Advances in Psychological Science ›› 2026, Vol. 34 ›› Issue (2): 313-330.doi: 10.3724/SP.J.1042.2026.0313
• Regular Articles • Previous Articles Next Articles
XING Lianzi, CHEN Yujie, MIAO Chengguo, ZHANG Yang
Received:2025-07-24
Online:2026-02-15
Published:2025-12-15
CLC Number:
XING Lianzi, CHEN Yujie, MIAO Chengguo, ZHANG Yang. The mechanisms of locus coeruleus-norepinephrine system in attention[J]. Advances in Psychological Science, 2026, 34(2): 313-330.
| [1] 王志静, 李富洪. (2024). 认知控制的瞳孔反应及脑机制. 心理科学, 47(1), 2-10. https://doi.org/10.16719/j.cnki.1671-6981.20240101 [2] Anderson B. A.(2021). Relating value-driven attention to psychopathology. Current Opinion in Psychology, 39, 48-54. https://doi.org/10.1016/j.copsyc.2020.07.010 [3] Anderson, C. J., & Colombo, J. (2009). Larger tonic pupil size in young children with autism spectrum disorder. Developmental Psychobiology, 51(2), 207-211. https://doi.org/10.1002/dev.20352 [4] Angyal N., Horvath E. Z., Tarnok Z., Richman M. J., Bognar E., Lakatos K., .. Nemoda, Z.(2018). Association analysis of norepinephrine transporter polymorphisms and methylphenidate response in ADHD patients. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 84, 122-128. https://doi.org/10.1016/j.pnpbp.2018.01.013 [5] Arnsten, A. F. (2009). Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience, 10(6), 410-422. https://doi.org/10.1038/nrn2648 [6] Arnsten A. F., Scahill L.,& Findling, R. L.(2007). Alpha-2 adrenergic receptor agonists for the treatment of attention- deficit/hyperactivity disorder: Emerging concepts from new data. Journal of Child and Adolescent Psychopharmacology, 172006.0098 [7] Aston-Jones G., Chiang C., & Alexinsky T. (1991). Discharge of noradrenergic locus coeruleus neurons in behaving rats and monkeys suggests a role in vigilance. Progress in Brain Research, 88, 501-520. https://doi.org/10.1016/S0079-6123(08)63830-3 [8] Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28(1), 403-450. https://doi.org/10.1146/annurev.neuro.28.061604.135709 [9] Aston-Jones G., Rajkowski J., & Cohen J. (1999). Role of locus coeruleus in attention and behavioral flexibility. Biological Psychiatry, 46(9), 1309-1320. https://doi.org/10.1016/S0006-3223(99)00140-7 [10] Atzori M.,Cuevas-Olguin, R., Esquivel-Rendon, E., Garcia- Oscos, F., Salgado-Delgado, R. C., Saderi, N., .. Salgado, H.(2016). Locus ceruleus norepinephrine release: A central regulator of CNS spatio-temporal activation? Frontiers in Synaptic Neuroscience, 8, 25. https://doi.org/10.3389/fnsyn.2016.00025 [11] Bang D., Luo Y., Barbosa L. S., Batten S. R., Hadj-Amar B., Twomey T., .. Montague P. R. (2023). Noradrenaline tracks emotional modulation of attention in human amygdala. Current Biology, 33(22), 5003-5010. https://doi.org/10.1016/j.cub.2023.09.074 [12] Bari A., Xu S., Pignatelli M., Takeuchi D., Feng J., Li Y., & Tonegawa S. (2020). Differential attentional control mechanisms by two distinct noradrenergic coeruleo- frontal cortical pathways. Proceedings of the National Academy of Sciences, 117(46), 29080-29089. https://doi.org/10.1073/pnas.2015635117 [13] Bast N., Poustka L., & Freitag C. M. (2018). The locus coeruleus-norepinephrine system as pacemaker of attention —A developmental mechanism of derailed attentional function in autism spectrum disorder. European Journal of Neuroscience, 47(2), 115-125. https://doi.org/10.1111/ejn.13795 [14] Beatty, J. (1982). Phasic not tonic pupillary responses vary with auditory vigilance performance. Psychophysiology, 19(2), 167-172. https://doi.org/10.1111/j.1469-8986.1982.tb02540.x [15] Berger A., Koshmanova E., Beckers E., Sharifpour R., Paparella I., Campbell I., .. Vandewalle G. (2023). MRI-assessed locus coeruleus contrast and functional response are not associated in young and late middle-aged individuals. bioRxiv. https://doi.org/10.1101/2023.01.16.524213 [16] Berridge C. W., Schmeichel B. E.,& España, R. A.