Advances in Psychological Science ›› 2018, Vol. 26 ›› Issue (6): 966-974.doi: 10.3724/SP.J.1042.2018.00966
• Regular Articles • Previous Articles Next Articles
LI Zhenghan1,2, YANG Guochun1,2, NAN Weizhi3, LI Qi1,2, LIU Xun1,2()
Received:
2017-07-21
Online:
2018-06-10
Published:
2018-04-28
Contact:
LIU Xun
E-mail:liux@psych.ac.cn
CLC Number:
LI Zhenghan, YANG Guochun, NAN Weizhi, LI Qi, LIU Xun. Attentional regulation mechanisms of cognitive control in conflict resolution[J]. Advances in Psychological Science, 2018, 26(6): 966-974.
[1] |
刘培朵, 杨文静, 田夏, 陈安涛 . ( 2012). 冲突适应效应研究述评. 心理科学进展, 20( 4), 532-541.
doi: 10.3724/SP.J.1042.2012.00532 URL |
[2] | 刘勋, 南威治, 王凯, 李琦 . ( 2013). 认知控制的模块化组织. 心理科学进展, 21( 12), 2091-2102. |
[3] |
Abel S., Dressel K., Weiller C., & Huber W . ( 2012). Enhancement and suppression in a lexical interference fMRI-paradigm. Brain & Behavior, 2( 2), 109-127.
doi: 10.1002/brb3.31 URL pmid: 22574280 |
[4] |
Baldauf, D., & Desimone, R. ( 2014). Neural mechanisms of object-based attention. Science, 344, 424-427.
doi: 10.1126/science.1247003 URL pmid: 24763592 |
[5] |
Banich M. T., Milham M. P., Jacobson B. L., Webb A., Wszalek T., Cohen N. J., & Kramer A. F . ( 2001). Attentional selection and the processing of task-irrelevant information: Insights from fMRI examinations of the Stroop task. Progress in Brain Research, 134, 459-470.
doi: 10.1016/S0079-6123(01)34030-X URL |
[6] |
Biehl S. C., Ehlis A. C., Müller L. D., Niklaus A., Pauli P., & Herrmann M. J . ( 2013). The impact of task relevance and degree of distraction on stimulus processing. BMC Neuroscience, 14, 107.
doi: 10.1186/1471-2202-14-107 URL pmid: 24079268 |
[7] |
Botvinick, M., & Braver, T. (2015). Motivation and cognitive control: From behavior to neural mechanism. Annual Review of Psychology, 66, 83-113.
doi: 10.1146/annurev-psych-010814-015044 URL pmid: 25251491 |
[8] |
Botvinick M. M., Braver T. S., Barch D. M., Carter C. S., & Cohen J. D . ( 2001). Conflict monitoring and cognitive control. Psychological Review, 108( 3), 624-652.
doi: 10.1037//0033-295X.108.3.624 URL pmid: 11488380 |
[9] |
Burt, J. S . ( 2002). Why do non-color words interfere with color naming? Journal of Experimental Psychology: Human Perception and Performance, 28( 5), 1019-1038.
doi: 10.1037/0096-1523.28.5.1019 URL pmid: 12421053 |
[10] |
Chao, H. F . ( 2011). Active inhibition of a distractor word: The distractor precue benefit in the Stroop color-naming task. Journal of Experimental Psychology: Human Perception and Performance, 37( 3), 799-812.
doi: 10.1037/a0022191 URL pmid: 21480743 |
[11] |
Chechko N., Kellermann T., Schneider F., & Habel U . ( 2014). Conflict adaptation in emotional task underlies the amplification of target. Emotion, 14( 2), 321-330.
doi: 10.1037/a0035208 URL pmid: 24377682 |
[12] |
Chun J. W., Park H. J., Kim D. J., Kim E., & Kim J. J . ( 2017). Contribution of fronto-striatal regions to emotional valence and repetition under cognitive conflict. Brain Research, 1666, 48-57.
doi: 10.1016/j.brainres.2017.04.018 URL |
[13] |
Clouter A., Wilson R., Allen S., Klein R. M., & Eskes G. A . ( 2015). The influence of verbal and spatial working memory load on the time course of the Simon effect. Journal of Experimental Psychology: Human Perception and Performance, 41( 2), 342-355.
doi: 10.1037/a0038715 URL pmid: 25621577 |
[14] |
Cohen J. D., Dunbar K., & McClelland J. L . ( 1990). On the control of automatic processes - a parallel distributed- processing account of the Stroop effect. Psychological Review, 97( 3), 332-361.
