Advances in Psychological Science ›› 2020, Vol. 28 ›› Issue (6): 883-892.doi: 10.3724/SP.J.1042.2020.00883
• Conceptual Framework • Previous Articles Next Articles
ZHANG Jingjing1, LIANG Xiaoyue2, CHEN Yidi2, CHEN Qingrong1()
Received:
2019-09-03
Online:
2020-06-15
Published:
2020-04-22
Contact:
CHEN Qingrong
E-mail:jscqr80@sina.com
CLC Number:
ZHANG Jingjing, LIANG Xiaoyue, CHEN Yidi, CHEN Qingrong. The cognitive mechanism of music syntactic processing and the influence of music structure on its processing[J]. Advances in Psychological Science, 2020, 28(6): 883-892.
[1] |
江俊, 王梓梦, 万璇, 蒋存梅 . (2014). 音乐时间加工的影响因素. 心理科学进展, 22(4), 650-658.
doi: 10.3724/SP.J.1042.2014.00650 URL |
[2] | 马谐, 杨玉芳, 张秋月 . (2016). 音乐句法的加工. 科学通报, 61(10), 1099-1111. |
[3] | 叶铮, 周晓林 . (2006). 音乐之脑. 心理科学进展, 14(5), 641-647. |
[4] | 张晶晶, 杨玉芳 . (2017). 音乐句法加工的影响因素. 心理科学进展, 25(11), 1823-1830. |
[5] | 周临舒, 蒋存梅, 杨玉芳 . (2012). 音乐和语言句法认知的比较. 科学通报, 57(28), 2674-2685. |
[6] |
Arai, M., & Keller, F . (2013). The use of verb-specific information for prediction in sentence processing. Language and Cognitive Processes, 28(4), 525-560.
doi: 10.1080/01690965.2012.658072 URL |
[7] |
Bengtsson, S. L., & Ullén, F . (2006). Dissociation between melodic and rhythmic processing during piano performance from musical scores. NeuroImage, 30(1), 272-284.
doi: 10.1016/j.neuroimage.2005.09.019 URL |
[8] | Bharucha, J. J., & Stoeckig, K . (1987). Priming of chords: Spreading activation or overlapping frequency spectra? Perception & Psychophysics, 41(6), 519-524. |
[9] | Bigand, E., & Pineau, M . (1997). Global context effects on musical expectancy. Perception & Psychophysics, 59(7), 1098-1107. |
[10] | Bigand, E., Tillmann, B., Poulin, B., D'Adamo, D. A., & Madurell, F . (2001). The effect of harmonic context on phoneme monitoring in vocal music. Cognition, 81(1), B11-B20. |
[11] | Brown, R. M., Chen, J. L., Hollinger, A., Penhune, V. B., Palmer, C., & Zatorre, R. J . (2013). Repetition suppression in auditory-motor regions to pitch and temporal structure in music. Journal of Cognitive Neuroscience, 25(2), 313-328. |
[12] | Carey, D., Rosen, S., Krishnan, S., Pearce, M. T., Shepherd, A., Aydelott, J., & Dick, F . (2015). Generality and specificity in the effects of musical expertise on perception and cognition. Cognition, 137, 81-105. |
[13] |
Chen, Q., Zhang, J., Xu, X., Scheepers, C., Yang, Y., & Tanenhaus, M. K . (2016). Prosodic expectations in silent reading: ERP evidence from rhyme scheme and semantic congruence in classic Chinese poems. Cognition, 154, 11-21.
doi: 10.1016/j.cognition.2016.05.007 URL |
[14] | Christiansen, M. H., & Chater, N . (2016). The now-or-never bottleneck: A fundamental constraint on language. Behavioral and Brain Sciences, 39, 1-72. |
[15] |
DeLong, K. A., Urbach, T. P., & Kutas, M . (2005). Probabilistic word pre-activation during language comprehension inferred from electrical brain activity. Nature Neuroscience, 8(8), 1117-1121.
doi: 10.1038/nn1504 URL |
[16] |
Du, Y., & Zatorre, R. J . (2017). Musical training sharpens and bonds ears and tongue to hear speech better. Proceedings of the National Academy of Sciences, 114(51), 13579-13584.
doi: 10.1073/pnas.1712223114 URL |
[17] |
Eitan, Z., & Granot, R. Y . (2008). Growing oranges on Mozart's apple tree: "Inner form" and aesthetic judgment. Music Perception, 25(5), 397-418.
