Advances in Psychological Science ›› 2020, Vol. 28 ›› Issue (7): 1029-1041.doi: 10.3724/SP.J.1042.2020.01029
• Research Method • Next Articles
YANG Xiaomeng, WANG Fuxing(), WANG Yanqing, ZHAO Tingting, GAO Chunying, HU Xiangen()
Received:
2019-06-03
Online:
2020-07-15
Published:
2020-05-21
Contact:
WANG Fuxing,HU Xiangen
E-mail:fxwang@mail.ccnu.edu.cn;xiangenhu@mail.ccnu.edu.cn
CLC Number:
YANG Xiaomeng, WANG Fuxing, WANG Yanqing, ZHAO Tingting, GAO Chunying, HU Xiangen. Are pupils the window of our mind? Pupil-related application in psychology and pupillometry[J]. Advances in Psychological Science, 2020, 28(7): 1029-1041.
[1] | 陈庆荣, 邓铸, 谭顶良. (2008). 汉语句子-图片信息整合的眼动测量. 心理学报, 40(5), 543-551. |
[2] | 李勇, 阴国恩, 陈燕丽. (2004). 阅读中疲劳、心理负荷因素对瞳孔大小的调节作用. 心理与行为研究, 2(3), 545-548. |
[3] |
王福兴, 侯秀娟, 段朝辉, 刘华山, 李卉. (2016). 中国象棋经验棋手与新手的知觉差异: 来自眼动的证据. 心理学报, 48(5), 457-471.
doi: 10.3724/SP.J.1041.2016.00457 URL |
[4] | 王福兴, 童钰, 钱莹莹, 谢和平. (2016). 眼动追踪技术与婴幼儿研究: 程序、方法与数据分析. 心理与行为研究, 14(4), 558-567. |
[5] |
闫国利, 熊建萍, 臧传丽, 余莉莉, 崔磊, 白学军. (2013). 阅读研究中的主要眼动指标评述. 心理科学进展, 21(4), 589-605.
doi: 10.3724/SP.J.1042.2013.00589 URL |
[6] | 袁加锦, 李红. (2012). 人类对情绪事件效价强度的易感性及神经机制. 心理科学进展, 20(1), 10-19. |
[7] |
Ariel, R., & Castel, A. (2014). Eyes wide open: Enhanced pupil dilation when selectively studying important information. Experimental Brain Research, 232(1), 337-344.
doi: 10.1007/s00221-013-3744-5 URL |
[8] |
Arriaga, P., Adrião, J., Madeira, F., Cavaleiro, I., Maia e Silva, A., Barahona, I., & Esteves, F. (2015). A “dry eye” for victims of violence: Effects of playing a violent video game on pupillary dilation to victims and on aggressive behavior. Psychology of Violence, 5(2), 199-208.
doi: 10.1037/a0037260 URL |
[9] |
Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403-450.
doi: 10.1146/annurev.neuro.28.061604.135709 URL pmid: 16022602 |
[10] |
Aston-Jones, G., & Waterhouse, B. (2016). Locus coeruleus: From global projection system to adaptive regulation of behavior. Brain Research, 1645, 75-78.
URL pmid: 26969408 |
[11] |
Attard-Johnson, J., Bindemann, M., & Ciardha, C. Ó. (2017). Heterosexual, homosexual, and bisexual men's pupillary responses to persons at different stages of sexual development. The Journal of Sex Research, 54(9), 1085-1096.
doi: 10.1080/00224499.2016.1241857 URL pmid: 27925771 |
[12] | Babiker, A., Faye, I., & Malik, A. (2013, January). Pupillary behavior in positive and negative emotions. Paper presented at the meeting of IEEE International Conference on Signal and Image Processing Applications, Melaka, Malaysia. |
[13] |
Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological Bulletin, 91(2), 276-292.
