Advances in Psychological Science ›› 2021, Vol. 29 ›› Issue (12): 2272-2280.doi: 10.3724/SP.J.1042.2021.02272
• Research Method • Previous Articles
LI Jia, MAO Xiuzhen(), ZHANG Xueqin
Received:
2021-04-02
Published:
2021-10-26
Contact:
MAO Xiuzhen
E-mail:maomao_wanli@163.com
CLC Number:
LI Jia, MAO Xiuzhen, ZHANG Xueqin. Q-matrix estimation (validation) methods for cognitive diagnosis[J]. Advances in Psychological Science, 2021, 29(12): 2272-2280.
分类标准 | 特点 | 方法 | 实验目的 | |
---|---|---|---|---|
参数化 方法 | 最优项目特征 | 项目区分度 | | 修正 |
属性区分度 | | 修正 | ||
最优模型 数据拟合 | 绝对拟合指标 | S统计量、多级计分的S统计量方法 | 修正 | |
非线性惩罚估计法 | 估计 | |||
RMSEA法、加权残差R法、残差方法 | 修正 | |||
似然D2统计量方法 | 估计 | |||
相对拟合指标 | -2LL、AIC、BIC方法 | 修正 | ||
正则化极大似然估计方法 | 估计 | |||
TS法、LR-S法、LR-E法 | 估计 | |||
参数估计 | 基于EM算法 | MLE和MMLE方法 | 修正 | |
基于贝叶斯的方法 | EAP方法 | 修正 | ||
MCMC方法 | 估计 | |||
非参数 方法 | 最小观察反应与 理想反应的距离 | 依据欧氏距离、海明距离、 曼哈顿距离 | 欧氏距离法、多级计分的欧氏距离法 | 修正 |
海明距离方法 | 修正 | |||
曼哈顿距离方法 | 估计 | |||
最小异常 反应指标 | 依据被试在父级、子级和同级项目 上的反应 | ICC法 | 估计 | |
多级计分的ICC法 | 修正 | |||
依据KS与项目反应关系 | ID法 | 修正 | ||
因素分析 | 将Q矩阵元素视作项目与潜在属性 间的因子结构 | 主成分分析法 | 估计 | |
四分相关矩阵法 | 估计 |
分类标准 | 特点 | 方法 | 实验目的 | |
---|---|---|---|---|
参数化 方法 | 最优项目特征 | 项目区分度 | | 修正 |
属性区分度 | | 修正 | ||
最优模型 数据拟合 | 绝对拟合指标 | S统计量、多级计分的S统计量方法 | 修正 | |
非线性惩罚估计法 | 估计 | |||
RMSEA法、加权残差R法、残差方法 | 修正 | |||
似然D2统计量方法 | 估计 | |||
相对拟合指标 | -2LL、AIC、BIC方法 | 修正 | ||
正则化极大似然估计方法 | 估计 | |||
TS法、LR-S法、LR-E法 | 估计 | |||
参数估计 | 基于EM算法 | MLE和MMLE方法 | 修正 | |
基于贝叶斯的方法 | EAP方法 | 修正 | ||
MCMC方法 | 估计 | |||
非参数 方法 | 最小观察反应与 理想反应的距离 | 依据欧氏距离、海明距离、 曼哈顿距离 | 欧氏距离法、多级计分的欧氏距离法 | 修正 |
海明距离方法 | 修正 | |||
曼哈顿距离方法 | 估计 | |||
最小异常 反应指标 | 依据被试在父级、子级和同级项目 上的反应 | ICC法 | 估计 | |
多级计分的ICC法 | 修正 | |||
依据KS与项目反应关系 | ID法 | 修正 | ||
因素分析 | 将Q矩阵元素视作项目与潜在属性 间的因子结构 | 主成分分析法 | 估计 | |
四分相关矩阵法 | 估计 |
[1] | 杭丹丹. (2020). 多级计分认知诊断评估中的Q矩阵验证方法与应用研究 (硕士学位论文). 江西师范大学, 南昌, |
[2] | 刘芯伶. (2020). 多级评分情境下Q矩阵修正的非参数方法 (硕士学位论文). 浙江师范大学, 金华, |
[3] | 刘彦楼, 辛涛, 李令青, 田伟, 刘笑笑. (2016). 改进的认知诊断模型项目功能差异检验方法--基于观察信息矩阵的Wald统计量. 心理学报, 48(5), 588-598. |
[4] | 刘彦楼, 张倩萌, 郑宗军, 尹昊. (2019). 认知诊断模型中项目水平模型比较统计量的健壮性. 心理科学, 42, 1251-1259. |
[5] | 涂冬波, 蔡艳, 戴海琦. (2012). 基于DINA模型的Q矩阵修正方法. 心理学报, 44(4), 558-568. |
[6] | 汪大勋, 高旭亮, 蔡艳, 涂冬波. (2018). 一种非参数化的Q矩阵估计方法: ICC-IR方法开发. 心理科学, 41(2), 466-474. |
[7] | 汪大勋, 高旭亮, 蔡艳, 涂冬波. (2019). 一种广义的认知诊断Q矩阵修正新方法. 心理科学, 42(4), 988-996. |
[8] | 汪大勋, 高旭亮, 蔡艳, 涂冬波. (2020). 基于类别水平的多级计分认知诊断Q矩阵修正: 相对拟合统计量视角. 心理学报, 52(1), 93-106. |
[9] | 汪大勋, 高旭亮, 韩雨婷, 涂冬波. (2018). 一种简单有效的Q矩阵估计方法开发: 基于非参数化方法视角. 心理科学, 41(1), 180-188. |
[10] | 汪文义, 高朋, 宋丽红, 汪腾. (2020). 带噪音预处理的改进探索性Q矩阵标定方法. 江西师范大学学报(自然科学版), 44(2), 136-141. |
[11] | 汪文义, 宋丽红, 丁树良. (2015). 基于探索性因素分析的Q矩阵标定方法. 江西师范大学学报(自然科学版), 39(2), 138-144+170. |
[12] | 汪文义, 宋丽红, 丁树良. (2018). 基于可达阵的一种Q矩阵标定方法. 心理科学, 41(4), 968-975. |
