Advances in Psychological Science ›› 2022, Vol. 30 ›› Issue (5): 1018-1027.doi: 10.3724/SP.J.1042.2022.01018
• Regular Articles • Previous Articles Next Articles
GUAN Lei1,2, LUO Wenpei1,2, HAN Jiahui1,2()
Received:
2021-07-12
Online:
2022-05-15
Published:
2022-03-24
Contact:
HAN Jiahui
E-mail:jiahui110509@163.com
GUAN Lei, LUO Wenpei, HAN Jiahui. The modality shifting effects in the multisensory integration paradigm[J]. Advances in Psychological Science, 2022, 30(5): 1018-1027.
[1] | 史艺荃, 周晓林.(2004). 执行控制研究的重要范式--任务切换. 心理科学进展, 12(5), 672-679. |
[2] | 孙远路, 胡中华, 张瑞玲, 寻茫茫, 刘强, 张庆林.(2011). 多感觉整合测量范式中存在的影响因素探讨. 心理学报, 43(11), 1239-1246. |
[3] |
Barutchu A., & Spence C.(2021). Top-down task-specific determinants of multisensory motor reaction time enhancements and sensory switch costs. Experimental Brain Research, 239(3), 1021-1034. https://doi.org/10.1007/s00221-020-06014-3
doi: 10.1007/s00221-020-06014-3 URL pmid: 33515085 |
[4] |
Bastos A. M., Vezoli J., Bosman C. A., Schoffelen J. M., Oostenveld R., Dowdall J. R.,... Fries P.(2015). Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron, 85(2), 390-401. http://dx.doi.org/10.1016/j.neuron.2014.12.018
doi: 10.1016/j.neuron.2014.12.018 URL |
[5] |
Bauer A. R., Debener S., & Nobre A. C.(2020). Synchronisation of Neural Oscillations and Cross-modal Influences. Trends in Cognitive Sciences, 24(6), 481-495. https://doi.org/10.1016/j.tics.2020.03.003
doi: 10.1016/j.tics.2020.03.003 URL |
[6] |
Blurton S. P., Greenlee M. W., & Gondan M.(2014). Multisensory processing of redundant information in go/no-go and choice responses. Attention Perception & Psychophysics, 76(4), 1212-1233. https://doi.org/10.3758/s13414-014-0644-0
doi: 10.3758/s13414-014-0644-0 URL |
[7] | Capizzi M., Ambrosini E., Arbula S., & Vallesi A.(2020). Brain oscillatory activity associated with switch and mixing costs during reactive control. Psychophysiology, 57(11), Article e13642. https://doi.org/10.1111/psyp.13642 |
[8] |
Cappe C., Morel A., & Rouiller E. M.(2007). Thalamocortical and the dual pattern of corticothalamic projections of the posterior parietal cortex in macaque monkeys. Neuroscience, 146(3), 1371-1387. https://doi.org/10.1016/j.neuroscience.2007.02.033
pmid: 17395383 |
[9] |
Cooper P. S., Darriba A., Karayanidis F., & Barcelo F.(2016). Contextually sensitive power changes across multiple frequency bands underpin cognitive control. Neuroimage, 132, 499-511. https://doi.org/10.1016/j.neuroimage.201603.010
doi: 10.1016/j.neuroimage.2016.03.010 URL |
[10] |
Cooper P. S., Karayanidis F., McKewen M., McLellan-Hall S., Wong A. S. W., Skippen P., & Cavanagh J. F.(2019). Frontal theta predicts specific cognitive control-induced behavioural changes beyond general reaction time slowing. Neuroimage, 189, 130-140. https://doi.org/10.1016/j.neuroimage.2019.01.022
doi: 10.1016/j.neuroimage.2019.01.022 URL |
[11] |
Cooper P. S., Wong A. S. W., McKewen M., Michie P. T., & Karayanidis F.(2017). Frontoparietal theta oscillations during proactive control are associated with goal-updating and reduced behavioral variability. Biological Psychology, 129, 253-264. http://dx.doi.org/10.1016/j.biopsycho.2017.09.008
doi: 10.1016/j.biopsycho.2017.09.008 URL |
[12] |
