Advances in Psychological Science ›› 2022, Vol. 30 ›› Issue (8): 1804-1817.doi: 10.3724/SP.J.1042.2022.01804
• Regular Articles • Previous Articles Next Articles
QIN Yinghui1,2, YU Wenyuan1,2,3, FU Xiaolan1,2, LIU Ye1,2()
Received:
2021-10-26
Online:
2022-08-15
Published:
2022-06-23
Contact:
LIU Ye
E-mail:liuye@psych.ac.cn
CLC Number:
QIN Yinghui, YU Wenyuan, FU Xiaolan, LIU Ye. Cognitive mechanisms of 2D-to-3D spatial information transformation in haptic recognition of 2D images[J]. Advances in Psychological Science, 2022, 30(8): 1804-1817.
[1] |
龚江涛, 於文苑, 曲同, 刘烨, 傅小兰, 徐迎庆. (2018). 影响触觉图像识别因素的量化分析. 计算机辅助设计与图形学学报, 30(8), 1438-1445. doi: 10.3724/SP.J.1089.2018.16799
doi: 10.3724/SP.J.1089.2018.16799 |
[2] |
焦阳, 龚江涛, 徐迎庆. (2016). 盲人触觉图像显示器graile设计研究. 装饰, 273(1), 96-98. doi: CNKI:SUN:ZSHI.0.2016-01-031
doi: CNKI:SUN:ZSHI.0.2016-01-031 |
[3] |
王葛彤, 席洁, 陈霓虹, 黄昌兵. (2021). 双眼视差的神经机制与知觉学习效应. 心理科学进展, 29(1), 56-69. doi: 10.3724/SP.J.1042.2021.00056
doi: 10.3724/SP.J.1042.2021.00056 |
[4] |
於文苑, 刘烨, 傅小兰, 龚江涛, 徐迎庆. (2019). 触觉二维图像识别的认知机制. 心理科学进展, 27(4), 611-622. doi: 10.3724/sp.J.1042.2019.00611
doi: 10.3724/sp.J.1042.2019.00611 |
[5] |
Amedi A., Jacobson G., Hendler T., Malach R., & Zohary E. (2002). Convergence of visual and tactile shape processing in the human lateral occipital complex. Cerebral Cortex, 12(11), 1202-1212. doi: 10.1093/cercor/12.11.1202
doi: 10.1093/cercor/12.11.1202 pmid: 12379608 |
[6] |
Bara F., Gentaz E., & Valente D. (2018). The effect of tactile illustrations on comprehension of storybooks by three children with visual impairments: An exploratory study. Journal of Visual Impairment & Blindness, 112(6), 759-765. doi: 10.1177/0145482X1811200610
doi: 10.1177/0145482X1811200610 |
[7] |
Bauer C., Yazzolino L., Hirsch G., Cattaneo Z., Vecchi T., & Merabet L. B. (2015). Neural correlates associated with superior tactile symmetry perception in the early blind. Cortex, 63, 104-117. doi: 10.1016/j.cortex.2014.08.003
doi: 10.1016/j.cortex.2014.08.003 URL |
[8] |
Bergmann J., Genç E., Kohler A., Singer W., & Pearson J. (2016). Smaller primary visual cortex is associated with stronger, but less precise mental imagery. Cerebral Cortex, 26(9), 3838-3850. doi: 10.1093/cercor/bhv186
doi: 10.1093/cercor/bhv186 URL |
[9] |
Blajenkova O., Kozhevnikov M., & Motes M. A. (2006). Object-spatial imagery: A new self-report imagery questionnaire. Applied Cognitive Psychology, 20(2), 239-263. doi: 10.1002/acp.1182
doi: 10.1002/acp.1182 URL |
[10] | Braille Authority of North America. (2010). Guidelines and standards for tactile graphics. The Braille Authority of North America. Retrieved from http://www.brailleauthority.org/tg/web-manual/index.html |
[11] |
Cacciamani L., & Likova L. T. (2016). Tactile object familiarity in the blind brain reveals the supramodal perceptual-mnemonic nature of the perirhinal cortex. Frontiers in Human Neuroscience, 10, 92. doi: 10.3389/fnhum.2016.00092
doi: 10.3389/fnhum.2016.00092 pmid: 27148002 |
[12] |
Camponogara I., & Volcic R. (2019). Grasping adjustments to haptic, visual, and visuo-haptic object perturbations are contingent on the sensory modality. Journal of Neurophysiology, 122(6), 2614-2620. doi: 10.1152/jn.00452.2019