[13] | 喻晓锋, 罗照盛, 高椿雷, 李喻骏, 王睿, 王钰彤. (2015). 使用似然比D-2统计量的题目属性定义方法. 心理学报, 47(3), 417-426. |
[14] | 喻晓锋, 罗照盛, 秦春影, 高椿雷, 李喻骏. (2015). 基于作答数据的模型参数和Q矩阵联合估计. 心理学报, 47(2), 273-282. |
[15] | 杨亚坤, 朱仕浩, 刘芯伶. (2020). 基于项目拟合统计量RMSEA的Q矩阵估计方法. 心理技术与应用, 8(1), 51-59. |
[16] | Barnes, T.(2010). Novel derivation and application of skill matrices:The Q-matrix method. In C. Ramero, S. Vemtora, M. Pechemizkiy, & R. S. J. de Baker (Eds.), Handbook of educational data mining (pp.159-172). Boca Raton, FL: Chapman & Hall. |
[17] |
Chen, J. S.(2017). A residual-based approach to validate Q-matrix specifications. Applied Psychological Measurement, 41(4), 277-293.
doi: 10.1177/0146621616686021 URL |
[18] |
Chen, J. S., de la Torre, J., & Zhang, Z.(2013). Relative and absolute fit evaluation in cognitive diagnosis modeling. Journal of Educational Measurement, 50(2), 123-140.
doi: 10.1111/jedm.2013.50.issue-2 URL |
[19] |
Chen, Y. H., Culpepper, S. A., Chen, Y. G., & Douglas, J.(2018). Bayesian estimation of the DINA Q-matrix. Psychometrika, 83(1), 89-108.
doi: 10.1007/s11336-017-9579-4 URL |
[20] |
Chen, Y, Statistical analysis of Q-matrix based diagnostic classificatio, X. Liu, J. C., Xu, G. J., & Ying, Z. L.(2015). n models. Journal of the American Statistical Association, 110(510), 850-866.
doi: 10.1080/01621459.2014.934827 URL |
[21] |
Chiu, C.-Y.(2013). Statistical refinement of the Q-matrix in cognitive diagnosis. Applied Psychological Measurement, 37(8), 598-618.
doi: 10.1177/0146621613488436 URL |
[22] |
Chung, M. T.(2019). A Gibbs sampling algorithm that estimates the Q-matrix for the DINA model. Journal of Mathematical Psychology, 93, 102275.
doi: 10.1016/j.jmp.2019.07.002 URL |
[23] | Close, C. N.(2012). An exploratory technique for finding the Q-matrix for the DINA model in cognitive diagnostic assessment: Combining theory with data (Unpublished doctorial dissertation). University of Minnesota. |
[24] | Cui, Y.(2007). The hierarchy consistency index: A person -fit statistic for the attribute hierarchy method (Unpublished doctorial dissertation). University of Alberta, Edmonton. |
[25] |
DeCarlo, L. T.(2012). Recognizing uncertainty in the Q-matrix via a Bayesian extension of the DINA model. Applied Psychological Measurement, 36(6), 447-468.
doi: 10.1177/0146621612449069 URL |
[26] |
de la Torre, J.(2008). An empirically based method of Q-matrix validation for the DINA model: Development and applications. Journal of Educational Measurement, 45(4), 343-362.
doi: 10.1111/jedm.2008.45.issue-4 URL |
[27] | de la Torre, J.(2009). DINA model and parameter estimation: A didactic. Journal of Educational and Behavioral Statistics, 34(1), 115-130. |
[28] |
de la Torre, J., & Chiu, C.-Y.(2016). A general method of empirical Q-matrix validation. Psychometrika, 81(2), 253- 273.