Dosenbach N. U. F., Fair D. A., Miezin F. M., Cohen A. L., & Wenger K. K.(2007). Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 11073-11078. https://doi.org/10.1073/pnas.0704320104
doi: 10.1073/pnas.0704320104 URL pmid: 17576922 |
[13] | Dove A., Pollmann S., Schubert T., Wiggins C. J., & von Cramon D. Y.(2000). Prefrontal cortex activation in task switching: An event-related fMRI study. Cognitive Brain Research, 9(1), 103-109. https://doi.org/10.1016/s0926-6410(99)00029-4 |
[14] |
Elkhetali A. S., Fleming L. L., Vaden R. J., Nenert R., Mendle J. E., & Visscher K. M.(2019). Background connectivity between frontal and sensory cortex depends on task state, independent of stimulus modality. Neuroimage, 184, 790-800. https://doi.org/10.1016/j.neuroimage.2018.09.040
doi: 10.1016/j.neuroimage.2018.09.040 URL |
[15] |
Foxe J. J., Murphy J. W., & de Sanctis P.(2014). Throwing out the rules: Anticipatory alpha-band oscillatory attention mechanisms during task-set reconfigurations. European Journal of Neuroscience, 39(11), 1960-1972. https://doi.org/10.1111/ejn.12577
doi: 10.1111/ejn.12577 URL |
[16] |
Gondan M., & Minakata K.(2016). A tutorial on testing the race model inequality. Attention Perception & Psychophysics, 78(3), 723-735. https://doi.org/10.3758/s13414-015-1018-y
doi: 10.3758/s13414-015-1018-y URL |
[17] |
Hershenson M.(1962). Reaction time as a measure of intersensory facilitation. Journal of Experimental Psychology, 63(3), 289-293. https://doi.org/10.1037/h0039516
doi: 10.1037/h0039516 URL |
[18] |
Innes B. R., & Otto T. U.(2019). A comparative analysis of response times shows that multisensory benefits and interactions are not equivalent. Scientific Reports, 9(1), 2921. https://doi.org/10.1038/s41598-019-39924-6
doi: 10.1038/s41598-019-39924-6 URL |
[19] |
Keil J., & Senkowski D.(2018). Neural Oscillations Orchestrate Multisensory Processing. The Neuroscientist, 24(6), 609-626. https://doi.org/10.1177/1073858418755352
doi: 10.1177/1073858418755352 URL |
[20] |
Maslovat D., Hajj J., & Carlsen A. N.(2018). Coactivation of response initiation processes with redundant signals. Neuroscience Letters, 675, 7-11. https://doi.org/10.1016/j.neulet.2018.03.029
doi: S0304-3940(18)30206-4 URL pmid: 29555517 |
[21] |
Mercier M. R., Foxe J. J., Fiebelkorn I. C., Butler J. S., Schwartz T. H., & Molholm S.(2013). Auditory-driven phase reset in visual cortex: Human electrocorticography reveals mechanisms of early multisensory integration. Neuroimage, 79, 19-29. https://doi.org/10.1016/j.neuroimage.2013.04.060
doi: 10.1016/j.neuroimage.2013.04.060 URL pmid: 23624493 |
[22] |
Mercier M. R., Molholm S., Fiebelkorn I. C., Butler J. S., Schwartz T. H., & Foxe J. J.(2015). Neuro-oscillatory phase alignment drives speeded multisensory response times: An electro-corticographic investigation. The Journal of Neuroscience, 35(22), 8546-8557. https://doi.org/10.1523/JNEUROSCI.4527-14.2015
doi: 10.1523/JNEUROSCI.4527-14.2015 URL |
[23] |
Miller J.(1982). Divided attention: Evidence for coactivation with redundant signals. Cognitive Psychology, 14, 247- 279. https://doi.org/10.1016/0010-0285(82)90010-x
URL pmid: 7083803 |
[24] |
Miller J.(2016). Statistical facilitation and the redundant signals effect: What are race and coactivation models? Attention Perception & Psychophysics, 78(2), 516-519. https://doi.org/10.3758/s13414-015-1017-z