doi: 10.1152/jn.00452.2019 pmid: 31693442 |
[13] |
Cavazos Quero L., Bartolomé J. I., & Cho J. (2021). Accessible visual artworks for blind and visually impaired people: Comparing a multimodal approach with tactile graphics. Electronics, 10(3), 297. doi: 10.3390/electronics10030297
doi: 10.3390/electronics10030297 |
[14] |
Cornoldi C., Tinti C., Mammarella I. C., Re A. M., & Varotto D. (2009). Memory for an imagined pathway and strategy effects in sighted and in totally congenitally blind individuals. Acta Psychologica, 130(1), 11-16. doi: 10.1016/j.actpsy.2008.09.012
doi: 10.1016/j.actpsy.2008.09.012 pmid: 19013547 |
[15] |
de Borst A. W., & de Gelder B. (2016). fMRI-based multivariate pattern analyses reveal imagery modality and imagery content specific representations in primary somatosensory, motor and auditory cortices. Cerebral Cortex, 27(8), 3994-4009. doi: 10.1093/cercor/bhw211
doi: 10.1093/cercor/bhw211 |
[16] |
de Borst A. W., & de Gelder B. (2019). Mental imagery follows similar cortical reorganization as perception: Intra-modal and cross-modal plasticity in congenitally blind. Cerebral Cortex, 29(7), 2859-2875. doi: 10.1093/cercor/bhy151
doi: 10.1093/cercor/bhy151 |
[17] |
Delhaye B. P., Long K. H., & Bensmaia S. J. (2018). Neural basis of touch and proprioception in primate cortex. Comprehensive Physiology, 8(4), 1575-1602. doi: 10.1002/cphy.c170033
doi: 10.1002/cphy.c170033 pmid: 30215864 |
[18] |
Desmarais G., Meade M., Wells T., & Nadeau M. (2017). Visuo-haptic integration in object identification using novel objects. Attention, Perception and Psychophysics, 79(8), 2478-2498. doi: 10.3758/s13414-017-1382-x
doi: 10.3758/s13414-017-1382-x |
[19] |
Dijkstra N., Bosch S. E., & van Gerven M. A. J. (2017). Vividness of visual imagery depends on the neural overlap with perception in visual areas. The Journal of Neuroscience, 37(5), 1367-1373. doi: 10.1523/JNEUROSCI.3022-16.2016
doi: 10.1523/JNEUROSCI.3022-16.2016 URL |
[20] |
Eck J., Kaas A. L., Mulders J. L., Hausfeld L., Kourtzi Z., & Goebel R. (2016). The effect of task instruction on haptic texture processing: The neural underpinning of roughness and spatial density perception. Cerebral Cortex, 26(1), 384-401. doi: 10.1093/cercor/bhu294
doi: 10.1093/cercor/bhu294 URL |
[21] |
Ernst M. O., & Banks M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415(6870), 429-433. doi: 10.1038/415429a
doi: 10.1038/415429a URL |
[22] |
Flaxman S. R., Bourne R. R. A., Resnikoff S., Ackland P., Braithwaite T., Cicinelli M. V.,... Taylor H. R. (2017). Global causes of blindness and distance vision impairment 1990-2020: A systematic review and meta-analysis. The Lancet Global Health, 5(12),1221-1234. doi: 10.1016/s2214-109x(17)30393-5
doi: 10.1016/s2214-109x(17)30393-5 |
[23] |
Freud E., Culham J. C., Plaut D. C., & Behrmann M. (2017). The large-scale organization of shape processing in the ventral and dorsal pathways. Elife, 6, 27576. doi: 10.7554/eLife.27576
doi: 10.7554/eLife.27576 |
[24] |
Garcia G. G., Grau R. R., Aldrich F. K., & Cheng P. C. (2020). Multi-touch interaction data analysis system (MIDAS) for 2-D tactile display research. Behavior Research Methods, 52(2), 813-837. doi: 10.3758/s13428-019-01279-1