doi: 10.1007/s11336-015-9467-8 URL |
[29] |
Kang, C. H., Yang, Y. K., & Zeng, P. H.(2019). Q-matrix refinement based on item fit statistic RMSEA. Applied Psychological Measurement, 43(7), 527-542.
doi: 10.1177/0146621618813104 URL |
[30] |
Liu, J. C., Xu, G. J., & Ying, Z. L.(2012). Data-driven learning of Q-matrix. Applied Psychological Measurement, 36(7), 548-564.
doi: 10.1177/0146621612456591 URL |
[31] |
Liu, Y. L., Andersson, B., Xin, T., Zhang, H. Y., & Wang, L. L.(2019). Improved Wald statistics for item-level model comparison in diagnostic classification models. Applied Psychological Measurement, 43, 402-414.
doi: 10.1177/0146621618798664 URL |
[32] | Liu, Y. L., Tian, W., & Xin, T.(2016). An application of M2 statistic to evaluate the fit of cognitive diagnostic models. Journal of Educational and Behavioral Statistics, 41, 3-26. |
[33] |
Liu, Y. L., Xin, T., Andersson, B., & Tian, W.(2019). Information matrix estimation procedures for cognitive diagnostic models. British Journal of Mathematical and Statistical Psychology, 72, 18-37.
doi: 10.1111/bmsp.2019.72.issue-1 URL |
[34] |
Liu, Y. L., Yin, H., Xin, T., Shao, L. C., & Yuan, L.(2019). A comparison of differential item functioning detection methods in cognitive diagnostic models. Frontiers in Psychology, 10, 1137.
doi: 10.3389/fpsyg.2019.01137 URL |
[35] |
Ma, W. C., & de la Torre, J.(2020). An empirical Q-matrix validation method for the sequential generalized DINA model. The British Journal of Mathematical and Statistical Psychology, 73(1), 142-163.
doi: 10.1111/bmsp.v73.1 URL |
[36] |
McKinley, R. L., & Mills, C. N.(1985). A comparison of several goodness-of-fit statistics. Applied Psychological Measurement, 9(1), 49-57.
doi: 10.1177/014662168500900105 URL |
[37] |
Rupp, A. A., & Templin, J.(2008). The effects of Q-matrix misspecification on parameter estimates and classification accuracy in the DINA model. Educational and Psychological Measurement, 68(1), 78-96.
doi: 10.1177/0013164407301545 URL |
[38] |
Templin, J. L., & Henson, R. A.(2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11, 287-305.
doi: 10.1037/1082-989X.11.3.287 URL |
[39] | Wang, D. X., Cai, Y., & Tu, D. B.(2020). Q-matrix estimation methods for cognitive diagnosis models: Based on partial known Q-matrix. |
[40] |
Wang, W. Y., Song, L. H., Ding, S. L., Meng, Y. R., Cao, C. X., & Jie, Y. J.(2018). An EM-based method for Q-matrix validation. Applied Psychological Measurement, 42(6), 446-459.
doi: 10.1177/0146621617752991 URL |
[41] | Xiang, R.(2013). Columbia University, New York. |
[42] |
Xu, G. J., & Shang, Z. R.(2018). Identifying latent structures in restricted latent class models. Journal of the American Statistical Association, 113(523), 1284-1295.
doi: 10.1080/01621459.2017.1340889 URL |
[43] |
Yu, X. F., & Cheng, Y.(2020). Data-driven Q-matrix validation using a residual-based statistic in cognitive diagnostic assessment. British Journal of Mathematical and Statistical Psychology. 73, 145-179.
doi: 10.1111/bmsp.v73.s1 URL |
[1] | WANG Yang, WEN Zhonglin, LI Wei, FANG Jie. Methodological research and model development on structural equation models in China’s mainland from 2001 to 2020 [J]. Advances in Psychological Science, 2022, 30(8): 1715-1733. |
[2] | GAO Yizhu, CHEN Fu, XIN Tao, ZHAN Peida, JIANG Yu. Applying psychometric models in learning progressions studies: Theory, method and breakthrough [J]. Advances in Psychological Science, 2017, 25(9): 1623-1630. |
[3] | WANG Jing, TANG Wenqing, ZHANG Minqiang, ZHANG Wenyi, GUO Kaiyin. Piecewise growth mixture models and its current researches [J]. Advances in Psychological Science, 2017, 25(10): 1696-1704. |
[4] | CHEN Fu; XIN Tao; LIU Yanlou; LIU Tuo; TIAN Wei. Model-data fit test methods and statistics for cognitive diagnostic models [J]. Advances in Psychological Science, 2016, 24(12): 1946-1960. |
[5] | SHAN Xintong;TAN Huiye;LIU Yong;WU Fangwen;TU Dongbo. Common Model-Data Fit Test Statistics in Item Response Theory [J]. Advances in Psychological Science, 2014, 22(8): 1350-1362. |
[6] | CHEN Qiu-Mei; ZHANG Min-Qiang. Development of Cognitive Diagnosis Models and Their Application Methods [J]. , 2010, 18(3): 522-529. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||