doi: 10.3758/s13414-015-1017-z URL |
[25] |
Otto T. U., & Mamassian P.(2017). Multisensory Decisions: The Test of a Race Model, Its Logic, and Power. Multisensory Research, 30(1), 1-24. https://doi.org/10.1163/22134808-00002541
doi: 10.1163/22134808-00002541 URL |
[26] | Peng A., Kirkham N. Z., & Mareschal D.(2018). Information processes of task-switching and modality-shifting across development. PLoS ONE, 13(6), Article e0198870. https://doi.org/10.1371/journal.pone.0198870 |
[27] |
Proskovec A. L., Wiesman A. I., & Wilson T. W.(2019). The strength of alpha and gamma oscillations predicts behavioral switch costs. Neuroimage, 188, 274-281. https://doi.org/10.1016/j.neuroimage.2018.12.016
doi: S1053-8119(18)32160-8 URL pmid: 30543844 |
[28] | Raab D. H.(1962). Statistical facilitation of simple reaction times. Transactions of the New York Academy of Sciences, 24, 574-590. https://doi.org/10.1111/j.2164-0947.1962.tb01433. |
[29] |
Regenbogen C., Seubert J., Johansson E., Finkelmeyer A., Andersson P., & Lundstrom J. N.(2018). The intraparietal sulcus governs multisensory integration of audiovisual information based on task difficulty. Human Brain Mapping, 39(3), 1313-1326. https://doi.org/10.1002/hbm.23918
doi: 10.1002/hbm.23918 URL pmid: 29235185 |
[30] |
Rogers R. D., & Monsell S.(1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124(2), 207-231. https://doi.org/10.1037/0096-3445.124.2.207
doi: 10.1037/0096-3445.124.2.207 URL |
[31] |
Sandhu R., & Dyson B. J.(2013). Modality and task switching interactions using bi-modal and bivalent stimuli. Brain and Cognition, 82(1), 90-99. http://dx.doi.org/10.1016/j.bandc.2 013.02.011
doi: 10.1016/j.bandc.2013.02.011 URL |
[32] |
Shaw L. H., Freedman E. G., Crosse M. J., Nicholas E., Chen A. M., Braiman M. S.,... Foxe J. J.(2020). Operating in a multisensory context: Assessing the interplay between multisensory reaction time facilitation and inter-sensory task-switching effects. Neuroscience, 436, 122-135. https://doi.org/10.1016/j.neuroscience.2020.04.013
doi: 10.1016/j.neuroscience.2020.04.013 URL |
[33] |
Sohn M.-H., Ursu S., Anderson J. R., Stenger V. A., & Carter C. S.(2000). The role of prefrontal cortex and posterior parietal cortex in task switching. Proceedings of the National Academy of Sciences of the United States of America, 97(24), 13448-13453. https://doi.org/10.1073/pnas.240460497
URL pmid: 11069306 |
[34] |
Spence C., Nicholls M. E. R., & Driver J.(2001). The cost of expecting events in the wrong sensory modality. Perception & Psychophysics, 63(2), 330-336. https://doi.org/10.3758/bf03194473
doi: 10.3758/BF03194473 URL |
[35] | Spitzer B., & Haegens S.(2017). Beyond the Status Quo: A Role for Beta Oscillations in Endogenous Content (Re) Activation. Eneuro, 4(4), Article e0170-17. http://dx.doi.org/10.1523/ENEURO.0170-17.2017 |
[36] |
Stickel S., Weismann P., Kellermann T., Regenbogen C., Habel U., Freiherr J., & Chechko N.(2019). Audio-visual and olfactory-visual integration in healthy participants and subjects with autism spectrum disorder. Human Brain Mapping, 40(15), 4470-4486. https://doi.org/10.1002/hbm.24715
doi: 10.1002/hbm.24715 URL |
[37] |