(2012). Noradrenergic modulation of wakefulness/arousal. Sleep Medicine Reviews, 162011.12.003 [17] Berridge, C. W., & Waterhouse, B. D. (2003). The locus coeruleus-noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Research Reviews, 42(1), 33-84. https://doi.org/10.1016/S0165-0173(03)00143-7 [18] Birnbaum S., Gobeske K. T., Auerbach J., Taylor J. R., & Arnsten A. F. (1999). A role for norepinephrine in stress- induced cognitive deficits: α-1-adrenoceptor mediation in the prefrontal cortex. Biological Psychiatry, 46(9), 1266- 1274. https://doi.org/10.1016/S0006-3223(99)00138-9 [19] Bouret, S., & Richmond, B. J. (2015). Sensitivity of locus ceruleus neurons to reward value for goal-directed actions. Journal of Neuroscience, 35(9), 4005-4014. https://doi.org/10.1523/JNEUROSCI.4553-14.2015 [20] Bouret S.,& Sara, S. J.(2005). Network reset: A simplified overarching theory of locus coeruleus noradrenaline function. Trends in Neurosciences, 282005.09.002 [21] Boyle N., Betts S., & Lu H. (2024). Monoaminergic modulation of learning and cognitive function in the prefrontal cortex. Brain Sciences, 14(9), 902. https://doi.org/10.3390/brainsci14090902 [22] Cazettes F., Reato D., Morais J. P., Renart A.,& Mainen, Z. F.(2021). Phasic activation of dorsal raphe serotonergic neurons increases pupil size. Current Biology, 312020.09.090 [23] Chamberlain S. R., Hampshire A., Müller U., Rubia K., del Campo, N., Craig, K., .. Sahakian, B. J.(2009). Atomoxetine modulates right inferior frontal activation during inhibitory control: A pharmacological functional magnetic resonance imaging study. Biological Psychiatry, 652008.10.014 [24] Chamberlain S. R., Müller U., Blackwell A. D., Clark L., Robbins T. W., & Sahakian B. J. (2006). Neurochemical modulation of response inhibition and probabilistic learning in humans. Science, 311(5762), 861-863. https://doi.org/10.1126/science.1121218 [25] Chamberlain, S. R., & Robbins, T. W. (2013). Noradrenergic modulation of cognition: Therapeutic implications. Journal of Psychopharmacology, 27(8), 694-718. https://doi.org/10.1177/0269881113480988 [26] Chandler D. J., Gao W. J., & Waterhouse B. D. (2014). Heterogeneous organization of the locus coeruleus projections to prefrontal and motor cortices. Proceedings of the National Academy of Sciences, 111(18), 6816-6821. https://doi.org/10.1073/pnas.1320827111 [27] Chandler D. J., Waterhouse B. D.,& Gao, W. J.(2014). New perspectives on catecholaminergic regulation of executive circuits: Evidence for independent modulation of prefrontal functions by midbrain dopaminergic and noradrenergic neurons. Frontiers in Neural Circuits, 8, 53. https://doi.org/10.3389/fncir.2014.00053 [28] Chica A. B., Bartolomeo P.,& Lupiáñez, J.(2013). Two cognitive and neural systems for endogenous and exogenous spatial attention. Behavioural Brain Research, 237, 107-123. https://doi.org/10.1016/j.bbr.2012.09.027 [29] Chmielewski W. X., Mückschel M., Ziemssen T., & Beste C. (2016). The norepinephrine system affects specific neurophysiological subprocesses in the modulation of inhibitory control by working memory demands. Human Brain Mapping, 38(1), 68-81. https://doi.org/10.1002/hbm.23344 [30] Cohen J. D.,Aston-Jones, G., & Gilzenrat, M. S. (2004). A systems-level perspective on attention and cognitive control: Guided activation, adaptive gating, conflict monitoring, and exploitation versus exploration. In M. I. Posner (Ed.), Cognitive neuroscience of attention (pp. 71-90). The Guilford Press. [31] Corbetta M., Kincade J. M., Ollinger J. M., McAvoy M. P., & Shulman G. L. (2000). Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nature Neuroscience, 3(3), 292-297. https://doi.org/10.1038/73009 [32] Corbetta M., Patel G., & Shulman G. L. (2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58(3), 306-324. https://doi.org/10.1016/j.neuron.2008.04.017 [33] Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201-215. https://doi.org/10.1038/nrn755 [34] Coull J. T., Büchel C., Friston K. J.,& Frith, C. D.