doi: 10.3758/s13428-019-01279-1 URL |
[25] |
Gong J., Yu W., Ni L., Jiao Y., Liu Y., Fu X., & Xu Y. (2020, October). ”I can’t name it, but I can perceive it” conceptual and operational design of ”tactile accuracy” assisting tactile image cognition. Paper presented at the The 22nd International ACM SIGACCESS Conference on Computers and Accessibility, Virtual Event, Greece. doi: 10.1145/3373625.3417015
doi: 10.1145/3373625.3417015 |
[26] |
Gori M., Del Viva M., Sandini G., & Burr D. C. (2008). Young children do not integrate visual and haptic form information. Current Biology, 18(9), 694-698. doi: 10.1016/j.cub.2008.04.036
doi: 10.1016/j.cub.2008.04.036 URL |
[27] |
Heed T., Buchholz V. N., Engel A. K., & Röder B. (2015). Tactile remapping: From coordinate transformation to integration in sensorimotor processing. Trends in Cognitive Sciences, 19(5), 251-258. doi: 10.1016/j.tics.2015.03.001
doi: 10.1016/j.tics.2015.03.001 URL |
[28] |
Heller M. A., Brackett D. D., Scroggs E., Steffen H., Heatherly K., & Salik S. (2002). Tangible pictures: Viewpoint effects and linear perspective in visually impaired people. Perception, 31(6), 747-769. doi: 10.1068/p3253
doi: 10.1068/p3253 URL |
[29] |
Heller M. A., Kennedy J. M., Clark A., McCarthy M., Borgert A., Wemple L.,... Riddle T. (2006). Viewpoint and orientation influence picture recognition in the blind. Perception, 35(10), 1397-1420. doi: 10.1068/p5460
doi: 10.1068/p5460 URL |
[30] |
Heller M., Riddle T., Fulkerson E., Wemple L., Walk A., Guthrie S.,... Klaus P. (2009). The influence of viewpoint and object detail in blind people when matching pictures to complex objects. Perception, 38, 1234-1250. doi: 10.1068/p5596
doi: 10.1068/p5596 URL |
[31] |
Henson R. N. A., Cansino S., Herron J. E., Robb W. G. K., & Rugg M. D. (2003). A familiarity signal in human anterior medial temporal cortex? Hippocampus, 13(2), 301-304. doi: 10.1002/hipo.10117
doi: 10.1002/hipo.10117 pmid: 12699337 |
[32] |
Hernandez-Perez R., Cuaya L. V., Rojas-Hortelano E., Reyes-Aguilar A., Concha L., & de Lafuente V. (2017). Tactile object categories can be decoded from the parietal and lateral-occipital cortices. Neuroscience, 352, 226-235. doi: 10.1016/j.neuroscience.2017.03.038
doi: 10.1016/j.neuroscience.2017.03.038 URL |
[33] |
Höffler T. N., Koć-Januchta M., & Leutner D. (2017). More evidence for three types of cognitive style: Validating the object-spatial imagery and verbal questionnaire using eye tracking when learning with texts and pictures. Applied Cognitive Psychology, 31(1), 109-115. doi: 10.1002/acp.3300
doi: 10.1002/acp.3300 pmid: 28163372 |
[34] |
Holdstock J. S., Hocking J., Notley P., Devlin J. T., & Price C. J. (2009). Integrating visual and tactile information in the perirhinal cortex. Cerebral Cortex, 19(12), 2993-3000. doi: 10.1093/cercor/bhp073
doi: 10.1093/cercor/bhp073 URL |
[35] |
Kaas A. L., van Mier H., Visser M., & Goebel R. (2013). The neural substrate for working memory of tactile surface texture. Human Brain Mapping, 34(5), 1148-1162. doi: 10.1002/hbm.21500
doi: 10.1002/hbm.21500 URL |
[36] |
Katus T., & Eimer M. (2020a). Retrospective selection in visual and tactile working memory is mediated by shared control mechanisms. Journal of Cognitive Neuroscience, 32(3), 546-557. doi: 10.1162/jocn_a_01492