doi: 10.1037//0033-295X.97.3.332 URL pmid: 2200075 |
[15] |
Cole M. W., Ito T., Bassett D. S., & Schultz D. H . ( 2016). Activity flow over resting-state networks shapes cognitive task activations. Nature Neuroscience, 19( 12), 1718-1726.
doi: 10.1038/nn.4406 URL pmid: 27723746 |
[16] |
Cole M. W., Repovš G., & Anticevic A . ( 2014). The frontoparietal control system: A central role in mental health. Neuroscientist, 20( 6), 652-664.
doi: 10.1177/1073858414525995 URL |
[17] |
Cole M. W., Reynolds J. R., Power J. D., Repovs G., Anticevic A., & Braver T. S . ( 2013). Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neuroscience, 16( 9), 1348-1355.
doi: 10.1038/nn.3470 URL pmid: 3758404 |
[18] |
Corbetta M., Miezin F. M., Dobmeyer S., Shulman G. L., & Petersen S. E . ( 1991). Selective and divided attention during visual discriminations of shape, color, and speed: Functional anatomy by positron emission tomography. Journal of Neuroscience, 11( 8), 2383-2402.
doi: 10.1523/JNEUROSCI.11-08-02383.1991 URL |
[19] |
Egner, T., & Hirsch, J. (2005). Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neuroscience, 8( 12), 1784-1790.
doi: 10.1038/nn1594 URL pmid: 16286928 |
[20] |
Fan, J. (2014). An information theory account of cognitive control. Frontiers in Human Neuroscience, 8, 680.
doi: 10.3389/fnhum.2014.00680 URL pmid: 4151034 |
[21] |
Fenske, M. J., & Eastwood, J. D . ( 2003). Modulation of focused attention by faces expressing emotion: Evidence from Flanker tasks. Emotion, 3( 4), 327-343.
doi: 10.1037/1528-3542.3.4.327 URL |
[22] |
Fox E., Russo R., Bowles R., & Dutton K . ( 2001). Do threatening stimuli draw or hold visual attention in subclinical anxiety? Journal of Experimental Psychology- General, 130( 4), 681-700.
doi: 10.1037/0096-3445.130.4.681 URL pmid: 11757875 |
[23] |
Frings C., Wentura D., & Wühr P . ( 2012). On the fate of distractor representations. Journal of Experimental Psychology: Human Perception and Performance, 38( 3), 570-575.
doi: 10.1037/a0027781 URL pmid: 22428679 |
[24] |
Frings, C., & Wühr, P. (2014). Top-down deactivation of interference from irrelevant spatial or verbal stimulus features. Attention Perception & Psychophysics, 76( 8), 2360-2374.
doi: 10.3758/s13414-014-0728-x URL pmid: 24980154 |
[25] |
Gajewski, P. D., & Falkenstein, M. (2012). Training-induced improvement of response selection and error detection in aging assessed by task switching: Effects of cognitive, physical, and relaxation training. Frontiers in Human Neuroscience, 6, 130.
doi: 10.3389/fnhum.2012.00130 URL pmid: 3349932 |
[26] | Gorfein, D. S., & MacLeod, C. M . ( 2007). Inhibition in cognition. Washington, DC: American Psychological Association. |
[27] |
Gregoriou G. G., Gotts S. J., Zhou H. H., & Desimone R . ( 2009). High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science, 324, 1207-1210.
doi: 10.1126/science.1171402 URL pmid: 2849291650773022967381 |
[28] |
Harris, K. D., & Mrsic-Flogel, T. D . ( 2013). Cortical connectivity and sensory coding. Nature, 503( 7474), 51-58.
doi: 10.1038/nature12654 URL pmid: 24201278 |
[29] |
Herd S. A., Banich M. T., & O'Reilly R. C . ( 2006). Neural mechanisms of cognitive control: An integrative model of stroop task performance and fMRI data. Journal of Cognitive Neuroscience, 18( 1), 22-32.
doi: 10.1162/089892906775250012 URL pmid: 16417680 |
[30] |
Houghton, G., & Tipper, S. P . ( 1996). Inhibitory mechanisms of neural and cognitive control: Applications to selective attention and sequential action. Brain and Cognition, 30( 1), 20-43.
doi: 10.1006/brcg.1996.0003 URL pmid: 8811979 |
[31] |
Kalanthroff E., Avnit A., Henik A., Davelaar E. J., & Usher M . ( 2015). Stroop proactive control and task conflict are modulated by concurrent working memory load. Psychonomic Bulletin & Review, 22( 3), 869-875.