(1999). Noradrenergically mediated plasticity in a human attentional neuronal network. NeuroImage, 101999.0513 [35] Coull J. T., Frith C. D., Frackowiak R. S. J., & Grasby P. M. (1996). A fronto-parietal network for rapid visual information processing: A PET study of sustained attention and working memory. Neuropsychologia, 34(11), 1085- 1095. https://doi.org/10.1016/0028-3932(96)00029-2 [36] Dahl M. J., Mather M., Sander M. C., & Werkle-Bergner M. (2020). Noradrenergic responsiveness supports selective attention across the adult lifespan. Journal of Neuroscience, 40(22), 4372-4390. https://doi.org/10.1523/JNEUROSCI.0398-19.2020 [37] Dahl M. J., Mather M.,& Werkle-Bergner, M.(2022). Noradrenergic modulation of rhythmic neural activity shapes selective attention. Trends in Cognitive Sciences, 262021.10.009 [38] Dawson G., Bernier R., & Ring R. H. (2012). Social attention: A possible early indicator of efficacy in autism clinical trials. Journal of Neurodevelopmental Disorders, 4(1), 11. https://doi.org/10.1186/1866-1955-4-11 [39] Ding Y. S., Wang J., Rusinek H., & Babb J. (2021). In vivo imaging of LC‐NE Integrity: Mechanism for racial/ethnic disparity in preclinical AD. Alzheimer's & Dementia, 17(Suppl.1), e050955. https://doi.org/10.1002/alz.050955 [40] Dragone A., Lasaponara S., Pinto M., Rotondaro F.,De Luca, M., & Doricchi, F.(2018). Expectancy modulates pupil size during endogenous orienting of spatial attention. Cortex, 102, 57-66. https://doi.org/10.1016/j.cortex.2017.09.011 [41] Ehlers, C. L., & Chaplin, R. I. (1992). Long latency event related potentials in rats: The effects of changes in stimulus parameters and neurochemical lesions. Journal of Neural Transmission, 88(1), 61-75. https://doi.org/10.1007/BF01245037 [42] Euler H. V., Euler U. S. V., & Hevesy G. (1946). The effect of excitation on nerve permeability. Acta Physiologica Scandinavica, 12(2-3), 261-267. https://doi.org/10.1111/j.1748-1716.1946.tb00386.x [43] Eysenck M. W., Derakshan N., Santos R., & Calvo M. G. (2007). Anxiety and cognitive performance: Attentional control theory. Emotion, 7(2), 336-353. https://doi.org/10.1037/1528-3542.7.2.336 [44] Falkenstein M., Hoormann J., & Hohnsbein J. (1999). ERP components in Go/Nogo tasks and their relation to inhibition. Acta Psychologica, 101(2-3), 267-291. https://doi.org/10.1016/S0001-6918(99)00008-6 [45] Fan J., McCandliss B. D., Sommer T., Raz A., & Posner M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14(3), 340-347. https://doi.org/10.1162/089892902317361886 [46] Fan J.,McCandliss, B., Fossella, J., Flombaum, J., & Posner, M. I.(2005). The activation of attentional networks. NeuroImage, 262005.02.004 [47] Fernandez-Duque, D., & Posner, M. I. (1997). Relating the mechanisms of orienting and alerting. Neuropsychologia, 35(4), 477-486. https://doi.org/10.1016/S0028-3932(96)00103-0 [48] Fong M. C.-M., Hui, N. Y., Fung, E. S. W., Chu, P. C. K., & Wang, W. S. Y.(2018). Conflict monitoring in multi-sensory flanker tasks: Effects of cross-modal distractors on the N2 component. Neuroscience Letters, 670, 31-35. https://doi.org/10.1016/j.neulet.2018.01.037 [49] Foote S. L., Aston-Jones G., & Bloom F. E. (1980). Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proceedings of the National Academy of Sciences, 77(5), 3033-3037. https://doi.org/10.1073/pnas.77.5.3033 [50] Foote S. L., Bloom F. E., & Aston-Jones G. (1983). Nucleus locus ceruleus: New evidence of anatomical and physiological specificity. Physiological Reviews, 63(3), 844-914. https://doi.org/10.1152/physrev.1983.63.3.844 [51] Fried M., Tsitsiashvili E., Bonneh Y. S., Sterkin A.,Wygnanski-Jaffe, T., Epstein, T., & Polat, U.