Advances in Psychological Science ›› 2023, Vol. 31 ›› Issue (4): 519-534.doi: 10.3724/SP.J.1042.2023.00519
• Meta-Analysis • Previous Articles Next Articles
LI Yadan1(), DU Ying1, XIE Cong1, LIU Chunyu1, YANG Yilong2, LI Yangping1, QIU Jiang3,4()
Received:
2022-06-28
Online:
2023-04-15
Published:
2022-12-30
Contact:
LI Yadan, QIU Jiang
E-mail:qiuj318@swu.edu.cn;liyadan@snnu.edu.cn
CLC Number:
LI Yadan, DU Ying, XIE Cong, LIU Chunyu, YANG Yilong, LI Yangping, QIU Jiang. A meta-analysis of the relationship between semantic distance and creative thinking[J]. Advances in Psychological Science, 2023, 31(4): 519-534.
研究者 | 被试群体 | 样本量 | 平均年龄 | 效应值 | 测量指标 |
---|---|---|---|---|---|
Gray et al., | 演员 | 30 | 41.03 | r = 0.46 | 总分 |
Gray et al., | 大学生 | 211 | 19.76 | r = 0.24 | 总分 |
Gray et al., | 美国代表样本 | 517 | 15.69 | r = 0.12 | 总分 |
Gray et al., | 表演系 非表演系学生 | 167 | 19.44 | t = 3.49 | 总分 |
Gray et al., | 专业演员 互联网工作者 | 104 | 38.89 32.88 | t = 4.34 | 总分 |
Gray et al., | 职业企业家 会计 | 296 | 54.53 50.73 | t = 3.70 | 总分 |
Gray et al., | 随机被试 | 1397 | - | r = 0.19 | 总分 |
Gray et al., | 推特上知名人士 | 95 | - | r = 0.22 | 总分 |
Prabhakaran et al., | 大学生 | 183 | 22.1 | r = 0.47 | 总分 |
Prabhakaran et al., | 大学生 | 183 | 22.1 | r = 0.43 | 流畅性 |
Prabhakaran et al., | 大学生 | 183 | 22.1 | r = 0.42 | 灵活性 |
Prabhakaran et al., | 大学生 | 183 | 22.1 | r = 0.48 | 独创性 |
Prabhakaran et al., | 大学生 | 183 | 22.1 | r = 0.40 | 总分 |
Prabhakaran et al., | 大学生 | 183 | 22.1 | r = 0.18 | 总分 |
Forthmann et al., | 青少年 | 29 | 14.47 | r = 0.699 | 流畅性 |
Forthmann et al., | 青少年 | 29 | 14.47 | r = 0.789 | 流畅性 |
Forthmann et al., | 青少年 | 29 | 14.47 | r = 0.648 | 总分 |
Forthmann et al., | 青少年 | 29 | 14.47 | r = 0.417 | 总分 |
Forthmann et al., | 青少年 | 29 | 14.47 | r = 0.562 | 总分 |
Forthmann et al., | 青少年 | 29 | 14.47 | r = 0.462 | 总分 |
Beketayev & Runco, | 网络随机 | 250 | 33.65 | r = 0.74 | 灵活性 |
Beketayev & Runco, | 网络随机 | 250 | 33.65 | r = 0.36 | 独创性 |
Forster & Dunbar, | 大学生 | 61 | 18.75 | r = 0.417 | 流畅性 |
Forster & Dunbar, | 大学生 | 61 | 18.75 | r = 0.66 | 流畅性 |
Forster & Dunbar, | 大学生 | 61 | 18.75 | r = 0.31 | 流畅性 |
Forster & Dunbar, | 大学生 | 61 | 18.75 | r =−0.42 | 精致性 |
Forster & Dunbar, | 大学生 | 61 | 18.75 | r =−0.46 | 精致性 |
Forster & Dunbar, | 大学生 | 61 | 18.75 | r =−0.60 | 精致性 |
Forster & Dunbar, | 大学生 | 61 | 18.75 | r =−0.63 | 精致性 |
Hass, | 大学生 | 226 | - | r = 0.40 | 总分 |
Heinen & Johnson, | 网络随机 | 62 | 37 | r = 0.47 | 总分 |
Heinen & Johnson, | 网络随机 | 121 | 37 | r = 0.77 | 总分 |
Acar & Runco, | 大学生 | 54 | 26.28 | r = 0.29 | 流畅性 |
Acar & Runco, | 大学生 | 54 | 26.28 | r = 0.28 | 流畅性 |
Acar & Runco, | 大学生 | 54 | 26.28 | r = 0.27 | 总分 |
Acar & Runco, | 大学生 | 54 | 26.28 | r = 0.35 | 总分 |
Acar & Runco, | 大学生 | 54 | 26.28 | r = 0.31 | 总分 |
Mathias & Kenett, | 大学生 | 89 | 25 | r = 0.21 | 流畅性 |
Mathias & Kenett, | 大学生 | 89 | 25 | r = 0.41 | 总分 |