doi: 10.3758/s13423-014-0735-x URL pmid: 25257710 |
[32] |
Kim S. Y., Kim M. S., & Chun M. M . ( 2005). Concurrent working memory load can reduce distraction. Proceedings of the National Academy of Sciences of the United States of America, 102( 45), 16524-16529.
doi: 10.1073/pnas.0505454102 URL pmid: 16258067 |
[33] |
Koster E. H. W., Hoorelbeke K., Onraedt T., Owens M., & Derakshan N . ( 2017). Cognitive control interventions for depression: A systematic review of findings from training studies. Clinical Psychology Review, 53, 79-92.
doi: 10.1016/j.cpr.2017.02.002 URL pmid: 28273486 |
[34] |
Li Q., Nan W. Z., Wang K., & Liu X . ( 2014). Independent processing of stimulus-stimulus and stimulus-response conflicts. PLoS One, 9( 2), e89249.
doi: 10.1371/journal.pone.0089249 URL pmid: 3928426 |
[35] |
Luna B., Marek S., Larsen B., Tervo-Clemmens B., & Chahal R . ( 2015). An integrative model of the maturation of cognitive control. Annual Review of Neuroscience, 38, 151-170.
doi: 10.1146/annurev-neuro-071714-034054 URL pmid: 26154978 |
[36] |
Manza P., Hu S., Chao H. H., Zhang S., Leung H. C., & Li, C. S. R. (2016). A dual but asymmetric role of the dorsal anterior cingulate cortex in response inhibition and switching from a non-salient to salient action. Neuroimage, 134, 466-474.
doi: 10.1016/j.neuroimage.2016.04.055 URL pmid: 27126003 |
[37] |
Martiny-Huenger T., Gollwitzer P. M., & Oettingen G . ( 2014). Distractor devaluation in a flanker task: Object-specific effects without distractor recognition memory. Journal of Experimental Psychology: Human Perception and Performance, 40( 2), 613-625.
doi: 10.1037/a0034130 URL pmid: 24016067 |
[38] |
McClure, S. M., & Bickel, W. K . ( 2014). A dual-systems perspective on addiction: Contributions from neuroimaging and cognitive training. Annals of the New York Academy of Sciences, 1327, 62-78.
doi: 10.1111/nyas.12561 URL pmid: 4285342 |
[39] | Miller G. A., Galanter E., & Pribram K. H . ( 1960). Plans and the structure of behavior. New York, NY, US: Henry Holt and Company. |
[40] |
Minamoto T., Shipstead Z., Osaka N., & Engle R. W . ( 2015). Low cognitive load strengthens distractor interference while high load attenuates when cognitive load and distractor possess similar visual characteristics. Attention, Perception, & Psychophysics, 77( 5), 1659-1673.
doi: 10.3758/s13414-015-0866-9 URL pmid: 25813738 |
[41] |
Mishra J., de Villers-Sidani E., Merzenich M., & Gazzaley A . ( 2014). Adaptive training diminishes distractibility in aging across species. Neuron, 84( 5), 1091-1103.
doi: 10.1016/j.neuron.2014.10.034 URL pmid: 4264379 |
[42] |
Möller M., Mayr S., & Buchner A . ( 2013). Target localization among concurrent sound sources: No evidence for the inhibition of previous distractor responses. Attention, Perception, & Psychophysics, 75( 1), 132-144.
doi: 10.3758/s13414-012-0380-2 URL pmid: 23077027 |
[43] |
Motter J. N., Pimontel M. A., Rindskopf D., Devanand D. P., Doraiswamy P. M., & Sneed J. R . ( 2016). Computerized cognitive training and functional recovery in major depressive disorder: A meta-analysis. Journal of Affective Disorders, 189, 184-191.
doi: 10.1016/j.jad.2015.09.022 URL pmid: 26437233 |
[44] |
Navalyal, G. U., & Gavas, R. D . ( 2014). A dynamic attention assessment and enhancement tool using computer graphics. Human-centric Computing and Information Sciences, 4( 1), 11.
doi: 10.1186/s13673-014-0011-0 URL |
[45] |
Noonan M. P., Adamian N., Pike A., Printzlau F., Crittenden B. M., & Stokes M. G . ( 2016). Distinct mechanisms for distractor suppression and target facilitation. Journal of Neuroscience, 36( 6), 1797-1807.
doi: 10.1523/JNEUROSCI.2133-15.2016 URL pmid: 26865606 |
[46] |
Notebaert, W., & Verguts, T. (2008). Cognitive control acts locally. Cognition, 106( 2), 1071-1080.