URL pmid: 7071262 |
[14] | Beatty, J., & Kahneman, D. (1966). Pupillary changes in two memory tasks. Psychonomic Science, 5(10), 371-372. |
[15] | Beatty, J., & Lucero-Wagoner,, B. (2000). The pupillary system. In J. T. Cacioppo, L. G. Tassinary & G. G. Berntson (Eds.), Handbook of psychophysiology (2nd ed., pp. 142-162). New York: Cambridge University Press. |
[16] | Benedetto, S., Carbone, A., Drai-Zerbib, V., Pedrotti, M., & Baccino, T. (2014). Effects of luminance and illuminance on visual fatigue and arousal during digital reading. Computers in Human Behavior, 41, 112-119. |
[17] |
Binda, P., & Murray, S. O. (2015). Spatial attention increases the pupillary response to light changes. Journal of Vision, 15(2), 1-13.
doi: 10.1167/15.2.1 URL pmid: 25645434 |
[18] |
Binda, P., Pereverzeva, M., & Murray, S. O. (2013). Attention to bright surfaces enhances the pupillary light reflex. The Journal of Neuroscience, 33(5), 2199-2204.
URL pmid: 23365255 |
[19] |
Blaser, E., Eglington, L., Carter, A. S., & Kaldy, Z. (2014). Pupillometry reveals a mechanism for the Autism Spectrum Disorder (ASD) advantage in visual tasks. Scientific Reports, 4, 4301.
doi: 10.1038/srep04301 URL pmid: 24603348 |
[20] | Bradley, M. M., Miccoli, L., Escrig, M. A., & Lang, P. J. (2008). The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology, 45(4), 602-607. |
[21] |
Bradley, M. M., Sapigao, R. G., & Lang, P. J. (2017). Sympathetic ANS modulation of pupil diameter in emotional scene perception: Effects of hedonic content, brightness, and contrast. Psychophysiology, 54(10), 1419-1435.
doi: 10.1111/psyp.12890 URL pmid: 28481033 |
[22] |
Brisson, J., Mainville, M., Mailloux, D., Beaulieu, C., Serres, J., & Sirois, S. (2013). Pupil diameter measurement errors as a function of gaze direction in corneal reflection eyetrackers. Behavior Research Methods, 45(4), 1322-1331.
doi: 10.3758/s13428-013-0327-0 URL pmid: 23468182 |
[23] |
Burley, D. T., Gray, N. S., & Snowden, R. J. (2018). Emotional modulation of the pupil response in psychopathy. Personality Disorders: Theory, Research, and Treatment, 10(4), 365-375.
doi: 10.1037/per0000313 URL |
[24] | Cavanagh, J. F., Wiecki, T. V., Kochar, A., & Frank, M. J. (2014). Eye tracking and pupillometry are indicators of dissociable latent decision processes. Journal of Experimental Psychology: General, 143(4), 1476-1488. |
[25] |
Chen, Y. C., & Westermann, G. (2018). Different novelties revealed by infants' pupillary responses. Scientific Reports, 8, 9533.
doi: 10.1038/s41598-018-27736-z URL pmid: 29934594 |
[26] |
Choi, J., Corcoran, C. M., Fiszdon, J. M., Stevens, M., Javitt, D. C., Deasy, M., ... Pearlson, G. D. (2017). Pupillometer- based neurofeedback cognitive training to improve processing speed and social functioning in individuals at clinical high risk for psychosis. Psychiatric Rehabilitation Journal, 40(1), 33-42.
doi: 10.1037/prj0000217 URL pmid: 27560455 |
[27] |
Costa, V. D., & Rudebeck, P. H. (2016). More than meets the eye: The relationship between pupil size and locus coeruleus activity. Neuron, 89(1), 8-10.
doi: 10.1016/j.neuron.2015.12.031 URL pmid: 26748086 |
[28] |
Derksen, M., van Alphen, J., Schaap, S., Mathôt, S., & Naber, M. (2018). Pupil mimicry is the result of brightness perception of the iris and pupil. Journal of Cognition, 1(1), 32.
doi: 10.5334/joc.34 URL pmid: 31517205 |
[29] |
Diede, N. T., & Bugg, J. M. (2017). Cognitive effort is modulated outside of the explicit awareness of conflict frequency: Evidence from pupillometry. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(5), 824-835.
doi: 10.1037/xlm0000349 URL pmid: 28068124 |
[30] |
Eckstein, M. K., Guerra-Carrillo, B., Singley, A. T. M., & Bunge, S. A. (2017). Beyond eye gaze: What else can eyetracking reveal about cognition and cognitive development? Developmental Cognitive Neuroscience, 25, 69-91.
doi: 10.1016/j.dcn.2016.11.001 URL pmid: 27908561 |
[31] |
Ellingsen, D. M., Wessberg, J., Chelnokova, O., Olausson, H., Laeng, B., & Leknes, S. (2013). In touch with your emotions: Oxytocin and touch change social impressions while others' facial expressions can alter touch. Psychoneuroendocrinology, 39, 11-20.