Mathias & Kenett, | 大学生 | 89 | 25 | r = 0.37 | 流畅性 |
Mathias & Kenett, | 大学生 | 89 | 25 | r = 0.24 | 总分 |
Rossmann & Fink, | 大学生 | 106 | 23.03 | r = 0.22 | 独创性 |
Tempest & Rémi, 2019(A) | 德语系大学生 | 29 | 22.9 | r = 0.524 | 流畅性 |
Tempest & Rémi, 2019(B) | 德语系大学生 | 29 | 22.9 | r = 0.468 | 灵活性 |
Tempest & Rémi, 2019(C) | 德语系大学生 | 29 | 22.9 | r = 0.449 | 流畅性 |
Tempest & Rémi, 2019(D) | 德语系大学生 | 29 | 22.9 | r = 0.406 | 灵活性 |
Tempest & Rémi, 2019(E) | 德语系大学生 | 29 | 22.9 | r = 0.609 | 总分 |
Beaty & Johnson, | 大学生 | 171 | 22.63 | r = 0.91 | 总分 |
Beaty & Johnson, | 大学生 | 142 | 19.60 | r = 0.75 | 总分 |
Cheng Liu, | 大学生 | 189 | 19.30 | r = 0.205 | 灵活性 |
Cheng Liu, | 大学生 | 189 | 19.30 | r = 0.211 | 独创性 |
Cheng Liu, | 大学生 | 189 | 19.30 | r = 0.203 | 总分 |
Murray, | 网络随机 | 200 | 40.24 | r = 0.290 | 总分 |
研究者 | 被试群体 | 样本量 | 平均年龄 | 效应值 | 测量指标 |
---|---|---|---|---|---|
Gray et al., | 演员 | 30 | 41.03 | r = 0.46 | 总分 |
Gray et al., | 大学生 | 211 | 19.76 | r = 0.24 | 总分 |
Gray et al., | 美国代表样本 | 517 | 15.69 | r = 0.12 | 总分 |
Gray et al., | 表演系 非表演系学生 | 167 | 19.44 | t = 3.49 | 总分 |
Gray et al., | 专业演员 互联网工作者 | 104 | 38.89 32.88 | t = 4.34 | 总分 |
Gray et al., | 职业企业家 会计 | 296 | 54.53 50.73 | t = 3.70 | 总分 |
Gray et al., | 随机被试 | 1397 | - | r = 0.19 | 总分 |
Gray et al., | 推特上知名人士 | 95 | - | r = 0.22 | 总分 |
Prabhakaran et al., | 大学生 | 183 | 22.1 | r = 0.47 | 总分 |
Prabhakaran et al., | 大学生 | 183 | 22.1 | r = 0.43 | 流畅性 |
Prabhakaran et al., | 大学生 | 183 | 22.1 | r = 0.42 | 灵活性 |
Prabhakaran et al., | 大学生 | 183 | 22.1 | r = 0.48 | 独创性 |
Prabhakaran et al., | 大学生 | 183 | 22.1 | r = 0.40 | 总分 |
Prabhakaran et al., | 大学生 | 183 | 22.1 | r = 0.18 | 总分 |
Forthmann et al., | 青少年 | 29 | 14.47 | r = 0.699 | 流畅性 |
Forthmann et al., | 青少年 | 29 | 14.47 | r = 0.789 | 流畅性 |
Forthmann et al., | 青少年 | 29 | 14.47 | r = 0.648 | 总分 |
Forthmann et al., | 青少年 | 29 | 14.47 | r = 0.417 | 总分 |
Forthmann et al., | 青少年 | 29 | 14.47 | r = 0.562 | 总分 |
Forthmann et al., | 青少年 | 29 | 14.47 | r = 0.462 | 总分 |
Beketayev & Runco, | 网络随机 | 250 | 33.65 | r = 0.74 | 灵活性 |
Beketayev & Runco, | 网络随机 | 250 | 33.65 | r = 0.36 | 独创性 |
Forster & Dunbar, | 大学生 | 61 | 18.75 | r = 0.417 | 流畅性 |
Forster & Dunbar, | 大学生 | 61 | 18.75 | r = 0.66 | 流畅性 |
Forster & Dunbar, | 大学生 | 61 | 18.75 | r = 0.31 | 流畅性 |
Forster & Dunbar, | 大学生 | 61 | 18.75 | r =−0.42 | 精致性 |
Forster & Dunbar, | 大学生 | 61 | 18.75 | r =−0.46 | 精致性 |
Forster & Dunbar, | 大学生 | 61 | 18.75 | r =−0.60 | 精致性 |
Forster & Dunbar, | 大学生 | 61 | 18.75 | r =−0.63 | 精致性 |
Hass, | 大学生 | 226 | - | r = 0.40 | 总分 |
Heinen & Johnson, | 网络随机 | 62 | 37 | r = 0.47 | 总分 |
Heinen & Johnson, | 网络随机 | 121 | 37 | r = 0.77 | 总分 |
Acar & Runco, | 大学生 | 54 | 26.28 | r = 0.29 | 流畅性 |
Acar & Runco, | 大学生 | 54 | 26.28 | r = 0.28 | 流畅性 |
Acar & Runco, | 大学生 | 54 | 26.28 | r = 0.27 | 总分 |
Acar & Runco, | 大学生 | 54 | 26.28 | r = 0.35 | 总分 |