(2014). ADHD subjects fail to suppress eye blinks and microsaccades while anticipating visual stimuli but recover with medication. Vision Research, 101, 62-72. https://doi.org/10.1016/j.visres.2014.05.004 [52] Friedman, N. P., & Miyake, A. (2004). The relations among inhibition and interference control functions: A latent- variable analysis. Journal of Experimental Psychology: General, 133(1), 101-135. https://doi.org/10.1037/0096-3445.133.1.101 [53] Gabay S., Chica A., Charras P., Funes M. J., & Henik A. (2011). Cue and target processing modulate the onset of inhibition of return. Journal of Experimental Psychology: Human Perception and Performance, 38(1), 42-52. https://doi.org/10.1037/a0023675 [54] Gabay, S., & Henik, A. (2010). Temporal expectancy modulates inhibition of return in a discrimination task. Psychonomic Bulletin & Review, 17(1), 47-51. https://doi.org/10.3758/PBR.17.1.47 [55] Gabay S., Pertzov Y., & Henik A. (2011). Orienting of attention, pupil size, and the norepinephrine system. Attention, Perception, & Psychophysics, 73(1), 123-129. https://doi.org/10.3758/s13414-010-0015-4 [56] Gajewski P. D.,& Falkenstein, M.(2013). Effects of task complexity on ERP components in Go/Nogo tasks. International Journal of Psychophysiology, 872012.08.007 [57] Gawrilow C., Kühnhausen J., Schmid J.,& Stadler, G.(2014). Hyperactivity and motoric activity in ADHD: Characterization, assessment, and intervention. Frontiers in Psychiatry, 5, 171. https://doi.org/10.3389/fpsyt.2014.00171 [58] Geva R., Zivan M., Warsha A.,& Olchik, D.(2013). Alerting, orienting or executive attention networks: Differential patters of pupil dilations. Frontiers in Behavioral Neuroscience, 7, 145. https://doi.org/10.3389/ fnbeh.2013.00145 [59] Ghosh S.,& Maunsell, J. H. R.(2024). Locus coeruleus norepinephrine contributes to visual-spatial attention by selectively enhancing perceptual sensitivity. Neuron, 1122024.04.001 [60] Green S. A., Hernandez L., Bookheimer S. Y., & Dapretto M. (2016). Salience network connectivity in autism is related to brain and behavioral markers of sensory overresponsivity. Journal of the American Academy of Child & Adolescent Psychiatry, 55(7), 618-626. https://doi.org/10.1016/j.jaac.2016.04.013 [61] Grueschow M., Kleim B., & Ruff C. C. (2020). Role of the locus coeruleus arousal system in cognitive control. Journal of Neuroendocrinology, 32(12), e12890. https://doi.org/10.1111/jne.12890 [62] Grueschow M., Kleim B., & Ruff C. C. (2022). Functional coupling of the locus coeruleus is linked to successful cognitive control. Brain Sciences, 12(3), 305. https://doi.org/10.3390/brainsci12030305 [63] Halliday R., Naylor H., Brandeis D., Callaway E., Yano L., & Herzig K. (1994). The effect of D-amphetamine, clonidine, and yohimbine on human information processing. Psychophysiology, 31(4), 331-337. https://doi.org/10.1111/j.1469-8986.1994.tb02441.x [64] Hames E. C., Rajmohan R., Fang D., Anderson R., Baker M., Richman D. M., & O’Boyle M. (2016). Attentional networks in adolescents with high-functioning autism: An fMRI investigation. The Open Neuroimaging Journal, 10, 102-110. https://doi.org/10.2174/1874440001610010102 [65] Hannestad J., Gallezot J.-D.,Planeta-Wilson, B., Lin, S.-F., Williams, W. A., van Dyck, C. H., .. Ding, Y.-S.(2010). Clinically relevant doses of methylphenidate significantly occupy norepinephrine transporters in humans in vivo. Biological Psychiatry, 682010.06.017 [66] He H., Hong L., & Sajda P. (2023). Pupillary response is associated with the reset and switching of functional brain networks during salience processing. PLOS Computational Biology, 19(5), e1011081. https://doi.org/10.1371/journal.pcbi.1011081 [67] Hofmeister, J., & Sterpenich, V. (2015). A role for the locus ceruleus in reward processing: Encoding behavioral energy required for goal-directed actions. Journal of Neuroscience, 35(29), 10387-10389. https://doi.org/10.1523/JNEUROSCI.1734-15.2015 [68] Hong L., Walz J. M., & Sajda P. (2014). Your eyes give you away: Prestimulus changes in pupil diameter correlate with poststimulus task-related EEG dynamics. PLOS ONE, 9(3), e91321. https://doi.org/10.1371/journal.pone.0091321 [69] Hou R. H., Freeman C., Langley R. W., Szabadi E., & Bradshaw C. M. (2005). Does modafinil activate the locus coeruleus in man? Comparison of modafinil and clonidine on arousal and autonomic functions in human volunteers. Psychopharmacology, 181(3), 537-549. https://doi.org/10.1007/s00213-005-0013-8 [70] Hou W., Zhao W.,& Li, J.