doi: 10.1016/j.psyneuen.2013.09.017 URL pmid: 24275000 |
[32] |
Elman, J. A., Panizzon, M. S., Hagler, D. J., Jr., Eyler, L. T., Granholm, E. L., Fennema-Notestine, C., ... Kremen, W. S. (2017). Task-evoked pupil dilation and BOLD variance as indicators of locus coeruleus dysfunction. Cortex, 97, 60-69.
doi: 10.1016/j.cortex.2017.09.025 URL pmid: 29096196 |
[33] |
Fawcett, C., Arslan, M., Falck-Ytter, T., Roeyers, H., & Gredebäck, G. (2017). Human eyes with dilated pupils induce pupillary contagion in infants. Scientific Reports, 7, 9601.
doi: 10.1038/s41598-017-08223-3 URL pmid: 28851872 |
[34] |
Fawcett, C., Wesevich, V., & Gredebäck, G. (2016). Pupillary contagion in infancy: Evidence for spontaneous transfer of arousal. Psychological Science, 27(7), 997-1003.
doi: 10.1177/0956797616643924 URL pmid: 27207876 |
[35] |
Galazka, M. A., Åsberg Johnels, J., Zürcher, N. R., Hippolyte, L., Lemonnier, E., Billstedt, E., ... Hadjikhani, N. (2018). Pupillary contagion in autism. Psychological Science, 30(2), 309-315.
doi: 10.1177/0956797618809382 URL pmid: 30444671 |
[36] |
Geva, R., Zivan, M., Warsha, A., & Olchik, D. (2013). Alerting, orienting or executive attention networks: Differential patters of pupil dilations. Frontiers in Behavioral Neuroscience, 7, 145.
doi: 10.3389/fnbeh.2013.00145 URL pmid: 24133422 |
[37] | Gilzenrat, M., Nieuwenhuis, S., Jepma, M., & Cohen, J. (2010). Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function. Cognitive, Affective, & Behavioral Neuroscience, 10(2), 252-269. |
[38] |
Goldwater, B. C. (1972). Psychological significance of pupillary movements. Psychological Bulletin, 77(5), 340-355.
doi: 10.1037/h0032456 URL pmid: 5021049 |
[39] | Harrison, N. A., Singer, T., Rotshtein, P., Dolan, R. J., & Critchley, H. D. (2006). Pupillary contagion: Central mechanisms engaged in sadness processing. Social Cognition Affective Neuroscience, 1(1), 5-17. |
[40] |
Hepach, R., Vaish, A., Muller, K., & Tomasello, M. (2017). The relation between young children's physiological arousal and their motivation to help others. Neuropsychologia, 126, 113-119.
doi: 10.1016/j.neuropsychologia.2017.10.010 URL pmid: 29030228 |
[41] |
Hepach, R., Vaish, A., & Tomasello, M. (2012). Young children are intrinsically motivated to see others helped. Psychological Science, 23(9), 967-972.
doi: 10.1177/0956797612440571 URL pmid: 22851443 |
[42] |
Hepach, R., Vaish, A., & Tomasello, M. (2016). Children's intrinsic motivation to provide help themselves after accidentally harming others. Child Development, 88(4), 1251-1264.
doi: 10.1111/cdev.12646 URL pmid: 27800601 |
[43] |
Hepach, R., & Westermann, G. (2013). Infants' sensitivity to the congruence of others' emotions and actions. Journal of Experimental Child Psychology, 115(1), 16-29.
doi: 10.1016/j.jecp.2012.12.013 URL pmid: 23454359 |
[44] |
Hepach, R., & Westermann, G. (2016). Pupillometry in infancy research. Journal of Cognition and Development, 17(3), 359-377.
doi: 10.1080/15248372.2015.1135801 URL |
[45] |
Hershman, R., & Henik, A. (2018). Dissociation between reaction time and pupil dilation in the Stroop task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(10), 1899-1909.
doi: 10.1037/xlm0000690 URL pmid: 30816765 |
[46] |
Hershman, R., Henik, A., & Cohen, N. (2019). CHAP: Open-source software for processing and analyzing pupillometry data. Behavior Research Methods, 51(3), 1059-1074.