Acar & Runco, | 大学生 | 54 | 26.28 | r = 0.31 | 总分 |
Mathias & Kenett, | 大学生 | 89 | 25 | r = 0.21 | 流畅性 |
Mathias & Kenett, | 大学生 | 89 | 25 | r = 0.41 | 总分 |
Mathias & Kenett, | 大学生 | 89 | 25 | r = 0.37 | 流畅性 |
Mathias & Kenett, | 大学生 | 89 | 25 | r = 0.24 | 总分 |
Rossmann & Fink, | 大学生 | 106 | 23.03 | r = 0.22 | 独创性 |
Tempest & Rémi, 2019(A) | 德语系大学生 | 29 | 22.9 | r = 0.524 | 流畅性 |
Tempest & Rémi, 2019(B) | 德语系大学生 | 29 | 22.9 | r = 0.468 | 灵活性 |
Tempest & Rémi, 2019(C) | 德语系大学生 | 29 | 22.9 | r = 0.449 | 流畅性 |
Tempest & Rémi, 2019(D) | 德语系大学生 | 29 | 22.9 | r = 0.406 | 灵活性 |
Tempest & Rémi, 2019(E) | 德语系大学生 | 29 | 22.9 | r = 0.609 | 总分 |
Beaty & Johnson, | 大学生 | 171 | 22.63 | r = 0.91 | 总分 |
Beaty & Johnson, | 大学生 | 142 | 19.60 | r = 0.75 | 总分 |
Cheng Liu, | 大学生 | 189 | 19.30 | r = 0.205 | 灵活性 |
Cheng Liu, | 大学生 | 189 | 19.30 | r = 0.211 | 独创性 |
Cheng Liu, | 大学生 | 189 | 19.30 | r = 0.203 | 总分 |
Murray, | 网络随机 | 200 | 40.24 | r = 0.290 | 总分 |
调节变量 | 类别 | k | r | 95% CI | Qw | Qb | p |
---|---|---|---|---|---|---|---|
创造性思维测量指标 | 总分 | 28 | 0.430*** | 0.326, 0.523 | 447.369*** | ||
流畅性 | 12 | 0.447*** | 0.338, 0.545 | 25.666** | |||
灵活性 | 5 | 0.473** | 0.180, 0.688 | 63.436*** | 89.380 | 0.000 | |
精致性 | 4 | −0.533*** | −0.664, −0.372 | 1.433 | |||
独创性 | 4 | 0.328*** | 0.197, 0.447 | 10.542* |
调节变量 | 类别 | k | r | 95% CI | Qw | Qb | p |
---|---|---|---|---|---|---|---|
创造性思维测量指标 | 总分 | 28 | 0.430*** | 0.326, 0.523 | 447.369*** | ||
流畅性 | 12 | 0.447*** | 0.338, 0.545 | 25.666** | |||
灵活性 | 5 | 0.473** | 0.180, 0.688 | 63.436*** | 89.380 | 0.000 | |
精致性 | 4 | −0.533*** | −0.664, −0.372 | 1.433 | |||
独创性 | 4 | 0.328*** | 0.197, 0.447 | 10.542* |
(标*是纳入元分析的文献) | |
[1] | 贡喆, 刘昌, 沈汪兵. (2016). 有关创造力测量的一些思考. 心理科学进展, 24(1), 31-45. |
[2] | 徐雪芬, 辛涛. (2013). 创造力测量的研究取向和新进展. 清华大学教育研究, 34(1), 54-63. |
[3] | 张亚利, 李森, 俞国良. (2019). 自尊与社交焦虑的关系: 基于中国学生群体的元分析. 心理科学进展, 27(6), 1005-1018. |
[4] |
* Acar S., & Runco M. A. (2014). Assessing associative distance among ideas elicited by tests of divergent thinking. Creativity Research Journal, 26(2), 229-238.
doi: 10.1080/10400419.2014.901095 URL |
[5] |
Acar S., & Runco M. A. (2015). Thinking in multiple directions: Hyperspace categories in divergent thinking. Psychology of Aesthetics, Creativity, and the Arts, 9(1), 41-53.
doi: 10.1037/a0038501 URL |
[6] |
Acar S., & Runco M. A. (2019). Divergent thinking: New methods, recent research, and extended theory. Psychology of Aesthetics, Creativity, and the Arts, 13(2), 153-158.
doi: 10.1037/aca0000231 URL |
[7] |
Badre D., & Wagner A. D. (2007). Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia, 45(13), 2883-2901.
doi: 10.1016/j.neuropsychologia.2007.06.015 pmid: 17675110 |
[8] |
Baronchell, Ferrer-i-Cancho, R., Pastor-Satorras, R., Chater, N., & Christiansen, M. H. (2013). Networks in cognitive science. Trends in Cognitive Sciences, 17(7), 348-360.