(2024). Intact gesture cueing of attention but attenuated sensitivity to peripheral social targets in autistic children: An eye-tracking and pupillometric study. Biological Psychology, 191, 108822. https://doi.org/10.1016/j.biopsycho.2024.108822 [71] Huang J., Mauche N., Rullmann M., Ulke C., Becker G. A., Patt M., .. Strauß M. (2022). Association between individual norepinephrine transporter (NET) availability and response to pharmacological therapy in adults with attention-deficit/hyperactivity disorder (ADHD). Brain Sciences, 12(8), 965. https://doi.org/10.3390/brainsci12080965 [72] Ikeda Y., Funayama T., Tateno A., Fukayama H., Okubo Y., & Suzuki H. (2017). Modafinil enhances alerting-related brain activity in attention networks. Psychopharmacology, 234(14), 2077-2089. https://doi.org/10.1007/s00213-017-4614-9 [73] Janitzky K., Lippert M. T., Engelhorn A., Tegtmeier J., Goldschmidt J., Heinze H.-J.,& Ohl, F. W.(2015). Optogenetic silencing of locus coeruleus activity in mice impairs cognitive flexibility in an attentional set-shifting task. Frontiers in Behavioral Neuroscience, 9, 286. https://doi.org/10.3389/fnbeh.2015.00286 [74] Jaworski J. L.B., & Eigsti, I. M.(2017). Low-level visual attention and its relation to joint attention in autism spectrum disorder. Child Neuropsychology, 232015.1104293 [75] Joshi S.,& Gold, J. I.(2020). Pupil size as a window on neural substrates of cognition. Trends in Cognitive Sciences, 24 2020.03.005 [76] Joshi S., Li Y., Kalwani R. M.,& Gold, J. I.(2016). Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron, 892015.11.028 [77] Katsuki, F., & Constantinidis, C. (2012). Early involvement of prefrontal cortex in visual bottom up attention. Nature Neuroscience, 15(8), 1160-1166. https://doi.org/10.1038/nn.3164 [78] Keehn B., Kadlaskar G., Bergmann S.,McNally Keehn, R., & Francis, A.(2021). Attentional disengagement and the locus coeruleus-norepinephrine system in children with autism spectrum disorder. Frontiers in Integrative Neuroscience, 15, 716447. https://doi.org/10.3389/fnint.2021.716447 [79] Kerns J. G., Cohen J. D., MacDonald A. W., Cho R. Y., Stenger V. A., & Carter C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303(5660), 1023-1026. https://doi.org/10.1126/science.1089910 [80] Kim Y., Kadlaskar G., Keehn R. M., & Keehn B. (2022). Measures of tonic and phasic activity of the locus coeruleus-norepinephrine system in children with autism spectrum disorder: An event-related potential and pupillometry study. Autism Research, 15(12), 2250-2264. https://doi.org/10.1002/aur.2820 [81] Köhler S., Bär K.-J., & Wagner G. (2016). Differential involvement of brainstem noradrenergic and midbrain dopaminergic nuclei in cognitive control. Human Brain Mapping, 37(6), 2305-2318. https://doi.org/10.1002/hbm.23173 [82] Kopp B., Mattler U., Goertz R., & Rist F. (1996). N2, P3 and the lateralized readiness potential in a nogo task involving selective response priming. Electroencephalography and Clinical Neurophysiology, 99(1), 19-27. https://doi.org/10.1016/0921-884X(96)95617-9 [83] Kopp B., Rist F., & Mattler U. (1996). N200 in the flanker task as a neurobehavioral tool for investigating executive control. Psychophysiology, 33(3), 282-294. https://doi.org/10.1111/j.1469-8986.1996.tb00425.x [84] Koshmanova E., Berger A., Beckers E., Campbell I., Mortazavi N., Sharifpour R., .. Vandewalle G. (2023). Locus coeruleus activity while awake is associated with REM sleep quality in older individuals. JCI Insight, 8(20), e172008. https://doi.org/10.1172/jci.insight.172008 [85] Landry O.,& Parker, A.