doi: 10.3758/s13428-018-01190-1 URL pmid: 30710333 |
[47] | Hess, E. H. (1965). Attitude and pupil size. Scientific American, 212(4), 46-54. |
[48] |
Hess, E. H. (1975). The role of pupil size in communication. Scientific American, 233(5), 110-119.
doi: 10.1038/scientificamerican1175-110 URL pmid: 1188340 |
[49] |
Hess, E. H., & Polt, J. M. (1960). Pupil size as related to interest value of visual stimuli. Science, 132(3423), 349-350.
doi: 10.1126/science.132.3423.349 URL pmid: 14401489 |
[50] |
Hess, E. H., & Polt, J. M. (1964). Pupil size in relation to mental activity during simple problem-solving. Science, 143(3611), 1190-1192.
doi: 10.1126/science.143.3611.1190 URL pmid: 17833905 |
[51] | Janisse, M. P. (1973). Pupil size and affect: A critical review of the literature since 1960. Canadian Psychologist/ Psychologie Canadienne, 14(4), 311-329. |
[52] |
Jepma, M., & Nieuwenhuis, S. (2011). Pupil diameter predicts changes in the exploration-exploitation trade-off:Evidence for the adaptive gain theory. Journal of Cognitive Neuroscience, 23(7), 1587-1596.
doi: 10.1162/jocn.2010.21548 URL |
[53] |
Johnson, E. L., Miller Singley, A. T., Peckham, A. D., Johnson, S. L., & Bunge, S. A. (2014). Task-evoked pupillometry provides a window into the development of short-term memory capacity. Frontiers in Psychology, 5, 218.
doi: 10.3389/fpsyg.2014.00218 URL pmid: 24659980 |
[54] | Jones, N. P., Siegle, G. J., & Mandell, D. (2015). Motivational and emotional influences on cognitive control in depression: A pupillometry study. Cognitive Affective & Behavioral Neuroscience, 15(2), 263-275. |
[55] |
Joshi, S., Li, Y., Kalwani, R. M., & Gold, J. I. (2016). Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron, 89(1), 221-234.
doi: 10.1016/j.neuron.2015.11.028 URL pmid: 26711118 |
[56] |
Kang, O., & Wheatley, T. (2017). Pupil dilation patterns spontaneously synchronize across individuals during shared attention. Journal of Experimental Psychology: General, 146(4), 569-576.
doi: 10.1037/xge0000271 URL |
[57] |
Katidioti, I., Borst, J. P., & Taatgen, N. A. (2014). What happens when we switch tasks: Pupil dilation in multitasking. Journal of Experimental Psychology: Applied, 20(4), 380-396.
doi: 10.1037/xap0000031 URL pmid: 25347409 |
[58] |
Kleberg, J. L., Del Bianco, T., & Falck-Ytter, T. (2019). How infants’ arousal influences their visual search. Child Development, 90(4), 1413-1423.
doi: 10.1111/cdev.13198 URL pmid: 30597547 |
[59] |
Kloosterman, N. A., Meindertsma, T., van Loon, A. M., Lamme, V. A., Bonneh, Y. S., & Donner, T. H. (2015). Pupil size tracks perceptual content and surprise. European Journal of Neuroscience, 41(8), 1068-1078.
doi: 10.1111/ejn.12859 URL pmid: 25754528 |
[60] |
Knapen, T., Gee, J. W. d., Hoppenbrouwers, S. S., & Theeuwes, J. (2016). Cognitive and ocular factors jointly determine pupil responses under equiluminance. PLoS ONE, 11(5), e0155574.
doi: 10.1371/journal.pone.0155574 URL pmid: 27191166 |
[61] |
Kret, M. E. (2018). The role of pupil size in communication. Is there room for learning? Cognition and Emotion, 32(5), 1139-1145.
doi: 10.1080/02699931.2017.1370417 URL pmid: 28857664 |
[62] |
Kret, M. E., & de, Dreu, C. K., W. (2017). Pupil-mimicry conditions trust in partners: Moderation by oxytocin and group membership. Proceedings of the Royal Society B: Biological Sciences, 284(1850), 20162554.
doi: 10.1098/rspb.2016.2554 URL pmid: 28250181 |
[63] | Kret, M. E., & de, Dreu, C. K., W. (2019). The power of pupil size in establishing trust and reciprocity. Journal of Experimental Psychology: General, 148(8), 1299-1311. |
[64] |
Kret, M. E., Fischer, A. H., & de Dreu, C. K. W . (2015). Pupil mimicry correlates with trust in in-group partners with dilating pupils. Psychological Science, 26(9), 1401-1410.