doi: 10.1162/jocn_a_01492 URL |
[37] |
Katus T., & Eimer M. (2020b). Shifts of spatial attention in visual and tactile working memory are controlled by independent modality-specific mechanisms. Cerebral Cortex, 30(1), 296-310. doi: 10.1093/cercor/bhz088
doi: 10.1093/cercor/bhz088 URL |
[38] |
Kennedy J. M., & Juricevic I. (2016). Foreshortening, convergence and drawings from a blind adult. Perception, 35(6), 847-851. doi: 10.1068/p5316
doi: 10.1068/p5316 URL |
[39] |
Kim S., Park E.-S., & Ryu E.-S. (2019). Multimedia vision for the visually impaired through 2d multiarray braille display. Applied Sciences, 9(5), 878. doi: 10.3390/app9050878
doi: 10.3390/app9050878 |
[40] | Kitada R. (2016). The brain network for haptic object recogniton. In Kajimoto H., Saga S., Konyo M. (Eds) Pervasive Haptics (pp. 21-37). Springer, Tokyo. https://doi.org/10.1007/978-4-431-55772-2_2 |
[41] |
Kitada R., Ng M., Tan Z. Y., Lee X. E., & Kochiyama T. (2021). Physical correlates of human-like softness elicit high tactile pleasantness. Scientific Reports, 11(1), 16510. doi: 10.1038/s41598-021-96044-w
doi: 10.1038/s41598-021-96044-w |
[42] |
Klatzky R. L., & Lederman S. J. (1988). The intelligent hand. In G. H. Bower (Ed.). Psychology of learning and motivation (Vol. 21, pp. 121-151): Elsevier Science & Technology. doi: 10.1016/S0079-7421(08)60027-4
doi: 10.1016/S0079-7421(08)60027-4 |
[43] |
Klatzky R. L., & Lederman S. J. (2011). Haptic object perception: Spatial dimensionality and relation to vision. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1581), 3097-3105. doi: 10.1098/ rstb.2011.0153
doi: 10.1098/ rstb.2011.0153 URL |
[44] |
Lacey S., Lin J. B., & Sathian K. (2011). Object and spatial imagery dimensions in visuo-haptic representations. Experimental Brain Research, 213(2), 267-273. doi: 10.1007/s00221-011-2623-1
doi: 10.1007/s00221-011-2623-1 URL |
[45] |
Lacey S., Pappas M., Kreps A., Lee K., & Sathian K. (2009). Perceptual learning of view-independence in visuo- haptic object representations. Experimental Brain Research, 198(2-3), 329-337. doi: 10.1007/s00221-009-1856-8
doi: 10.1007/s00221-009-1856-8 URL |
[46] |
Lacey S., Peters A., & Sathian K. (2007). Cross-modal object recognition is viewpoint-independent. PloS One, 2(9), e890-e890. doi: 10.1371/journal.pone.0000890
doi: 10.1371/journal.pone.0000890 |
[47] |
Lacey S., & Sathian K. (2014). Visuo-haptic multisensory object recognition, categorization, and representation. Frontiers in Psychology, 5, 730. doi: 10.3389/fpsyg.2014.00730
doi: 10.3389/fpsyg.2014.00730 |
[48] |
Lebaz S., Jouffrais C., & Picard D. (2012). Haptic identification of raised-line drawings: High visuospatial imagers outperform low visuospatial imagers. Psychological Research, 76(5), 667-675. doi: 10.1007/s00426-011-0351-6
doi: 10.1007/s00426-011-0351-6 URL |
[49] |
Lebreton P. (2016). Assessing human depth perception for 2D and 3D stereoscopic images and video and its relation with the overall 3D QoE. (Unpublished doctorial dissertation). Technische Universitaet Berlin, Germany. doi: 10.14279/depositonce-5126
doi: 10.14279/depositonce-5126 |
[50] |