doi: 10.1016/j.tics.2013.04.010 pmid: 23726319 |
[9] | Beaty R. E., Benedek M., Barry K. S., & Silvia P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5(1), 1-14. |
[10] |
Beaty R. E., Chen Q. L., Christensen A. P., Kenett Y. N., Silvia P. J., Benedek M., & Schacter D. L. (2020). Default network contributions to episodic and semantic processing during divergent creative thinking: A representational similarity analysis. Neuroimage, 209, 116499.
doi: 10.1016/j.neuroimage.2019.116499 URL |
[11] |
Beaty R. E., Christensen A. P., Benedek M., Silvia P. J., & Schacter D. L. (2017). Creative constraints: Brain activity and network dynamics underlying semantic interference during idea production. NeuroImage, 148, 189-196.
doi: S1053-8119(17)30012-5 pmid: 28082106 |
[12] |
* Beaty R. E., & Johnson D. R. (2021). Automating creativity assessment with SemDis: An open platform for computing semantic distance. Behavior Research Methods, 53(2), 757-780.
doi: 10.3758/s13428-020-01453-w |
[13] |
Beaty R. E., Nusbaum E. C., & Silvia. J. S. (2014). Does insight problem solving predict real-world creativity? Psychology of Aesthetics, Creativity, and the Arts, 8(3), 287-292.
doi: 10.1037/a0035727 URL |
[14] |
Beaty R. E., Silvia P. J., Nusbaum E. C., Jauk E., & Benedek M. (2014). The roles of associative and executive processes in creative cognition. Memory & Cognition, 42(7), 1186-1197.
doi: 10.3758/s13421-014-0428-8 URL |
[15] |
* Beketayev K., & Runco M. (2016). Scoring divergent thinking tests by computer with a semantics-based algorithm. Europe's Journal of Psychology, 12(2), 210-220.
doi: 10.5964/ejop.v12i2.1127 pmid: 27298632 |
[16] | * Benedek M., Kenett Y. N., Umdasch K., Anaki D., Faust M., & Neubauer A. C. (2017). How semantic memory structure and intelligence contribute to creative thought: A network science approach. Thinking & Reasoning, 23(2), 158-183. |
[17] |
Benedek M., Könen T., & Neubauer A. C. (2012). Associative abilities underlying creativity. Psychology of Aesthetics, Creativity, and the Arts, 6(3), 273-281.
doi: 10.1037/a0027059 URL |
[18] |
Benedek M., & Neubauer A. C. (2013). Revisiting Mednick's model on creativity-related differences in associative hierarchies. Evidence for a common path to uncommon thought. The Journal of Creative Behavior, 47(4), 273-289.
doi: 10.1002/jocb.35 URL |
[19] |
Borenstein M., Hedges L. V., Higgins J. P. T., & Rothstein H. R. (2010). A basic introduction to fixed-effect and random-effects models for meta-analysis. Research Synthesis Methods, 1(2), 97-111.
doi: 10.1002/jrsm.12 pmid: 26061376 |
[20] |
Bossomaier T., Harré M., Knittel A., & Snyder A. (2009). A semantic network approach to the Creativity Quotient (CQ). Creativity Research Journal, 21(1), 64-71.
doi: 10.1080/10400410802633517 URL |
[21] |
Chen L., Wu J., Hartwigsen G., Li Z., Wang P., & Feng L. (2021). The role of a critical left fronto-temporal network with its right-hemispheric homologue in syntactic learning based on word category information. Journal of Neurolinguistics, 58, 100977.
doi: 10.1016/j.jneuroling.2020.100977 URL |
[22] |
Chen Q., Beaty R. E., & Qiu J. (2020). Mapping the artistic brain: Common and distinct neural activations associated with musical, drawing, and literary creativity. Human Brain Mapping, 41(12), 3403-3419.
doi: 10.1002/hbm.25025 pmid: 32472741 |
[23] | Christensen A. P., & Kenett Y. N. (2021). Semantic network analysis (SemNA): A tutorial on preprocessing, estimating, and analyzing semantic networks. Psychological Methods. Advance online publication. |
[24] |
Clark P. M., & Mirels H. L. (1970). Fluency as a pervasive element in the measurement of creativity. Journal of Educational Measurement, 7(2), 83-86.
doi: 10.1111/jedm.1970.7.issue-2 URL |
[25] | Cohen J. (1988). CHAPTER 4-Differences between Correlation Coefficients. In J. Cohen (Ed.), Statistical Power Analysis for the Behavioral Sciences (pp. 109-143). Salt Lake City, UT: Academic Press. |
[26] |
Collins A. M., & Loftus E. F. (1975). A spreading-activation theory of semantic processing. Psychological Review, 82(6), 407-428.
doi: 10.1037/0033-295X.82.6.407 URL |
[27] |
Dubossarsky H., de Deyne S., & Hills T. T. (2017). Quantifying the structure of free association networks across the life span. Developmental Psychology, 53(8), 1560-1570.
doi: 10.1037/dev0000347 pmid: 28569517 |
[28] |
Dumas D., & Dunbar K. N. (2014). Understanding fluency and originality: A latent variable perspective. Thinking Skills and Creativity, 14, 56-67.