doi: 10.1177/0956797615588306 URL pmid: 26231910 |
[65] |
Kret, M. E., Tomonaga, M., & Matsuzawa, T. (2014). Chimpanzees and humans mimic pupil-size of conspecifics. PLoS ONE, 9(8), e104886.
doi: 10.1371/journal.pone.0104886 URL pmid: 25140998 |
[66] |
Kudinova, A. Y., Burkhouse, K. L., Siegle, G., Owens, M., Woody, M. L., & Gibb, B. E. (2016). Pupillary reactivity to negative stimuli prospectively predicts recurrence of major depressive disorder in women. Psychophysiology, 53(12), 1836-1842.
doi: 10.1111/psyp.12764 URL pmid: 27671353 |
[67] |
Laeng, B., Eidet, L. M., Sulutvedt, U., & Panksepp, J. (2016). Music chills: The eye pupil as a mirror to music's soul. Conscious and Cognition, 44, 161-178.
doi: 10.1016/j.concog.2016.07.009 URL |
[68] |
Laeng, B., & Endestad, T. (2012). Bright illusions reduce the eye's pupil. Proceedings of the National Academy of Sciences, 109(6), 2162-2167.
doi: 10.1073/pnas.1118298109 URL |
[69] | Laeng, B., Sæther, L., Holmlund, T., Wang, C. E. A., Waterloo, K., Eisemann, M., & Halvorsen, M. (2013). Invisible emotional expressions influence social judgments and pupillary responses of both depressed and non-depressed individuals. Frontiers in Psychology, 4, 291. |
[70] |
Laeng, B., Sirois, S., & Gredebäck, G. (2012). Pupillometry: A window to the preconscious? Perspectives on Psychological Science, 7(1), 18-27.
doi: 10.1177/1745691611427305 URL |
[71] |
Laeng, B., & Sulutvedt, U. (2014). The eye pupil adjusts to imaginary light. Psychological Science, 25(1), 188-197.
doi: 10.1177/0956797613503556 URL pmid: 24285432 |
[72] |
Liu, Y., Rodenkirch, C., Moskowitz, N., Schriver, B., & Wang, Q. (2017). Dynamic lateralization of pupil dilation evoked by locus coeruleus activation results from sympathetic, not parasympathetic, contributions. Cell Reports, 20(13), 3099-3112.
doi: 10.1016/j.celrep.2017.08.094 URL pmid: 28954227 |
[73] | Loewenfeld, I. E. (1958). Mechanisms of reflex dilatation of the pupil. Documenta Ophthalmologica, 12(1), 185-448. |
[74] | Loewenfeld, I. E. (1993). The pupil: Anatomy, physiology, and clinical applications. Detroit, MI: Wayne State University Press. |
[75] | Mathôt, S. (2018). Pupillometry: Psychology, physiology, and function. Journal of Cognition, 1(1), 16. |
[76] |
Mathôt, S., Dalmaijer, E., Grainger, J., & Stigchel, S. V. D . (2014). The pupillary light response reflects exogenous attention and inhibition of return. Journal of Vision, 14(14), 1-9.
doi: 10.1167/14.14.1 URL pmid: 25453116 |
[77] |
Mathôt, S., Fabius, J., van Heusden, E., & van Der Stigchel, S. (2018). Safe and sensible preprocessing and baseline correction of pupil-size data. Behavior Research Methods, 50(1), 94-106.
URL pmid: 29330763 |
[78] |
Mathôt, S., Grainger, J., & Strijkers, K. (2017). Pupillary responses to words that convey a sense of brightness or darkness. Psychological Science, 28(8), 1116-1124.
doi: 10.1177/0956797617702699 URL pmid: 28613135 |
[79] |
Mathôt, S., Linden, L. v. d., Grainger, J., & Vitu, F. (2015). The pupillary light response reflects eye-movement preparation. Journal of Experimental Psychology: Human Perception and Performance, 41(1), 28-35.