Lederman S. J., Klatzky R. L., Chataway C., & Summers C. D. (1990). Visual mediation and the haptic recognition of two-dimensional pictures of common objects. Perception & Psychophysics, 47(1), 54-64. doi: 10.3758/BF03208164
doi: 10.3758/BF03208164 URL |
[51] |
Likova L. T. (2012). Drawing enhances cross-modal memory plasticity in the human brain: A case study in a totally blind adult. Frontiers in Human Neuroscience, 6, 44-44. doi: 10.3389/fnhum.2012.00044
doi: 10.3389/fnhum.2012.00044 pmid: 22593738 |
[52] |
Loomis J. M., Klatzky R. L., & Lederman S. J. (1991). Similarity of tactual and visual picture recognition with limited field of view. Perception, 20(2), 167-177. doi: 10.1068/p200167
doi: 10.1068/p200167 pmid: 1745589 |
[53] |
Mazella A., Albaret J.-M., & Picard D. (2018). The development of haptic processing skills from childhood to adulthood by means of two-dimensional materials. Canadian Journal of Experimental Psychology, 72(1), 48-57. doi: 10.1037/cep0000121
doi: 10.1037/cep0000121 URL |
[54] |
Newell F., Ernst M., Tjan B., & Bülthoff H. (2001). Viewpoint dependence in visual and haptic object recognition. Psychological Science, 12, 37-42. doi: 10.1111/1467-9280. 00307
doi: 10.1111/1467-9280. 00307 pmid: 11294226 |
[55] |
Nguyen A. M., Ferro T. J., & Pawluk D. T. V. (2018). Effectiveness of using local cues to indicate perspective in tactile diagrams for people with visual impairments. Journal of Visual Impairment & Blindness, 112(6), 731-744. doi: 10.1177/0145482X1811200608
doi: 10.1177/0145482X1811200608 |
[56] |
Occelli V., Lacey S., Stephens C., John T., & Sathian K. (2016). Haptic object recognition is view-independent in early blind but not sighted people. Perception, 45(3), 337-345. doi: 10.1177/0301006615614489
doi: 10.1177/0301006615614489 URL |
[57] |
Overvliet K. E., & Krampe R. T. (2018). Haptic two- dimensional shape identification in children, adolescents, and young adults. Journal of Experimental Child Psychology, 166, 567-580. doi: 10.1016/j.jecp.2017.09.024
doi: S0022-0965(16)30272-7 pmid: 29102839 |
[58] |
Overvliet K. E., Wagemans J., & Krampe R. T. (2013). The effects of aging on haptic 2D shape recognition. Psychology and Aging, 28(4), 1057-1069. doi: 10.1037/a0033415
doi: 10.1037/a0033415 pmid: 23978010 |
[59] |
Pasqualotto A., Ng M., Tan Z. Y., & Kitada R. (2020). Tactile perception of pleasantness in relation to perceived softness. Scientific Reports, 10(1), 11189. doi: 10.1038/s41598-020-68034-x
doi: 10.1038/s41598-020-68034-x |
[60] |
Pearson J. (2019). The human imagination: The cognitive neuroscience of visual mental imagery. Nature Reviews Neuroscience, 20(10), 624-634. doi: 10.1038/s41583-019-0202-9
doi: 10.1038/s41583-019-0202-9 pmid: 31384033 |
[61] |
Perini F., Powell T., Watt S. J., & Downing P. E. (2020). Neural representations of haptic object size in the human brain revealed by multivoxel fMRI patterns. Journal of Neurophysiology, 124(1), 218-231. doi: 10.1152/jn.00160.2020
doi: 10.1152/jn.00160.2020 URL |
[62] |
Picard D., Lebaz S., Jouffrais C., & Monnier C. (2010). Haptic recognition of two-dimensional raised-line patterns by early-blind, late-blind, and blindfolded sighted adults. Perception, 39(2), 224-235. doi: 10.1068/p6527