doi: 10.1525/mp.2008.25.issue-5 URL |
[18] | Farbood, M. M., Heeger, D. J., Marcus, G., Hasson, U., & Lerner, Y . (2015). The neural processing of hierarchical structure in music and speech at different timescales. Frontiers in Neuroscience, 9, 157. |
[19] | Fitch, W. T . (2013). Rhythmic cognition in humans and animals: Distinguishing meter and pulse perception. Frontiers in systems neuroscience, 7, 68. |
[20] | Friston, K., & Buzsáki, G . (2016). The functional anatomy of time: What and when in the brain. Trends in Cognitive Sciences, 20(7), 500-511. |
[21] |
Geiser, E., Ziegler, E., Jancke, L., & Meyer, M . (2009). Early electrophysiological correlates of meter and rhythm processing in music perception. Cortex, 45(1), 93-102.
doi: 10.1016/j.cortex.2007.09.010 URL |
[22] |
Granot, R. Y., & Jacoby, N . (2011). Musically puzzling I: Sensitivity to overall structure in the sonata form? Musicae Scientiae, 15(3), 365-386.
doi: 10.1177/1029864911409508 URL |
[23] | Hasson, U., Chen, J., & Honey, C. J . (2015). Hierarchical process memory: Memory as an integral component of information processing. Trends in Cognitive Sciences, 19(6), 304-313. |
[24] | Huron, D. B . (2006). Sweet anticipation: Music and the psychology of expectation. Cambridge, MA: MIT press. |
[25] |
Ito, A., Corley, M., Pickering, M. J., Martin, A. E., & Nieuwland, M. S . (2016). Predicting form and meaning: Evidence from brain potentials. Journal of Memory and Language, 86, 157-171.
doi: 10.1016/j.jml.2015.10.007 URL |
[26] |
Ito, A., Pickering, M. J., & Corley, M . (2018). Investigating the time-course of phonological prediction in native and non-native speakers of English: A visual world eye-t racking study. Journal of Memory and Language, 98, 1-11.
doi: 10.1016/j.jml.2017.09.002 URL |
[27] |
Jentschke, S., Friederici, A. D., & Koelsch, S . (2014). Neural correlates of music-syntactic processing in two-year old children. Developmental Cognitive Neuroscience, 9, 200-208.
doi: 10.1016/j.dcn.2014.04.005 URL |
[28] | Jones, M. R., & Boltz, M . (1989). Dynamic attending and responses to time. Psychological Review, 96(3), 459-491. |
[29] | Jones, M. R., Moynihan, H., MacKenzie, N., & Puente, J . (2002). Temporal aspects of stimulus-driven attending in dynamic arrays. Psychological Science, 13(4), 313-319. |
[30] | Kamide, Y . (2012). Learning individual talkers’ structural preferences. Cognition, 124(1), 66-71. |
[31] |
Kintsch, W . (1988). The role of knowledge in discourse comprehension: A construction-integration model. Psychological Review, 95(2), 163-182.
doi: 10.1037/0033-295X.95.2.163 URL |
[32] |
Koelsch, S . (2014). Brain correlates of music-evoked emotions. Nature Reviews Neuroscience, 15(3), 170-180.
doi: 10.1038/nrn3666 URL |
[33] |
Koelsch, S., Gunter, T., Friederici, A. D., & Schröger, E . (2000). Brain indices of music processing: “nonmusicians” are musical. Journal of Cognitive Neuroscience, 12(3), 520-541.
doi: 10.1162/089892900562183 URL |
[34] |
Koelsch, S., Jentschke, S., Sammler, D., & Mietchen, D . (2007). Untangling syntactic and sensory processing: An ERP study of music perception. Psychophysiology, 44(3), 476-490.
doi: 10.1111/psyp.2007.44.issue-3 URL |
[35] |
Koelsch, S., Rohrmeier, M., Torrecuso, R., & Jentschke, S . (2013). Processing of hierarchical syntactic structure in music. Proceedings of the National Academy of Sciences, 110(38), 15443-15448.
doi: 10.1073/pnas.1300272110 URL |
[36] |
Koelsch, S., Schmidt, B.-H., & Kansok, J . (2002). Effects of musical expertise on the early right anterior negativity: An event-related brain potential study. Psychophysiology, 39(5), 657-663.