doi: 10.1037/a0038653 URL pmid: 25621584 |
[80] | Mathôt, S., & Naber, M. (2018). There is no evidence that pupil mimicry is a social phenomenon. Proceedings of the National Academy of Sciences, 115(50), E11565. |
[81] | Mathôt, S., Siebold, A., Donk, M., & Vitu, F. (2015). Large pupils predict goal-driven eye movements. Journal of Experimental Psychology: General, 144(3), 513-521. |
[82] |
Mathôt, S., & van der Stigchel, S. (2015). New light on the mind’s eye: The pupillary light response as active vision. Current Directions in Psychological Science, 24(5), 374-378.
doi: 10.1177/0963721415593725 URL pmid: 26494950 |
[83] |
McGinley, M. J., David, S. V., & McCormick, D. A. (2015). Cortical membrane potential signature of optimal states for sensory signal detection. Neuron, 87(1), 179-192.
doi: 10.1016/j.neuron.2015.05.038 URL pmid: 26074005 |
[84] |
Murphy, P. R., O'Connell, R. G., O'Sullivan, M., Robertson, I. H., & Balsters, J. H. (2014). Pupil diameter covaries with BOLD activity in human locus coeruleus. Human Brain Mapping, 35(8), 4140-4154.
doi: 10.1002/hbm.22466 URL pmid: 24510607 |
[85] |
Murphy, P. R., Robertson, I. H., Balsters, J. H., & O'Connell R, G. (2011). Pupillometry and P3 index the locus coeruleus-noradrenergic arousal function in humans. Psychophysiology, 48(11), 1532-1543.
URL pmid: 21762458 |
[86] |
Naber, M., Alvarez, G. A., & Nakayama, K. (2013). Tracking the allocation of attention using human pupillary oscillations. Frontiers in Psychology, 4, 919.
doi: 10.3389/fpsyg.2013.00919 URL pmid: 24368904 |
[87] |
Naber, M., & Nakayama, K. (2013). Pupil responses to high-level image content. Journal of Vision, 13(6), 1-8.
doi: 10.1167/13.6.1 URL pmid: 23637272 |
[88] |
Nystrom, P., Gliga, T., Nilsson Jobs, E., Gredeback, G., Charman, T., Johnson, M. H., ... Falck-Ytter, T. (2018). Enhanced pupillary light reflex in infancy is associated with autism diagnosis in toddlerhood. Nature Communications, 9, 1678.
doi: 10.1038/s41467-018-03985-4 URL pmid: 29735992 |
[89] |
Oliva, M., & Anikin, A. (2018). Pupil dilation reflects the time course of emotion recognition in human vocalizations. Scientific Reports, 8, 4871.
doi: 10.1038/s41598-018-23265-x URL pmid: 29559673 |
[90] |
Olmos-Solis, K., van Loon, A. M., & Olivers, C. N. L . (2018). Pupil dilation reflects task relevance prior to search. Journal of Cognition, 1(1), 11.
doi: 10.5334/joc.12 URL pmid: 31517185 |
[91] | Oosterhof, N. N., & Todorov, A. (2008). The functional basis of face evaluation. Proceedings of the National Academy of Sciences, 105(32), 11087-11092. |
[92] |
Pätzold, W., & Liszkowski, U. (2019). Pupillometry reveals communication-induced object expectations in 12- but not 8-months-old infants. Developmental Science, 22(6):e12832.
doi: 10.1111/desc.12832 URL pmid: 30942933 |
[93] |
Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 73-89.
doi: 10.1146/annurev-neuro-062111-150525 URL pmid: 22524787 |
[94] |
Peysakhovich, V., Causse, M., Scannella, S., & Dehais, F. (2015). Frequency analysis of a task-evoked pupillary response: Luminance-independent measure of mental effort. International Journal of Psychophysiology, 97(1), 30-37.
doi: 10.1016/j.ijpsycho.2015.04.019 URL pmid: 25941013 |
[95] |
Peysakhovich, V., Vachon, F., & Dehais, F. (2017). The impact of luminance on tonic and phasic pupillary responses to sustained cognitive load. International Journal of Psychophysiology, 112, 40-45.