doi: 10.1068/p6527 URL |
[63] |
Prather S. C., Votaw J. R., & Sathian K. (2004). Task-specific recruitment of dorsal and ventral visual areas during tactile perception. Neuropsychologia, 42(8), 1079-1087. doi: 10.1016/j.neuropsychologia.2003.12.013
doi: 10.1016/j.neuropsychologia.2003.12.013 pmid: 15093147 |
[64] |
Qian J., & Petrov Y. (2016). A depth illusion supports the model of general object constancy: Size and depth constancies related by a same distance-scaling factor. Vision Research, 129, 77-86. doi: 10.1016/j.visres.2016.09.015
doi: 10.1016/j.visres.2016.09.015 URL |
[65] |
Roldan S. M. (2017). Object recognition in mental representations: Directions for exploring diagnostic features through visual mental imagery. Frontiers in Psychology, 8(5), 833-833. doi: 10.3389/fpsyg.2017.00833
doi: 10.3389/fpsyg.2017.00833 URL |
[66] |
Sathian K. (2016). Analysis of haptic information in the cerebral cortex. Journal of Neurophysiology, 116(4), 1795-1806. doi: 10.1152/jn.00546.2015
doi: 10.1152/jn.00546.2015 pmid: 27440247 |
[67] |
Sathian K., Lacey S., Stilla R., Gibson G. O., Deshpande G., Hu X.,... Glielmi C. (2011). Dual pathways for haptic and visual perception of spatial and texture information. NeuroImage, 57(2), 462-475. doi: 10.1016/j.neuroimage.2011.05.001
doi: 10.1016/j.neuroimage.2011.05.001 pmid: 21575727 |
[68] |
Senna I., Andres E., McKyton A., Ben-Zion I., Zohary E., & Ernst M. O. (2021). Development of multisensory integration following prolonged early-onset visual deprivation. Current Biology, 31(21), 4879-4885.e4876. doi: 10.1016/j.cub.2021.08.060
doi: 10.1016/j.cub.2021.08.060 URL |
[69] |
Sheldon S., Amaral R., & Levine B. (2017). Individual differences in visual imagery determine how event information is remembered. Memory, 25(3), 360-369. doi: 10.1080/09658211.2016.1178777
doi: 10.1080/09658211.2016.1178777 pmid: 27149558 |
[70] |
Sinha P., & Kalia A. A. (2012). Tactile picture recognition: Errors are in shape acquistion or object matching? Seeing Perceiving, 25(3-4), 287-302. doi: 10.1163/187847511X584443
doi: 10.1163/187847511X584443 pmid: 21871145 |
[71] |
Stoesz M. R., Zhang M., Weisser V. D., Prather S. C., Mao H., & Sathian K. (2003). Neural networks active during tactile form perception: Common and differential activity during macrospatial and microspatial tasks. International Journal of Psychophysiology, 50(1-2),41-49. doi: 10.1016/S0167-8760(03)00123-5
doi: 10.1016/S0167-8760(03)00123-5 pmid: 14511835 |
[72] |
Szubielska M., Niestorowicz E., & Marek B. (2019). The relevance of object size to the recognizability of drawings by individuals with congenital blindness. Journal of Visual Impairment & Blindness, 113(3), 295-310. doi: 10.1177/0145482x19860015
doi: 10.1177/0145482x19860015 |
[73] |
Tarr M. J., & Hayward W. G. (2017). The concurrent encoding of viewpoint-invariant and viewpoint-dependent information in visual object recognition. Visual Cognition, 25(1-3), 100-121. doi: 10.1080/13506285.2017.1324933
doi: 10.1080/13506285.2017.1324933 URL |
[74] |
Theurel A., Witt A., Claudet P., Hatwell Y., & Gentaz E. (2013). Tactile picture recognition by early blind children: The effect of illustration technique. Journal of Experimental Psychology: Applied, 19(3), 233-240. doi: 10.1037/a0034255