van Atteveldt N., Murray M. M., Thut G., & Schroeder C. E.(2014). Multisensory integration: Flexible use of general operations. Neuron, 81(6), 1240-1253. http://dx.doi.org/10.1016/j.neuron.2014.02.044
doi: S0896-6273(14)00194-9 URL pmid: 24656248 |
[38] |
van der Stoep N., Spence C., Nijboer T. C., & van der Stigchel S.(2015). On the relative contributions of multisensory integration and crossmodal exogenous spatial attention to multisensory response enhancement. Acta Psychologica, 162, 20-28. http://dx.doi.org/10.1016/j.actpsy.2015.09.010
doi: 10.1016/j.actpsy.2015.09.010 URL pmid: 26436587 |
[39] |
Wu S., Hitchman G., Tan J., Zhao Y., Tang D., Wang L., & Chen A.(2015). The neural dynamic mechanisms of asymmetric switch costs in a combined Stroop-task- switching paradigm. Scientific Reports, 5, 10240. https://doi.org/10.1038/srep10240
doi: 10.1038/srep10240 URL |
[1] | GU Lijia, GONG Wenxiao, ZHANG Jing, CHEN Wei, GUO Jianyou. The influence of body ownership illusion on pain and its potential mechanisms [J]. Advances in Psychological Science, 2022, 30(11): 2518-2528. |
[2] | YANG Weiping, LI Shengnan, LI Zimo, GUO Ao, REN Yanna. The influential factors and neural mechanisms of audiovisual integration in older adults [J]. Advances in Psychological Science, 2020, 28(5): 790-799. |
[3] | ZHANG Jing, CHEN Wei. Sense of body ownership and its plasticity: Based on the perspectives from the studies of interoception and exteroception [J]. Advances in Psychological Science, 2020, 28(2): 305-315. |
[4] | WANG Aijun, HUANG Jie, LU Feifei, HE Jiaying, TANG Xiaoyu, ZHANG Ming. Sound-induced flash illusion in multisensory integration [J]. Advances in Psychological Science, 2020, 28(10): 1662-1677. |
[5] | ZHAO Peiqiong, CHEN Wei, ZHANG Jing, PING Xianjie. The rubber hand illusion (RHI): The experimental paradigm of sense of ownership and its application [J]. Advances in Psychological Science, 2019, 27(1): 37-50. |
[6] | JIANG Hao. Reconfiguration and interference in voluntary task switching [J]. Advances in Psychological Science, 2018, 26(9): 1624-1631. |
[7] | PENG Xing, CHANG Ruosong, REN Guiqin, WANG Aijun, TANG Xiaoyu. The interaction between exogenous attention and multisensory integration [J]. Advances in Psychological Science, 2018, 26(12): 2129-2140. |
[8] | LUO Xiaoxiao, KANG Guanlan, ZHOU Xiaolin. The influential factors and neural mechanisms of McGurk effect [J]. Advances in Psychological Science, 2018, 26(11): 1935-1951. |
[9] | ZHOU Aibao; ZHANG Yanchi; LIU Peiru; YIN Yulong; ZHANG Fen. Who am I ? ——Enfacement Illusion Based on Interpersonal Multisensory Stimulation [J]. Advances in Psychological Science, 2015, 23(2): 159-167. |
[10] | PAN Lu; QIAN Xiuying. Rhythm Perception and Interactions between Different Sensory Channels [J]. Advances in Psychological Science, 2015, 23(11): 1910-1919. |
[11] | YUAN Xiang-Yong;HUANG Xi-Ting. Temporal Recalibration in Multisensory Integration [J]. , 2011, 19(5): 692-700. |
[12] | ZHANG Liang;SUN Xiang-Hong;ZHANG Kan. The Multisensory Integration of Emotional Information [J]. , 2009, 17(6): 1133-1138. |
[13] |
.
Theoretical Models of Multisensory Cues Integration
[J]. , 2009, 17(4): 659-666.
|
[14] | Shi Yiquan,Zhou Xiaolin. Task Switching, A Paradigm in the Study of Executive Control [J]. , 2004, 12(5): 672-679. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||