doi: 10.1016/j.cognition.2007.04.011 URL |
[47] |
Olivers, C. N. L., & Humphreys, G. W . ( 2002). When visual marking meets the attentional blink: More evidence for top-down, limited-capacity inhibition. Journal of Experimental Psychology: Human Perception and Performance, 28( 1), 22-42.
doi: 10.1037/0096-1523.28.1.22 URL |
[48] |
Owens M., Koster E. H. W., & Derakshan N . ( 2013). Improving attention control in dysphoria through cognitive training: Transfer effects on working memory capacity and filtering efficiency. Psychophysiology, 50( 3), 297-307.
doi: 10.1111/psyp.12010 URL pmid: 23350956 |
[49] |
Padmala, S., & Pessoa, L. (2011). Reward reduces conflict by enhancing attentional control and biasing visual cortical processing. Journal of Cognitive Neuroscience, 23( 11), 3419-3432.
doi: 10.1162/jocn_a_00011 URL pmid: 21452938 |
[50] |
Pardo J. V., Pardo P. J., Janer K. W., & Raichle M. E . ( 1990). The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proceedings of the National Academy of Sciences of the United States of America, 87( 1), 256-259.
doi: 10.1073/pnas.87.1.256 URL pmid: 2296583 |
[51] |
Polk T. A., Drake R. M., Jonides J. J., Smith M. R., & Smith E. E . ( 2008). Attention enhances the neural processing of relevant features and suppresses the processing of irrelevant features in humans: A functional magnetic resonance imaging study of the stroop task. Journal of Neuroscience, 28( 51), 13786-13792.
doi: 10.1523/JNEUROSCI.1026-08.2008 URL pmid: 19091969 |
[52] | Posner, M., & Snyder, C. (1975). Attention and cognitive control. In R. L. Solso (Ed.), Information processing and cognition: Loyola symposium. Hillsdale, New Jersey: Erlbaum. |
[53] |
Posner, M. I., & Dehaene, S. (1994). Attentional networks. Trends in Neurosciences, 17( 2), 75-79.
doi: 10.1016/0166-2236(94)90078-7 URL |
[54] |
Purmann, S., & Pollmann, S. (2015). Adaptation to recent conflict in the classical color-word Stroop-task mainly involves facilitation of processing of task-relevant information. Frontiers in Human Neuroscience, 9, 88.
doi: 10.3389/fnhum.2015.00088 URL pmid: 4347451 |
[55] |
Reisenauer, R., & Dreisbach, G. (2014). The shielding function of task rules in the context of task switching. Quarterly Journal of Experimental Psychology, 67( 2), 358-376.
doi: 10.1080/17470218.2013.808678 URL pmid: 23805948 |
[56] |
Schrobsdorff H., Ihrke M., Behrendt J., Hasselhorn M., & Herrmann J. M . ( 2012). Inhibition in the dynamics of selective attention: An integrative model for negative priming. Frontiers in Psychology, 3, 491.
doi: 10.3389/fpsyg.2012.00491 URL pmid: 3498964 |
[57] |
Shenhav A., Botvinick M. M., & Cohen J. D . ( 2013). The expected value of control: An integrative theory of anterior cingulate cortex function. Neuron, 79( 2), 217-240.
doi: 10.1016/j.neuron.2013.07.007 URL pmid: 23889930 |
[58] |
Soutschek A., Stelzel C., Paschke L., Walter H., & Schubert T . ( 2015). Dissociable effects of motivation and expectancy on conflict processing: An fMRI Study. Journal of Cognitive Neuroscience, 27( 2), 409-423.
doi: 10.1162/jocn_a_00712 URL pmid: 25203271 |
[59] |
Stout, D. (2010). The evolution of cognitive control. Topics in Cognitive Science, 2( 4), 614-630.
doi: 10.1111/j.1756-8765.2009.01078.x URL pmid: 25164046 |
[60] |
Stroop, J. R . ( 1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643-662.
doi: 10.1037/0096-3445.121.1.15 URL |
[61] |
Verguts, T., & Notebaert, W. (2008). Hebbian learning of cognitive control: Dealing with specific and nonspecific adaptation. Psychological Review, 115( 2), 518-525.
doi: 10.1037/0033-295X.115.2.518 URL pmid: 18426302 |
[62] |
Weissman D. H., Gopalakrishnan A., Hazlett C. J., & Woldorff M. G . ( 2005). Dorsal anterior cingulate cortex resolves conflict from distracting stimuli by boosting attention toward relevant events. Cerebral Cortex, 15( 2), 229-237.