doi: 10.1037/a0034255 URL |
[75] |
Thompson L. J., Chronicle E. P., & Collins A. F. (2006). Enhancing 2-D tactile picture design from knowledge of 3-D haptic object recognition. European Psychologist, 11(2), 110-118. doi: 10.1027/1016-9040.11.2.110
doi: 10.1027/1016-9040.11.2.110 URL |
[76] |
Toprak S., Navarro-Guerrero N., & Wermter S. (2018). Evaluating integration strategies for visuo-haptic object recognition. Cognitive Computation, 10(3), 408-425. doi: 10.1007/s12559-017-9536-7
doi: 10.1007/s12559-017-9536-7 pmid: 29881470 |
[77] |
Vinter A., Bonin P., & Morgan P. (2018). The severity of the visual impairment and practice matter for drawing ability in children. Research in Developmental Disabilities, 78, 15-26. doi: 10.1016/j.ridd.2018.04.027
doi: S0891-4222(18)30103-3 pmid: 29730506 |
[78] |
Vinter A., Orlandi O., & Morgan P. (2020). Identification of textured tactile pictures in visually impaired and blindfolded sighted children. Frontiers in Psychology, 11, 345. doi: 10.3389/fpsyg.2020.00345
doi: 10.3389/fpsyg.2020.00345 pmid: 32210879 |
[79] |
Wan C., Cai P., Guo X., Wang M., Matsuhisa N., Yang L., Lv Z., Luo Y., Loh X. J., & Chen X. (2020). An artificial sensory neuron with visual-haptic fusion. Nature Communications, 11(1), 4602. doi: 10.1038/s41467-020- 18375-y
doi: 10.1038/s41467-020- 18375-y URL |
[80] |
Withagen A., Kappers A. M. L., Vervloed M. P. J., Knoors H., & Verhoeven L. (2013). The use of exploratory procedures by blind and sighted adults and children. Attention, Perception & Psychophysics, 75(7), 1451-1464. doi: 10.3758/s13414-013-0479-0
doi: 10.3758/s13414-013-0479-0 |
[81] |
Woods A. T., Moore A., & Newell F. N. (2008). Canonical views in haptic object perception. Perception, 37(12), 1867-1878. doi: 10.1068/p6038
doi: 10.1068/p6038 URL |
[82] |
Yang J., Yu Y., Kunita A., Huang Q., Wu J., Sawamoto N., & Fukuyama H. (2014). Tactile priming modulates the activation of the fronto-parietal circuit during tactile angle match and non-match processing: An fMRI study. Frontiers in Human Neuroscience, 8, 926-926. doi: 10.3389/fnhum. 2014.00926
doi: 10.3389/fnhum. 2014.00926 |
[83] |
Yasaka K., Mori T., Yamaguchi M., & Kaba H. (2019). Representations of microgeometric tactile information during object recognition. Cognitive Processing, 20(1), 19-30. doi: 10.1007/s10339-018-0892-3
doi: 10.1007/s10339-018-0892-3 URL |
[84] |
Yau J. M., Kim S. S., Thakur P. H., & Bensmaia S. J. (2016). Feeling form: The neural basis of haptic shape perception. Journal of Neurophysiology, 115(2), 631-642. doi: 10.1152/jn.00598.2015
doi: 10.1152/jn.00598.2015 URL |
[85] |
Yoshida T., Yamaguchi A., Tsutsui H., & Wake T. (2015). Tactile search for change has less memory than visual search for change. Attention, Perception & Psychophysics, 77(4), 1200-1211. doi: 10.3758/s13414-014-0829-6
doi: 10.3758/s13414-014-0829-6 |
[86] |
Yu J., Wu Q., Yang J., Takahashi S., Ejima Y., & Wu J. (2017, August). A study of shape discrimination for tactile guide maps. In 2017 IEEE International Conference on Mechatronics and Automation (ICMA) (pp. 565-570). IEEE. doi: 10.1109/ICMA.2017.8015879