(2013). A meta-analysis of visual orienting in autism. Frontiers in Human Neuroscience, 7, 833. https://doi.org/10.3389/fnhum.2013.00833 [86] Liao C., Laporte A. D., Spiegelman D., Akçimen F., Joober R., Dion P. A., & Rouleau G. A. (2019). Transcriptome-wide association study of attention deficit hyperactivity disorder identifies associated genes and phenotypes. Nature Communications, 10(1), 4450. https://doi.org/10.1038/s41467-019-12450-9 [87] Liebe T., Kaufmann J., Li M., Skalej M., Wagner G., & Walter M. (2020). In vivo anatomical mapping of human locus coeruleus functional connectivity at 3T MRI. Human Brain Mapping, 41(8), 2136-2151. https://doi.org/10.1002/hbm.24935 [88] London E. B.(2018). Neuromodulation and a reconceptualization of autism spectrum disorders: Using the locus coeruleus functioning as an exemplar. Frontiers in Neurology, 9, 1120. https://doi.org/10.3389/fneur.2018.01120 [89] Lupiáñez J., Milán E. G., Tornay F. J., Madrid E., & Tudela P. (1997). Does IOR occur in discrimination tasks? Yes, it does, but later. Perception & Psychophysics, 59(8), 1241-1254. https://doi.org/10.3758/BF03214211 [90] Ma H., Zhang H., Zuo Z.,& Liu, Y.(2023). Heterogeneous organization of locus coeruleus: An intrinsic mechanism for functional complexity. Physiology & Behavior, 268, 114231. https://doi.org/10.1016/j.physbeh.2023.114231 [91] MacLeod J. W., Lawrence M. A., McConnell M. M., Eskes G. A., Klein R. M., & Shore D. I. (2010). Appraising the ANT: Psychometric and theoretical considerations of the Attention Network Test. Neuropsychology, 24(5), 637-651. https://doi.org/10.1037/a0019803 [92] Maness E. B., Burk J. A.,McKenna, J. T., Schiffino, F. L., Strecker, R. E., & McCoy, J. G.(2022). Role of the locus coeruleus and basal forebrain in arousal and attention. Brain Research Bulletin, 188, 47-58. https://doi.org/10.1016/j.brainresbull.2022.07.014 [93] Manger, P. R., & Eschenko, O. (2021). The mammalian locus coeruleus complex—consistencies and variances in nuclear organization. Brain Sciences, 11(11), 1486. https://doi.org/10.3390/brainsci11111486 [94] Marrocco R. T., Witte E. A., & Davidson M. C. (1994). Arousal systems. Current Opinion in Neurobiology, 4(2), 166-170. https://doi.org/10.1016/0959-4388(94)90067-1 [95] Mathôt S., Fabius J., Van Heusden E., & Van der Stigchel, S. (2018). Safe and sensible preprocessing and baseline correction of pupil-size data. Behavior Research Methods, 50(1), 94-106. https://doi.org/10.3758/s13428-017-1007-2 [96] McBurney-Lin, J., Lu, J., Zuo, Y., & Yang, H.(2019). Locus coeruleus-norepinephrine modulation of sensory processing and perception: A focused review. Neuroscience and Biobehavioral Reviews, 105, 190-199. https://doi.org/10.1016/j.neubiorev.2019.06.009 [97] McCall, J. G., Al-Hasani, R., Siuda, E. R., Hong, D. Y., Norris, A. J., Ford, C. P., & Bruchas, M. R.(2015). CRH engagement of the locus coeruleus noradrenergic system mediates stress-induced anxiety. Neuron, 872015.07.002 [98] McCall J. G., Siuda E. R., Bhatti D. L., Lawson L. A., McElligott Z. A., Stuber G. D., & Bruchas M. R. (2017). Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior. eLife, 6, e18247. https://doi.org/10.7554/eLife.18247 [99] McGaughy, J., Ross, R. S., & Eichenbaum, H.(2008). Noradrenergic, but not cholinergic, deafferentation of prefrontal cortex impairs attentional set-shifting. Neuroscience, 153 2008.01.064 [100] Megemont M., McBurney-Lin J., & Yang H. (2022). Pupil diameter is not an accurate real-time readout of locus coeruleus activity. eLife, 11, e70510. https://doi.org/10.7554/eLife.70510 [101] Miyake A., Friedman N. P., Emerson M. J., Witzki A. H., Howerter A.,& Wager, T. D.