URL pmid: 27979740 |
[96] | Picanco, C. R., & Tonneau, F. (2018). A low-cost platform for eye-tracking research: Using Pupil© in behavior analysis. Journal of the Experimental Analysis of Behavior, 110(2), 157-170. |
[97] | Prochazkova, E., & Kret, M. E. (2017). Connecting minds and sharing emotions through mimicry: A neurocognitive model of emotional contagion. Neuroscience and Biobehavioral Reviews, 80, 99-114. |
[98] | Prochazkova, E., Prochazkova, L., Giffin, M. R., Scholte, H. S., de Dreu, C. K. W., & Kret, M. E. (2018). Pupil mimicry promotes trust through the theory-of-mind network. Proceedings of the National Academy of Sciences, 115(31), E7265-E7274. |
[99] |
Reddy, L. F., Reavis, E. A., Wynn, J. K., & Green, M. F. (2018). Pupillary responses to a cognitive effort task in schizophrenia. Schizophrenia Research, 199, 53-57.
URL pmid: 29526458 |
[100] |
Reimer, J., Froudarakis, E., Cadwell, C. R., Yatsenko, D., Denfield, G. H., & Tolias, A. S. (2014). Pupil fluctuations track fast switching of cortical states during quiet wakefulness. Neuron, 84(2), 355-362.
URL pmid: 25374359 |
[101] | Reimer, J., McGinley, M. J., Liu, Y., Rodenkirch, C., Wang, Q., McCormick, D. A., & Tolias, A. S. (2016). Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. Nature Communications, 7(1), 13289. |
[102] | Snowden, R. J., O'Farrell, K. R., Burley, D., Erichsen, J. T., Newton, N. V., & Gray, N. S. (2016). The pupil's response to affective pictures: Role of image duration, habituation, and viewing mode. Psychophysiology, 53(8), 1217-1223. |
[103] |
Steinhauer, S. R., Siegle, G. J., Condray, R., & Pless, M. (2004). Sympathetic and parasympathetic innervation of pupillary dilation during sustained processing. International Journal of Psychophysiology, 52(1), 77-86.
doi: 10.1016/j.ijpsycho.2003.12.005 URL pmid: 15003374 |
[104] |
Sylvain, S., & Julie, B. (2014). Pupillometry. Wiley Interdisciplinary Reviews: Cognitive Science, 5(6), 679-692.
URL pmid: 26308873 |
[105] | Thakkar, K. N., Brascamp, J. W., Ghermezi, L., Fifer, K., Schall, J. D., & Park, S. (2018). Reduced pupil dilation during action preparation in schizophrenia. International Journal of Psychophysiology, 128, 111-118. |
[106] | Tichon, J. G., Mavin, T., Wallis, G., Visser, T. A. W., & Riek, S. (2014). Using pupillometry and electromyography to track positive and negative affect during flight simulation. Aviation Psychology and Applied Human Factors, 4(1), 23-32. |
[107] |
Urai, A. E., Braun, A., & Donner, T. H. (2017). Pupil-linked arousal is driven by decision uncertainty and alters serial choice bias. Nature Communications, 8, 14637.
doi: 10.1038/ncomms14637 URL pmid: 28256514 |
[108] | van Breen, J. A., de Dreu, C. K. W., & Kret, M. E. (2018). Pupil to pupil: The effect of a partner's pupil size on (dis)honest behavior. Journal of Experimental Social Psychology, 74, 231-245. |
[109] |
van der Wel, P., & van Steenbergen, H. (2018). Pupil dilation as an index of effort in cognitive control tasks: A review. Psychonomic Bulletin & Review, 25(6), 2005-2015.
URL pmid: 29435963 |
[110] | van Hooijdonk, R., Mathôt, S., Schat, E., Spencer, H., van der Stigchel, S., & Dijkerman, H. C. (2019). Touch-induced pupil size reflects stimulus intensity, not subjective pleasantness. Experimental Brain Research, 237(1), 201-210. |
[111] | van Steenbergen, H., & Band, G. P. (2013). Pupil dilation in the Simon task as a marker of conflict processing. Frontiers in Human Neuroscience, 7, 215. |
[112] |
Wang, C. A., Boehnke, S. E., Itti, L., & Munoz, D. P. (2014). Transient pupil response is modulated by contrast-based saliency. The Journal of Neuroscience, 34(2), 408-417.
doi: 10.1523/JNEUROSCI.3550-13.2014 URL pmid: 24403141 |
[113] | Wang, C. A., & Munoz, D. P. (2015). A circuit for pupil orienting responses: Implications for cognitive modulation of pupil size. Current Opinion Neurobiology, 33, 134-140. |
[114] |
Wehebrink, K. S., Koelkebeck, K., Piest, S., de Dreu, C. K. W., & Kret, M. E. (2018). Pupil mimicry and trust - Implication for depression. Journal of Psychiatric Research, 97, 70-76.