doi: 10.1016/j.tsc.2014.09.003 URL |
[29] |
Dumas D., Organisciak P., & Doherty M. (2021). Measuring divergent thinking originality with human raters and text-mining models: A psychometric comparison of methods. Psychology of Aesthetics, Creativity, and the Arts, 15(4), 645-663.
doi: 10.1037/aca0000319 URL |
[30] |
Egger M., Davey G. D., Schneider M., & Minder C. (1997). Bias in meta-analysis detected by a simple, graphical test. British Medical Journal, 315(7109), 629-634.
doi: 10.1136/bmj.315.7109.629 URL |
[31] | * Forster E. A., & Dunbar K. N. (2009). Creativity evaluation through latent semantic analysis. Proceedings of the Annual Conference of the Cognitive Science Society, 2009, 602-607. |
[32] |
* Forthmann B., Oyebade O., Ojo A., Günther F., & Holling H. (2018). Application of latent semantic analysis to divergent thinking is biased by elaboration. Journal of Creative Behavior, 53(4), 559-575.
doi: 10.1002/jocb.v53.4 URL |
[33] |
Forthmann B., Oyebade O., Ojo A., Günther F., & Holling H. (2019). Application of latent semantic analysis to divergent thinking is biased by elaboration. The Journal of Creative Behavior, 53(4), 559-575.
doi: 10.1002/jocb.v53.4 URL |
[34] |
Forthmann B., Wilken A., Doebler P., & Holling H. (2019). Strategy induction enhances creativity in figural divergent thinking. The Journal of Creative Behavior, 53(1), 18-29.
doi: 10.1002/jocb.2019.53.issue-1 URL |
[35] |
Fox K. C., Spreng R. N., Ellamil M., Andrews-Hanna J. R., & Christoff K. (2015). The wandering brain: Meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. NeuroImage, 111, 611-621.
doi: 10.1016/j.neuroimage.2015.02.039 pmid: 25725466 |
[36] |
Goncalves M., Cardoso C., & Badke-Schaub P. (2013). Inspiration peak: Exploring the semantic distance between design problem and textual inspirational stimuli. International Journal of Design Creativity and Innovation, 1(4), 215-232.
doi: 10.1080/21650349.2013.799309 URL |
[37] |
* Gray K., Anderson S., Chen E. E., Kelly J. M., Christian M. S., Patrick J., … Lewis K. (2019). "Forward Flow": A new measure to quantify free thought an predict creativity. American Psychologist, 74(5), 539-554.
doi: 10.1037/amp0000391 URL |
[38] |
Green A. E. (2016). Creativity, Within reason: Semantic distance and dynamic state creativity in relational thinking and reasoning. Current Directions in Psychological Science, 25(1), 28-35.
doi: 10.1177/0963721415618485 URL |
[39] |
Green A. E., Cohen M. S., Kim J. U., & Gray J. R. (2012). An explicit cue improves creative analogical reasoning. Intelligence, 40(6), 598-603.
doi: 10.1016/j.intell.2012.08.005 URL |
[40] |
Green A. E., Cohen M. S., Raab H. A., Yedibalian C. G., & Gray J. R. (2015). Frontopolar activity and connectivity support dynamic conscious augmentation of creative state. Human Brain Mapping, 36(3), 923-934.
doi: 10.1002/hbm.22676 pmid: 25394198 |
[41] | Greenhouse J. B., & Iyengar S. (2009). Sensitivity analysis and diagnostics. In Cooper, Hedges, & Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed.). New York, NY: Russell Sage Foundation. |
[42] |
Gruszka A., & Necka E. (2002). Priming and acceptance of close and remote associations by creative and less creative people. Creativity Research Journal, 14(2), 193-205.
doi: 10.1207/S15326934CRJ1402_6 URL |
[43] |
Guilford J. P. (1950). Creativity. American Psychologist, 5(9), 444-454.
pmid: 14771441 |
[44] | Han L., Wang C., Yao D., Wang B., Zhang Z., & Liu J. (2020). Clinical efficacy and safety of Danhong injection for the treatment of chronic heart failure: A protocol for systematic review. Medicine, 99(14), e19526. |
[45] |
* Hass R. W. (2017). Tracking the dynamics of divergent thinking via semantic distance: Analytic methods and theoretical implications. Memory & Cognition, 45(2), 233-244.
doi: 10.3758/s13421-016-0659-y URL |
[46] | He L., Kenett Y. N., Zhuang K., Liu C., Zeng R., Yan T., Huo T., & Qiu J. (2020). The relation between semantic memory structure, associative abilities, and verbal and figural creativity. Thinking & Reasoning, 27(2), 268-293. |
[47] |
* Heinen D. J., & Johnson D. R. (2018). Semantic distance: An automated measure of creativity that is novel and appropriate. Psychology of Aesthetics, Creativity, and the Arts, 12(2), 144-156.