doi: 10.1109/ICMA.2017.8015879 |
[87] |
Zhang Q., & Li S. (2020). The roles of spatial frequency in category-level visual search of real-world scenes. PsyCh Journal, 9(1), 44-55. doi: 10.1002/pchj.294
doi: 10.1002/pchj.294 pmid: 31155857 |
[1] | ZHANG Hao, ZHANG Yu, ZHAO Shuang, SUN Xinbo. The formation of user perspective taking and its influence on opportunity belief performance [J]. Advances in Psychological Science, 2023, 31(1): 45-59. |
[2] | BI Cuihua, QI Huaiyuan. The role of time perception in intertemporal decision-making: New exploration of time decision-making model [J]. Advances in Psychological Science, 2022, 30(5): 1106-1118. |
[3] | YIN Rong. Comparative studies of mind reading: Similarities and differences in theory of mind between non-human primates and humans and corresponding explanations [J]. Advances in Psychological Science, 2022, 30(11): 2540-2557. |
[4] | AI Pan, DAI Yan. Moral injury: A review from the perspective of psychology [J]. Advances in Psychological Science, 2022, 30(1): 168-178. |
[5] | WU Menghui, XIE Jiushu, DENG Zhu. The debate between inhibition and attribution of egocentric bias in visual perspective taking [J]. Advances in Psychological Science, 2022, 30(1): 179-187. |
[6] | SUI Xue, SHI Hanwen, LI Yutong. Perspective taking and its cognitive mechanism in language processing [J]. Advances in Psychological Science, 2021, 29(6): 990-999. |
[7] | XIAO Chengli, SUI Yuqing, XIAO Suheng, ZHOU Renlai. A new perspective on spatial interaction research: The effects of multiple social factors [J]. Advances in Psychological Science, 2021, 29(5): 796-805. |
[8] | WU Lunwen, YANG Fu, TIAN Yixin, PEI Yurong. Job embeddedness: Consequences and theoretical explanation [J]. Advances in Psychological Science, 2021, 29(5): 906-920. |
[9] | TANG Yipeng, REN Zhiyu, PU Xiaoping, HAN Wei. The effect of interpersonal authenticity on coworker interactions within work team [J]. Advances in Psychological Science, 2021, 29(4): 597-609. |
[10] | CHENG Yuhui, YUAN Xiangyong, JIANG Yi. The cognitive characteristics of and the brain mechanisms underlying social interaction processing from a third-person perspective [J]. Advances in Psychological Science, 2021, 29(3): 472-480. |
[11] | DUAN Wenjie, LI Yumei, HE Along, WU Tong. HIV stigma based on dual perspectives of the uninfected and the infected [J]. Advances in Psychological Science, 2021, 29(2): 323-337. |
[12] | LI Yi, XIAO Feng. Automatic perspective taking: The debate between implicit mentalizing and submentalizing [J]. Advances in Psychological Science, 2021, 29(10): 1887-1900. |
[13] | CHEN Lijuan, XU Xiaodong. How does literature reading affect readers’ Theory of Mind? [J]. Advances in Psychological Science, 2020, 28(3): 434-442. |
[14] | ZHANG Jing, LI Weihe, SHI Yanwei, ZHANG Nan, MA Hongyu. Work-related rumination and its “double-edged sword” effect [J]. Advances in Psychological Science, 2020, 28(2): 358-367. |
[15] | CHEN Chen, LIU Yuxin, ZHAO Chen. The unidimensional basic psychological need satisfactions from the additive, synergistic and balanced perspectives [J]. Advances in Psychological Science, 2020, 28(12): 2076-2090. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||