doi: 10.1111/psyp.2002.39.issue-5 URL |
[37] |
Koelsch, S., Vuust, P., & Friston, K . (2019). Predictive processes and the peculiar case of music. Trends in Cognitive Sciences, 23(1), 63-77.
doi: 10.1016/j.tics.2018.10.006 URL |
[38] |
Kuperberg, G. R., & Jaeger, T. F . (2016). What do we mean by prediction in language comprehension? Language, Cognition and Neuroscience, 31(1), 32-59.
doi: 10.1080/23273798.2015.1102299 URL |
[39] |
Lagrois, M.-É., Peretz, I., & Zendel, B. R . (2018). Neurophysiological and behavioral differences between older and younger adults when processing violations of tonal structure in music. Frontiers in Neuroscience, 12, 54.
doi: 10.3389/fnins.2018.00054 URL |
[40] |
Lau, E., Stroud, C., Plesch, S., & Phillips, C . (2006). The role of structural prediction in rapid syntactic analysis. Brain and language, 98(1), 74-88.
doi: 10.1016/j.bandl.2006.02.003 URL |
[41] |
Lebrun-Guillaud, G., Tillmann, B., & Justus, T . (2008). Perception of tonal and temporal structures in chord sequences by patients with cerebellar damage. Music Perception, 25(4), 271-283.
doi: 10.1525/mp.2008.25.4.271 URL |
[42] | Lerdahl, F., & Jackendoff, R. S . (1983). A generative theory of tonal music. Cambridge, MA: MIT press. |
[43] |
Lerner, Y., Honey, C. J., Silbert, L. J., & Hasson, U . (2011). Topographic mapping of a hierarchy of temporal receptive windows using a narrated story. Journal of Neuroscience, 31(8), 2906-2915.
doi: 10.1523/JNEUROSCI.3684-10.2011 URL |
[44] |
Li, X., Zhang, Y., Xia, J., & Swaab, T. Y . (2017). Internal mechanisms underlying anticipatory language processing: Evidence from event-related-potentials and neural oscillations. Neuropsychologia, 102, 70-81.
doi: 10.1016/j.neuropsychologia.2017.05.017 URL |
[45] |
Ma, X., Ding, N., Tao, Y., & Yang, Y. F . (2018a). Differences in neurocognitive mechanisms underlying the processing of center-embedded and non-embedded musical structures. Frontiers in Human Neuroscience, 12, 425.
doi: 10.3389/fnhum.2018.00425 URL |
[46] |
Ma, X., Ding, N., Tao, Y., & Yang, Y. F . (2018b). Syntactic complexity and musical proficiency modulate neural processing of non-native music. Neuropsychologia, 121, 164-174.
doi: 10.1016/j.neuropsychologia.2018.10.005 URL |
[47] |
Maess, B., Koelsch, S., Gunter, T. C., & Friederici, A. D . (2001). Musical syntax is processed in Broca's area: An MEG study. Nature Neuroscience, 4(5), 540-545.
doi: 10.1038/87502 URL |
[48] | Maess, B., Mamashli, F., Obleser, J., Helle, L., & Friederici, A. D . (2016). Prediction signatures in the brain: Semantic pre-activation during language comprehension. Frontiers in Human Neuroscience, 10, 591. |
[49] |
Margulis, E. H . (2005). A model of melodic expectation. Music Perception, 22(4), 663-714.
doi: 10.1525/mp.2005.22.4.663 URL |
[50] | Meyer, L. B. (2008). Emotion and meaning in music. Chicago, IL: University of chicago Press. |
[51] |
Müller, M., Höfel, L., Brattico, E., & Jacobsen, T . (2010). Aesthetic judgments of music in experts and laypersons— An ERP study. International Journal of Psychophysiology, 76(1), 40-51.
doi: 10.1016/j.ijpsycho.2010.02.002 URL |
[52] |
Nan, Y., Liu, L., Geiser, E., Shu, H., Gong, C. C., Dong, Q., ... & Desimone, R . (2018). Piano training enhances the neural processing of pitch and improves speech perception in Mandarin-speaking children. Proceedings of the National Academy of Sciences, 115(28), E6630-E6639.
doi: 10.1073/pnas.1808412115 URL |
[53] |
Otten, M., Nieuwland, M. S., & van Berkum, J. J . (2007). Great expectations: Specific lexical anticipation influences the processing of spoken language. BMC neuroscience, 8(1), 89.