doi: 10.1037/aca0000125 URL |
[48] |
Higgins P. T., Thompson S. G., Decks J. J., & Altman D. G. (2003). Measuring inconsistency in meta-analyses. British Medical Journal, 327(7414), 557-560.
doi: 10.1136/bmj.327.7414.557 URL |
[49] |
Hocevar D. (1980). Intelligence, divergent thinking, and creativity. Intelligence, 4(1), 25-40.
doi: 10.1016/0160-2896(80)90004-5 URL |
[50] |
Hocevar D., & Michael W. B. (1979). The effects of scoring formulas on the discriminant validity of tests of divergent thinking. Educational and Psychological Measurement, 39(4), 917-921.
doi: 10.1177/001316447903900427 URL |
[51] |
Hoeve M., Stams G. J. J. M., Put C. E. V. D., Dubas J. S., Laan P. H. V. D., & Gerris J. R. M. (2012). A meta-analysis of attachment to parents and delinquency. Journal of Abnormal Child Psychology, 40(5), 771-785.
doi: 10.1007/s10802-011-9608-1 pmid: 22278802 |
[52] |
Johnson D. R., Cuthbert A. S., & Tynan M. E. (2021). The neglect of idea diversity in creative idea generation and evaluation. Psychology of Aesthetics, Creativity, and the Arts, 15(1), 125-135.
doi: 10.1037/aca0000235 URL |
[53] | Kaufman J. C., & Sternberg R. J.(Eds.) (2010). The Cambridge handbook of creativity. Cambridge University Press. |
[54] |
Kavé G., & Halamish V. (2015). Doubly blessed: Older adults know more vocabulary and know better what they know. Psychology Aging, 30(1), 68-73.
doi: 10.1037/a0038669 URL |
[55] | Kenett Y. N. (2018). Going the extra creative mile: The role of semantic distance in creativity-theory, research, and measurement. In R. Jung & O. Vartanian (Eds.), The Cambridge handbook of the neuroscience of creativity (pp. 233-248). Cambridge University Press. |
[56] |
Kenett Y. N. (2019). What can quantitative measures of semantic distance tell us about creativity? Current Opinion in Behavioral Sciences, 27, 11-16.
doi: 10.1016/j.cobeha.2018.08.010 |
[57] |
Kenett Y. N., Anaki D., & Faust M. (2014). Investigating the structure of semantic networks in low and high creative persons. Frontiers in Human Neuroscience, 8, 407.
doi: 10.3389/fnhum.2014.00407 pmid: 24959129 |
[58] |
Kenett Y. N., Levi E., Anaki D., & Faust M. (2017). The semantic distance task: Quantifying semantic distance with semantic network path length. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(9), 1470-1489.
doi: 10.1037/xlm0000391 URL |
[59] | Kenett Y. N., Levy O., Kenett D. Y., Stanley H. E., Faust M., & Havlin S. (2018). Flexibility of thought in high creative individuals represented by percolation analysis. Psychological and Cognitive Sciences, 115(5), 867-872. |
[60] |
Kisamore J. L., & Brannick M. T. (2008). An illustration of the consequences of meta-analysis model choice. Organizational Research Methods, 11(1), 35-53.
doi: 10.1177/1094428106287393 URL |
[61] |
Kleinmintz O. M., Ivancovsky T., & Shamay-Tsoory S. G. (2019). The two-fold model of creativity: The neural underpinnings of the generation and evaluation of creative ideas. Current Opinion in Behavioral Sciences, 27, 131-138.
doi: 10.1016/j.cobeha.2018.11.004 |
[62] |
Lee S. (2008). Commentary: Reliability and validity of uniqueness scoring in creativity assessment. Psychology of Aesthetics, Creativity, and the Arts, 2(2), 103-108.
doi: 10.1037/1931-3896.2.2.103 URL |
[63] |
Leon S. A., Altmann L. J. P., Abrams L., Gonzalez Rothi L. J., & Heilman K. M. (2019). Novel associative processing and aging: Effect on creative production. Aging, Neuropsychology, and Cognition, 26(6), 807-822.
doi: 10.1080/13825585.2018.1532067 |
[64] |
Li D., Yang D. -L., An J., Jiao J., Zhou Y. -M., Wu Q. -J., & Wang X. -X. (2016). Effect of assisted hatching on pregnancy outcomes: A systematic review and meta-analysis of randomized controlled trials. Scientific Reports, 6, 31228-31228.
doi: 10.1038/srep31228 pmid: 27503701 |
[65] | Light R. J., & Pillemer D. B. (1984). Summing up: The science of reviewing research. Harvard University Press. |
[66] |
* Liu M., Wang Y., Li J., Zhuang X., Chen X., Li X., Liao X., & Wang L. (2020). Opposite effect of ablation on early/late-phase thromboembolic incidence in patients with atrial fibrillation: A meta-analysis on more than 100 000 individuals. Clinical Cardiology, 43(6), 594-605.
doi: 10.1002/clc.23354 pmid: 32159241 |
[67] |
Macaskill P., Walter S. D., & Irwig L. (2010). A comparison of methods to detect publication bias in meta-analysis. Statistics in Medicine, 20(4), 641-654.