doi: 10.1093/cercor/bhh125 URL pmid: 15238434 |
[63] |
Wendt M., Luna-Rodriguez A., & Jacobsen T . ( 2012). Conflict-Induced perceptual filtering. Journal of Experimental Psychology: Human Perception and Performance, 38( 3), 675-686.
doi: 10.1037/a0025902 URL |
[64] |
Wingfield, A. (2016). Evolution of models of working memory and cognitive resources. Ear and Hearing, 37, 35S-43S.
doi: 10.1097/AUD.0000000000000310 URL pmid: 27355768 |
[65] |
Zhang L. W., Ding C., Li H., Zhang Q. L., & Chen A. T . ( 2013). The influence of attentional control on stimulus processing is category specific in Stroop tasks: Attentional control. Psychological Research, 77( 5), 599-610.
doi: 10.1007/s00426-012-0457-5 URL pmid: 23080057 |
[1] | CUI Nan, WANG Jiuju, ZHAO Jing. Effectiveness and underlying mechanism of the intervention for children with comorbidity between attention deficit hyperactivity disorder and developmental dyslexia [J]. Advances in Psychological Science, 2023, 31(4): 622-630. |
[2] | YANG Qing, LI Yaqin. Is uncertainty bad? Mixed findings and explanatory model of error processing under uncertainty [J]. Advances in Psychological Science, 2023, 31(3): 338-349. |
[3] | GUO Zhi-Hua, LU Hong-Liang, HUANG Peng, ZHU Xia. Effects of transcranial direct current stimulation on response inhibition in healthy people [J]. Advances in Psychological Science, 2022, 30(9): 2034-2052. |
[4] | YANG Qian. The underlying mechanisms of negative affect in (cognitive) conflict adaptation: Separated vs. integrated insights [J]. Advances in Psychological Science, 2022, 30(8): 1844-1855. |
[5] | ZHOU Guomei, ZHENG Ruoying, LIN Jia, LIU Xinge. The holistic representation of facial attractiveness and the attractiveness enhancement mechanism of dynamic faces [J]. Advances in Psychological Science, 2022, 30(7): 1429-1438. |
[6] | LIU Bo, CHENG Xiangjuan, YUE Heng, BAO Hugejiletu. The role of inhibition function in pain [J]. Advances in Psychological Science, 2022, 30(6): 1253-1261. |
[7] | ZENG Hong, AN Jingwen, HUANG Haijiao, ZHEN Jia, YANG Zhenzhi, WANG Mengcheng. Structure and mechanism of addictive impulsivity based on the interaction between drive and control [J]. Advances in Psychological Science, 2022, 30(5): 1028-1037. |
[8] | LIU Yanxiu, XIE Tong, FU Shimin. The role of object representation strength in the object-based attention of dynamic object [J]. Advances in Psychological Science, 2022, 30(3): 591-600. |
[9] | YE Liqun, TAN Xin, YAO Kun, DING Yulong. Influence of normal aging on early stages of visual attention: Evidence from ERP studies [J]. Advances in Psychological Science, 2022, 30(12): 2746-2763. |
[10] | ZHANG Wen, DONG Qiyiru, GONG Lijuan, SHANG Qi, CHENG Chen, DING Xuechen. The theoretical accounts and developmental predictors of operational momentum effect [J]. Advances in Psychological Science, 2022, 30(12): 2777-2788. |
[11] | YIN Rong. Comparative studies of mind reading: Similarities and differences in theory of mind between non-human primates and humans and corresponding explanations [J]. Advances in Psychological Science, 2022, 30(11): 2540-2557. |
[12] | HOU Wenwen, SU Yi (ESTHER). The influence of atypical attention and memory on vocabulary delay in children with autism spectrum disorder [J]. Advances in Psychological Science, 2022, 30(11): 2558-2569. |
[13] | LI Jingting, DONG Zizhao, LIU Ye, WANG Su-Jing, ZHUANG Dongzhe. Micro-expression spotting method based on human attention mechanism [J]. Advances in Psychological Science, 2022, 30(10): 2143-2153. |
[14] | WANG Zile, ZHANG Qi. The internal mechanisms of attentional templates in facilitating visual search [J]. Advances in Psychological Science, 2022, 30(10): 2206-2218. |
[15] | WU Xia, WANG Junzhe, WANG Yun, CHEN Ying, YANG Haibo. The processing mechanism of category-specific attentional control settings in attentional capture [J]. Advances in Psychological Science, 2022, 30(10): 2219-2227. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||