doi: 10.1186/1471-2202-8-89 URL |
[54] |
Otten, M., & van Berkum, J. J . (2008). Discourse-based word anticipation during language processing: Prediction or priming? Discourse Processes, 45(6), 464-496.
doi: 10.1080/01638530802356463 URL |
[55] |
Palmer, C., & Krumhansl, C. L . (1987). Independent temporal and pitch structures in determination of musical phrases. Journal of Experimental Psychology: Human Perception and Performance, 13(1), 116-126.
doi: 10.1037/0096-1523.13.1.116 URL |
[56] | Patel, A. D . (2010). Music, language, and the brain. Oxford: Oxford university press. |
[57] | Patel, A. D., Gibson, E., Ratner, J., Besson, M., & Holcomb, P. J . (1998). Processing syntactic relations in language and music: An event-related potential study. Journal of Cognitive Neuroscience, 10(6), 717-733. |
[58] | Peretz, I . (1990). Processing of local and global musical information by unilateral brain-damaged patients. Brain, 113(4), 1185-1205. |
[59] | Peretz, I . (1996). Can we lose memory for music? A case of music agnosia in a nonmusician. Journal of Cognitive Neuroscience, 8(6), 481-496. |
[60] |
Peretz, I., & Coltheart, M . (2003). Modularity of music processing. Nature Neuroscience, 6(7), 688-691.
doi: 10.1038/nn1083 URL |
[61] | Peretz, I., & Kolinsky, R . (1993). Boundaries of separability between melody and rhythm in music discrimination: A neuropsychological perspective. The Quarterly Journal of Experimental Psychology, 46(2), 301-325. |
[62] |
Poulin-Charronnat, B., Bigand, E., & Koelsch, S . (2006). Processing of musical syntax tonic versus subdominant: An event-related potential study. Journal of Cognitive Neuroscience, 18(9), 1545-1554.
doi: 10.1162/jocn.2006.18.9.1545 URL |
[63] | Ruiz, M. H., Koelsch, S., & Bhattacharya, J . (2009). Decrease in early right alpha band phase synchronization and late gamma band oscillations in processing syntax in music. Human Brain Mapping, 30(4), 1207-1225. |
[64] | Schmuckler, M. A., & Boltz, M. G . (1994). Harmonic and rhythmic influences on musical expectancy. Perception & Psychophysics, 56(3), 313-325. |
[65] |
Sun, L., Liu, F., Zhou, L., & Jiang, C . (2018). Musical training modulates the early but not the late stage of rhythmic syntactic processing. Psychophysiology, 55(2), e12983.
doi: 10.1111/psyp.2018.55.issue-2 URL |
[66] |
Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M., & Sedivy, J. C . (1995). Integration of visual and linguistic information in spoken language comprehension. Science, 268(5217), 1632-1634.
doi: 10.1126/science.7777863 URL |
[67] | Tillmann, B., & Bigand, E . (1998). Influence of global structure on musical target detection and recognition. International Journal of Psychology, 33(2), 107-122. |
[68] |
Tillmann, B., Bigand, E., & Pineau, M . (1998). Effects of global and local contexts on harmonic expectancy. Music Perception, 16(1), 99-117.
doi: 10.2307/40285780 URL |
[69] |
Tillmann, B., Janata, P., & Bharucha, J. J . (2003). Activation of the inferior frontal cortex in musical priming. Cognitive Brain Research, 16(2), 145-161.
doi: 10.1016/S0926-6410(02)00245-8 URL |
[70] |
Tillmann, B., & Lebrun-Guillaud, G . (2006). Influence of tonal and temporal expectations on chord processing and on completion judgments of chord sequences. Psychological Research, 70(5), 345-358.
doi: 10.1007/s00426-005-0222-0 URL |
[71] | Treisman, A. M., & Gelade, G . (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97-136. |
[72] | van Berkum,, J. J. A., Brown, C. M., Zwitserlood, P., Kooijman, V., & Hagoort, P . (2005). Anticipating upcoming words in discourse: Evidence from ERPs and reading times. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(3), 443-467. |
[73] |
van Petten, C., & Luka, B. J . (2012). Prediction during language comprehension: Benefits, costs, and ERP components. International Journal of Psychophysiology, 83(2), 176-190.