doi: 10.1002/(ISSN)1097-0258 URL |
[68] | Marron T., & Faust M. (2018). Free association, divergent thinking, and creativity: Cognitive and neural perspectives. In R. Jung & O. Vartanian (Eds.), The Cambridge handbook of the neuroscience of creativity (Cambridge Handbooks in Psychology, pp. 261-280). Cambridge University Press. |
[69] |
Marron T. R., Lerner Y., Berant E., Kinreich S., Shapira-Lichter I., Hendler T., & Faust M. (2018). Chain free association, creativity, and the default mode network. Neuropsychologia, 118, 40-58.
doi: S0028-3932(18)30111-8 pmid: 29555561 |
[70] |
Mednick S. (1962). The associative basis of the creative process. Psychological Review, 69(3), 220-232.
doi: 10.1037/h0048850 URL |
[71] |
Mednick S. (1968). The remote associates test. The Journal of Creative Behavior, 2(3), 213-214.
doi: 10.1002/jocb.1968.2.issue-3 URL |
[72] | * Murray S., Liang N., Brosowsky N., & Seli P. (2021). What are the benefits of mind wandering to creativity? Psychology of Aesthetics, Creativity, and the Arts. Advance online publication. |
[73] | Nikolakopoulou A., Mavridis D., & Salanti G. (2014). How to interpret meta-analysis models: Fixed effect and random effects meta-analyses. Evidence Based Mental Health, 17(2), 64. |
[74] |
Orwig W., Diez I., Vannini P., Beaty R., & Sepulcre J. (2021). Creative connections: Computational semantic distance captures individual creativity and resting-state functional connectivity. Journal of Cognitive Neuroscience, 33(3), 499-509.
doi: 10.1162/jocn_a_01658 pmid: 33284079 |
[75] | Orwin R. G., & Vevea J. L. (1994). Evaluating coding decisions. In L. V. H. Cooper & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (pp. 177-203). New York, NY: Russell Sage Foundation. |
[76] |
Paulsen J. S., Romero R., Chan A., Davis A. V., Heaton R. K., & Jeste D. V. (1996). Impairment of the semantic network in schizophrenia. Psychiatry Research, 63(2), 109-121.
doi: 10.1016/0165-1781(96)02901-0 URL |
[77] | Plucker J. A., & Makel M. C. (2010). Assessment of creativity. In J. C. Kaufman & R. J. Sternberg (Eds.), The Cambridge handbook of creativity (pp. 48-73). Cambridge University Press. |
[78] |
* Prabhakaran R., Green A. E., & Gray J. R. (2014). Thin slices of creativity: Using single-word utterances to assess creative cognition. Behavior Research Methods, 46(3), 641-659.
doi: 10.3758/s13428-013-0401-7 pmid: 24163211 |
[79] |
Ralph M. A. L., Jefferies E., Patterson K., & Rogers T. T. (2017). The neural and computational bases of semantic cognition. Nature Reviews Neuroscience, 18(1), 42-55.
doi: 10.1038/nrn.2016.150 pmid: 27881854 |
[80] |
Reiter-Palmon R., Forthmann B., & Barbot B. (2019). Scoring divergent thinking tests: A review and systematic framework. Psychology of Aesthetics, Creativity, and the Arts, 13(2), 144-152.
doi: 10.1037/aca0000227 URL |
[81] |
Rosenthal R. (1979). The file drawer problem and tolerance for null results. Psychological Bulletin, 86(3), 638-641.
doi: 10.1037/0033-2909.86.3.638 URL |
[82] |
* Rossmann E., & Fink A. (2010). Do creative people use shorter associative pathways? Personality and Individual Differences, 49(8), 891-895.
doi: 10.1016/j.paid.2010.07.025 URL |
[83] |
Rothenberg A. (1973). Word association and creativity. Psychological Reports, 33(1), 3-12.
pmid: 4728480 |
[84] |
Runco M. A., Abdulla A. M., Paek S. H., Al-Jasim F. A., & Alsuwaidi H. N. (2016). Which test of divergent thinking is best? Creativity. Theories-Research- Applications, 3(1), 4-18.
doi: 10.1515/ctra-2016-0001 URL |
[85] | Runco M. A. (2002). Creativity. In V. S. Ramachandran (Ed.), Encyclopedia of the human brain (pp. 83-87). Salt Lake City, UT: Academic Press. |
[86] | Runco M. A., Pritzker S. R., & Reiterpalmon R. (1999). Encyclopedia of creativity. Salt Lake City, UT: Academic Press. |
[87] |
Ruth J. E., & Birren J. E. (1985). Creativity in adulthood and old age: Relations to intelligence, sex and mode of testing. International Journal of Behavioral Development, 8(1), 99-109.
doi: 10.1177/016502548500800107 URL |
[88] |
Schilling M. A. (2005). A" small-world" network model of cognitive insight. Creativity Research Journal, 17(2-3), 131-154.
