]. Advances in Psychological Science, 2023, 31(9): 1698-1713. |
[3] | LIU Min, LIU Qiaoyun, CHEN Siqi, XU Zhijia. The predicting effect of speech-like vocalizations on language development in young children and its explanations [J]. Advances in Psychological Science, 2023, 31(7): 1239-1253. |
[4] | ZHANG Jie, ZHANG Huoyin, LI Hong, LEI Yi. The effect of sleep on fear learning and its cognitive neural mechanisms [J]. Advances in Psychological Science, 2023, 31(4): 631-640. |
[5] | ZOU Di, LI Hong, WANG Fushun. An investigation into the definition of arousal and its cognitive neurophysiological basis [J]. Advances in Psychological Science, 2022, 30(9): 2020-2033. |
[6] | KANG Dan, LI Jiajia, CAI Shu. Preschool children’s sleep problem and language disorder [J]. Advances in Psychological Science, 2022, 30(6): 1270-1281. |
[7] | WANG Zhengyu, HU Jinsheng. How does sleep affect creative problem-solving: An interpretation based on memory reorganization [J]. Advances in Psychological Science, 2021, 29(7): 1251-1263. |
[8] | QIAN Liu, Ru Taotao, LUO Xue, Niu Jiaxing, Ma Yongjun, ZHOU Guofu. Effect of sleep restriction on cognitive function and its underlying mechanism [J]. Advances in Psychological Science, 2020, 28(9): 1493-1507. |
[9] | PENG Jiaxi, ZHAO Lumimg, FANG Peng, CAO Yunfei, MIAO Danmin, XIAO Wei. The effect mechanism of sleep deprivation on risky decision making [J]. Advances in Psychological Science, 2020, 28(11): 1789-1799. |
[10] | LONG Fangfang, LI Yuchen, CHEN Xiaoyu, LI Ziyuan, LIANG Tengfei, LIU Qiang. Consolidation processing of visual working memory: Time course, pattern and mechanism [J]. Advances in Psychological Science, 2019, 27(8): 1404-1416. |
[11] | LIU Xiaoting, ZHANG Lijin, ZHANG Ning. The effects of sleep quality on risk-taking behavior: Evidence and explanation [J]. Advances in Psychological Science, 2019, 27(11): 1875-1886. |
[12] | CHEN Qingwei, RU Taotao, LUO Xue, DONG Qiaoling, ZHAI Diguo, XIONG Xiao, ZHOU Guofu. The effects of digital media usage on sleep: Mechanisms and interventions [J]. Advances in Psychological Science, 2019, 27(1): 70-82. |
[13] | LIN Mengdi, YE Maolin, PENG Jian, YIN Kui, WANG Zhen. The employees’ sleep quality: A perspective of organizational behavior [J]. Advances in Psychological Science, 2018, 26(6): 1096-1110. |
[14] | SHI Jian, LONG Lirong. The depletion effects of sleep deprivation among employees: A new topic in organization and management research [J]. Advances in Psychological Science, 2018, 26(5): 896-909. |
[15] | SHENG Xiaotian, LIU Zihan, ZHANG Xichao, GUO Heng, DA Shu, ZHOU Shiyi. Sleep and work: The interactive mechanism [J]. Advances in Psychological Science, 2018, 26(10): 1844-1856. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||