doi: 10.1016/j.jpsychires.2017.11.007 URL pmid: 29202275 |
[115] |
Wendt, D., Koelewijn, T., Ksiazek, P., Kramer, S. E., & Lunner, T. (2018). Toward a more comprehensive understanding of the impact of masker type and signal- to-noise ratio on the pupillary response while performing a speech-in-noise test. Hearing Research, 369, 67-78.
doi: 10.1016/j.heares.2018.05.006 URL pmid: 29858121 |
[116] | Wendt, M., Kiesel, A., Geringswald, F., Purmann, S., & Fischer, R. (2014). Attentional adjustment to conflict strength: Evidence from the effects of manipulating flanker-target SOA on response times and prestimulus pupil size. Experimental Psychology, 61(1), 55-67. |
[1] | ZHANG Mingxia, LI Yuxin, LI Jin, LIU Xun. The influence of extrinsic and intrinsic motivation on memory in adolescents and the underlying neural mechanisms [J]. Advances in Psychological Science, 2023, 31(1): 1-9. |
[2] | WANG Songxue, CHENG Si, JIANG Ting, LIU Xun, ZHANG Mingxia. The effect of external rewards on declarative memory [J]. Advances in Psychological Science, 2023, 31(1): 78-86. |
[3] | LI Liang, LI Hong. Cognitive mechanism and neural basis of shyness [J]. Advances in Psychological Science, 2022, 30(5): 1038-1049. |
[4] | LI Hehui, HUANG Huiya, DONG Lin, LUO Yuejia, TAO Wuhai. Developmental dyslexia and cerebellar abnormalities: Multiple roles of the cerebellum and causal relationships between the two [J]. Advances in Psychological Science, 2022, 30(2): 343-353. |
[5] | HU Jia-Bao, LEI Yang, DING Xian-Feng, CHENG Xiao-Rong, FAN Zhao. Shared vs. private aesthetic tastes: The cognitive and neural mechanisms [J]. Advances in Psychological Science, 2022, 30(2): 354-364. |
[6] | LIU Wang-Juan, DING Xian-Feng, CHENG Xiao-Rong, FAN Zhao. Serial dependence effect: A novel “history effect” [J]. Advances in Psychological Science, 2022, 30(10): 2228-2239. |
[7] | GAN Jiaqun, WANG Enguo. Attentional disengagement in autism spectrum disorders [J]. Advances in Psychological Science, 2022, 30(1): 129-140. |
[8] | GUO Ying, GONG Xianmin, WANG Dahua. The cognitive and neural mechanisms underlying false memory: An information processing perspective [J]. Advances in Psychological Science, 2021, 29(1): 79-92. |
[9] | ZHANG Jingjing, LIANG Xiaoyue, CHEN Yidi, CHEN Qingrong. The cognitive mechanism of music syntactic processing and the influence of music structure on its processing [J]. Advances in Psychological Science, 2020, 28(6): 883-892. |
[10] | YU Yang, JIANG Yingjie, WANG Yongsheng, YU Mingyang. Pupil size as a biomarker of memory processing [J]. Advances in Psychological Science, 2020, 28(3): 416-425. |
[11] | WANG Xin, HANG Mingli, LIANG Dandan. The cognitive neural mechanisms of verb argument structure complexity processing [J]. Advances in Psychological Science, 2020, 28(1): 62-74. |
[12] | WEI Tongqi, CAO Hui, BI Hong-Yan, YANG Yang. Writing deficits in developmental dyslexia and its neural mechanisms [J]. Advances in Psychological Science, 2020, 28(1): 75-84. |
[13] | CHEN Xiaowen, CAI Wenshu, XIE Tong, FU Shimin. The characteristics and neural mechanisms of visual orienting and visual search in autism spectrum disorders [J]. Advances in Psychological Science, 2020, 28(1): 98-109. |
[14] | Huan HUANG, Bo LIU, Chenchen ZHOU, Ming JI. Mechanisms of commission errors in aftereffects of completed intentions [J]. Advances in Psychological Science, 2018, 26(9): 1600-1607. |
[15] | ZHANG Yifan, QI Xingliang, CAI Houde. Neural mechanisms underlying dynamic changes of active maternal behavior in rodents [J]. Advances in Psychological Science, 2018, 26(8): 1417-1428. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||