doi: 10.1207/s15326934crj1702&3_2 URL |
[89] | Shimonaka Y., & Nakazato K. (2007). Creativity and factors affecting creative ability in adulthood and old age. Japanese Journal of Educational Psychology, 55(2), 231-243. |
[90] | Siew C. S. Q., Wulff D. U., Beckage N. M., & Kenett Y. N. (2019). Cognitive network science: A review of research on cognition through the lens of network representations, processes, and dynamics. Complexity, 2019, 2108423. |
[91] |
Silvia P. J. (2015). Intelligence and creativity are pretty similar after all. Educational Psychology Review, 27(4), 599-606.
doi: 10.1007/s10648-015-9299-1 URL |
[92] | Silvia P. J., Beaty R. E., & Nusbaum E. C. (2013). Verbal fluency and creativity: General and specific contributions of broad retrieval ability (Gr) factors to divergent thinking. Intelligence Norwood Mutidisciplinary Journal, 41(5), 328-340. |
[93] |
Silvia P. J., Winterstein B. P., Willse J. T., Barona C. M., Cram J. T., Hess K. I., Martinez J. L., & Richard C. A. (2008). Assessing creativity with divergent thinking tasks: Exploring the reliability and validity of new subjective scoring methods. Psychology of Aesthetics, Creativity, and the Arts, 2(2), 68-85.
doi: 10.1037/1931-3896.2.2.68 URL |
[94] |
Simon A., & Bock O. (2016). Influence of divergent and convergent thinking on visuomotor adaptation in young and older adults. Human Movement Science, 46, 23-29.
doi: 10.1016/j.humov.2015.11.020 pmid: 26707677 |
[95] | Sun J. R., Kong C. F., Qu X. K., Deng C., Lou Y. N., & Jia L. Q. (2020). Efficacy and safety of probiotics in irritable bowel syndrome: A systematic review and meta-analysis. Saudi Journal of Gastroenterology, 26(2), 66-77. |
[96] |
* Tempest G. D., & Radel R. (2019). Put on your (fNIRS) thinking cap: Frontopolar activation during augmented state creativity. Behavioural Brain Research, 373, 112082.
doi: 10.1016/j.bbr.2019.112082 |
[97] |
Terrin N., Schmid C. H., & Lau J. (2005). In an empirical evaluation of the funnel plot, researchers could not visually identify publication bias. Journal of Clinical Epidemiology, 58(9), 894-901.
doi: 10.1016/j.jclinepi.2005.01.006 pmid: 16085192 |
[98] | Torrance E. P. (1965). Rewarding creative behavior. Denver, CO: Prentice Hall. |
[99] |
Torrance E. P. (1972). Predictive validity of the torrance tests of creative thinking. The Journal of Creative Behavior, 6(4), 236-252.
doi: 10.1002/jocb.1972.6.issue-4 URL |
[100] | Torrance E. P. (1988). The nature of creativity as manifest in its testing. In R. J. Sternberg (Ed.), The nature of creativity: Contemporary psychological perspectives (pp. 43-75). Cambridge University Press. |
[101] |
Verhaeghen P. (2003). Aging and vocabulary scores: A meta-analysis. Psychology and Aging, 18(2), 332-339.
doi: 10.1037/0882-7974.18.2.332 pmid: 12825780 |
[102] | Viechtbauer W. (2007). Publication bias in meta-analysis:Prevention, assessment and adjustments. Psychometrika, 72(2), 269-271. |
[103] | Volle E. (2018). Associative and controlled cognition in divergent thinking: Theoretical, experimental, neuroimaging evidence, and new directions. In R. E. Jung & O. Vartanian (Eds.), The Cambridge handbook of the neuroscience of creativity (pp. 333-360). Cambridge University Press. |
[104] |
Wang P., Wijnants M. L., & Ritter S. M. (2018). What enables novel thoughts? The temporal structure of associations and its relationship to divergent thinking. Frontiers in Psychology, 9, 1771.
doi: 10.3389/fpsyg.2018.01771 pmid: 30319488 |
[105] | Weinberger A. B., Iyer H., & Green A. E. (2016). Conscious augmentation of creative state enhances "real" creativity in open-ended analogical reasoning. PLoS One, 11(3), e0150773. |
[106] |
Wu C. H., Cheng Y., Ip H. M., & McBride-Chang C. (2005). Age differences in creativity: Task structure and knowledge base. Creativity Research Journal, 17(4), 321-326.
doi: 10.1207/s15326934crj1704_3 URL |
[107] |
Wulff D. U., de Deyne S., Jones M. N., & Mata R. (2019). New perspectives on the aging lexicon. Trends in Cognitive Sciences, 23(8), 686-698.
doi: S1364-6613(19)30124-X pmid: 31288976 |
[108] |
Zhang W., & Niu W. (2013). Creativity in the later life: Factors associated with the creativity of the Chinese elderly. Journal of Creative Behavior, 47(1), 60-76.
doi: 10.1002/jocb.23 URL |
[109] | Zortea M., Menegola B., Villavicencio A., & de Salles J. F. (2014). Graph analysis of semantic word association among children, adults, and the elderly. Psicologian- Reflexao e Critica, 27(1), 90-99. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||