doi: 10.1016/j.ijpsycho.2011.09.015 URL |
[74] |
Zhang, J., Che, X., & Yang, Y . (2019). Event-related brain potentials suggest a late interaction of pitch and time in music perception. Neuropsychologia, 132, 107118.
doi: 10.1016/j.neuropsychologia.2019.107118 URL |
[75] |
Zhang, J., Jiang, C., Zhou, L., & Yang, Y . (2016). Perception of hierarchical boundaries in music and its modulation by expertise. Neuropsychologia, 91, 490-498.
doi: 10.1016/j.neuropsychologia.2016.09.013 URL |
[76] | Zhang, J., Zhou, X., Chang, R., & Yang, Y . (2018). Effects of global and local contexts on chord processing: An ERP study. Neuropsychologia, 109, 149-154. |
[77] | Zhou, L., Liu, F., Jiang, J., Jiang, H., & Jiang, C . (2019). Abnormal neural responses to harmonic syntactic structures in congenital amusia. Psychophysiology, e13394. |
[1] | ZHANG Mingxia, LI Yuxin, LI Jin, LIU Xun. The influence of extrinsic and intrinsic motivation on memory in adolescents and the underlying neural mechanisms [J]. Advances in Psychological Science, 2023, 31(1): 1-9. |
[2] | WANG Songxue, CHENG Si, JIANG Ting, LIU Xun, ZHANG Mingxia. The effect of external rewards on declarative memory [J]. Advances in Psychological Science, 2023, 31(1): 78-86. |
[3] | ZOU Di, LI Hong, WANG Fushun. An investigation into the definition of arousal and its cognitive neurophysiological basis [J]. Advances in Psychological Science, 2022, 30(9): 2020-2033. |
[4] | LI Liang, LI Hong. Cognitive mechanism and neural basis of shyness [J]. Advances in Psychological Science, 2022, 30(5): 1038-1049. |
[5] | ZHANG Hang, MENG Le, ZHANG Jijia. Why musical emotion can be induced by harmony? The effect and cognitive mechanism of musical consonance [J]. Advances in Psychological Science, 2022, 30(4): 817-833. |
[6] | ZHANG Linlin, WEI Kunlin, LI Jing. Interpersonal motor synchronization in children [J]. Advances in Psychological Science, 2022, 30(3): 623-634. |
[7] | LI Hehui, HUANG Huiya, DONG Lin, LUO Yuejia, TAO Wuhai. Developmental dyslexia and cerebellar abnormalities: Multiple roles of the cerebellum and causal relationships between the two [J]. Advances in Psychological Science, 2022, 30(2): 343-353. |
[8] | HU Jia-Bao, LEI Yang, DING Xian-Feng, CHENG Xiao-Rong, FAN Zhao. Shared vs. private aesthetic tastes: The cognitive and neural mechanisms [J]. Advances in Psychological Science, 2022, 30(2): 354-364. |
[9] | LIU Wang-Juan, DING Xian-Feng, CHENG Xiao-Rong, FAN Zhao. Serial dependence effect: A novel “history effect” [J]. Advances in Psychological Science, 2022, 30(10): 2228-2239. |
[10] | GAN Jiaqun, WANG Enguo. Attentional disengagement in autism spectrum disorders [J]. Advances in Psychological Science, 2022, 30(1): 129-140. |
[11] | SUI Xue, SHI Hanwen, LI Yutong. Perspective taking and its cognitive mechanism in language processing [J]. Advances in Psychological Science, 2021, 29(6): 990-999. |
[12] | GUO Ying, GONG Xianmin, WANG Dahua. The cognitive and neural mechanisms underlying false memory: An information processing perspective [J]. Advances in Psychological Science, 2021, 29(1): 79-92. |
[13] | YANG Xiaomeng, WANG Fuxing, WANG Yanqing, ZHAO Tingting, GAO Chunying, HU Xiangen. Are pupils the window of our mind? Pupil-related application in psychology and pupillometry [J]. Advances in Psychological Science, 2020, 28(7): 1029-1041. |
[14] | LI Jiahui, LIU Qing, JIANG Duo. The cognitive mechanisms of decoy effect in decision making [J]. Advances in Psychological Science, 2020, 28(10): 1688-1696. |
[15] | WANG Xin, HANG Mingli, LIANG Dandan. The cognitive neural mechanisms of verb argument structure complexity processing [J]. Advances in Psychological Science, 2020, 28(1): 62-74. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||