(2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 411999.0734 [102] Mogg K., Salum G. A., Bradley B. P., Gadelha A., Pan P., Alvarenga P., .. Manfro G. G. (2015). Attention network functioning in children with anxiety disorders, attention-deficit/hyperactivity disorder and non-clinical anxiety. Psychological Medicine, 45(12), 2633-2646. https://doi.org/10.1017/S0033291715000586 [103] Montgomery, S. A. (1997). Reboxetine: Additional benefits to the depressed patient.Journal of Psychopharmacology, 11(4 Suppl), S9-S15. [104] Morad Y., Lemberg H., Yofe N., & Dagan Y. (2000). Pupillography as an objective indicator of fatigue. Current Eye Research, 21(1), 535-542. https://doi.org/10.1076/0271-3683(200007)2111-ZFT535 [105] Morris L. S., McCall J. G., Charney D. S., & Murrough J. W. (2020). The role of the locus coeruleus in the generation of pathological anxiety. Brain and Neuroscience Advances, 4, 2398212820930321. https://doi.org/10.1177/2398212820930321 [106] Murphy P. R., O’connell R. G., O’sullivan M., Robertson I. H., & Balsters J. H. (2014). Pupil diameter covaries with BOLD activity in human locus coeruleus. Human Brain Mapping, 35(8), 4140-4154. https://doi.org/10.1002/hbm.22466 [107] Murphy P. R., Robertson I. H., Balsters J. H., & O’connell R. G. (2011). Pupillometry and P3 index the locus coeruleus-noradrenergic arousal function in humans. Psychophysiology, 48(11), 1532-1543. https://doi.org/10.1111/j.1469-8986.2011.01226.x [108] Mutreja R., Craig C.,& O’Boyle, M. W.(2016). Attentional network deficits in children with autism spectrum disorder. Developmental Neurorehabilitation, 192015.1017663 [109] Nagashima M., Monden Y., Dan I., Dan H., Tsuzuki D., Mizutani T., .. Yamagata, T.(2014). Acute neuropharmacological effects of atomoxetine on inhibitory control in ADHD children: A fNIRS study. NeuroImage: Clinical, 6, 192-201. https://doi.org/10.1016/j.nicl.2014.09.001 [110] Nieuwenhuis S., Aston-Jones G., & Cohen J. D. (2005). Decision making, the P3, and the locus coeruleus- norepinephrine system. Psychological Bulletin, 131(4), 510-532. https://doi.org/10.1037/0033-2909.131.4.510 [111] Nieuwenhuis S., Yeung N., van den Wildenberg W., & Ridderinkhof K. R. (2003). Electrophysiological correlates of anterior cingulate function in a go/no-go task: Effects of response conflict and trial type frequency. Cognitive, Affective, & Behavioral Neuroscience, 3(1), 17-26. https://doi.org/10.3758/CABN.3.1.17 [112] Okon-Singer,H., Henik, A., & Gabay, S.(2020). Increased inhibition following negative cues: A possible role for enhanced processing. Cortex, 122, 131-139. https://doi.org/10.1016/j.cortex.2018.12.008 [113] Orekhova E. V.,& Stroganova, T. A.(2014). Arousal and attention re-orienting in autism spectrum disorders: Evidence from auditory event-related potentials. Frontiers in Human Neuroscience, 8, 34. https://doi.org/10.3389/fnhum.2014.00034 [114] Pacheco-Unguetti,A. P., Acosta, A., Marqués, E., & Lupiáñez, J.(2011). Alterations of the attentional networks in patients with anxiety disorders. Journal of Anxiety Disorders, 252011.04.010 [115] Pajkossy P., Szőllősi Á., Demeter G.,& Racsmány, M.(2018). Physiological measures of dopaminergic and noradrenergic activity during attentional set shifting and reversal.Frontiers in Psychology,9, 506. https://doi.org/10.3389/fpsyg.2018.00506 [116] Patel, S. H., & Azzam, P. N. (2005). Characterization of N200 and P300: Selected studies of the event-related potential.International Journal of Medical Sciences,2(4), 147-154. https://doi.org/10.7150/ijms.2.147 [117] Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after.Annual Review of Neuroscience,35, 73-89. https://doi.org/10.1146/annurev-neuro-062111-150525 [118] Phillips M. A., Szabadi E., & Bradshaw C. M. (2000). Comparison of the effects of clonidine and yohimbine on spontaneous pupillary fluctuations in healthy human volunteers.Psychopharmacology,150(1), 85-89. https://doi.org/10.1007/s002130000398 [119] Pineda J., Foote S., & Neville H. (1989). Effects of locus coeruleus lesions on auditory, long-latency, event-related potentials in monkey.The Journal of Neuroscience,9(1), 81-93. https://doi.org/10.1523/JNEUROSCI.09-01-00081.1989 [120] Poe G. R., Foote S., Eschenko O., Johansen J. P., Bouret S., Aston-Jones G., .. Sara S. J. (2020). Locus coeruleus: A new look at the blue spot.Nature Reviews Neuroscience,21(11), 644-659. https://doi.org/10.1038/s41583-020-0360-9 [121] Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b.Clinical Neurophysiology,118(10), 2128-2148. https://doi.org/10.1016/j.clinph.2007.04.019 [122] Posner, M. I. (1980). Orienting of attention.Quarterly Journal of Experimental Psychology,32(1), 3-25. https://doi.org/10.1080/00335558008248231 [123] Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. In H. Bouma & D. G. Bouwhuis (Eds.),Attention and performance X: Control of language processes(pp. 531-556). Erlbaum. [124] Rajkowski J., Kubiak P., & Aston-Jones G. (1994). Locus coeruleus activity in monkey: Phasic and tonic changes are associated with altered vigilance.Brain Research Bulletin,35(5), 607-616. https://doi.org/10.1016/0361-9230(94)90175-9 [125] Rajkowski J., Majczynski H., Clayton E., & Aston-Jones G. (2004). Activation of monkey locus coeruleus neurons varies with difficulty and performance in a target detection task.Journal of Neurophysiology,92(1), 361-371. https://doi.org/10.1152/jn.00673.2003 [126] Ramos B. P.,& Arnsten, A. F.(2007). Adrenergic pharmacology and cognition: Focus on the prefrontal cortex.Pharmacology & Therapeutics,1132006.11.006 [127] Ramos B. P., Colgan L., Nou E., Ovadia S., Wilson S. R.,& Arnsten, A. F.(2005). The beta-1 adrenergic antagonist, betaxolol, improves working memory performance in rats and monkeys.Biological Psychiatry,582005.05.022 [128] Reimer J., McGinley M. J., Liu Y., Rodenkirch C., Wang Q., McCormick D. A., & Tolias A. S. (2016). Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex.Nature Communications,7(1), 13289. https://doi.org/10.1038/ncomms13289 [129] Robison M. K., Ralph K. J., Gondoli D. M., Torres A., Campbell S., Brewer G. A., & Gibson B. S. (2023). Testing locus coeruleus-norepinephrine accounts of working memory, attention control, and fluid intelligence.Cognitive, Affective, & Behavioral Neuroscience,23(4), 1014-1058. https://doi.org/10.3758/s13415-023-01096-2 [130] Rudich-Strassler,A., Hertz-Palmor, N., & Lazarov, A.(2022). Looks interesting: Attention allocation in depression when using a news website—an eye tracking study.Journal of Affective Disorders,304, 113-121. https://doi.org/10.1016/j.jad.2022.02.058 [131] San Martín,R.(2012). Event-related potential studies of outcome processing and feedback-guided learning.Frontiers in Human Neuroscience,6, 304. https://doi.org/10.3389/fnhum.2012.00304 [132] Sara S. J.,& Bouret, S.(2012). Orienting and reorienting: The locus coeruleus mediates cognition through arousal.Neuron,762012.09.011 [133] Sarrias-Arrabal,E., Izquierdo-Ayuso, G., & Vázquez-Marrufo, M.(2023). Attentional networks in neurodegenerative diseases: Anatomical and functional evidence from the Attention Network Test.Neurología (English Edition),382020.05.022 [134] Sigurdardottir H. L., Kranz G. S., Rami-Mark C., James G. M., Vanicek T., Gryglewski G., .. Lanzenberger R. (2021). Association of norepinephrine transporter methylation with in vivo NET expression and hyperactivity-impulsivity symptoms in ADHD measured with PET.Molecular Psychiatry,26(3), 1009-1018. https://doi.org/10.1038/s41380-019-0461-x [135] Slater C., Liu Y., Weiss E., Yu K., & Wang Q. (2022). The neuromodulatory role of the noradrenergic and cholinergic systems and their interplay in cognitive functions: A focused review.Brain Sciences,12(7), 890. https://doi.org/10.3390/brainsci12070890 [136] Sturm W.,& Willmes, K.(2001). On the functional neuroanatomy of intrinsic and phasic alertness.NeuroImage,142001.0839 [137] Swick D., Pineda J. A., & Foote S. L. (1994). Effects of systemic clonidine on auditory event-related potentials in squirrel monkeys.Brain Research Bulletin,33(1), 79-86. https://doi.org/10.1016/0361-9230(94)90051-5 [138] Thiele A.,& Bellgrove, M. A.(2018). Neuromodulation of attention.Neuron,972018.01.008 [139] Totah N. K., Logothetis N. K., & Eschenko O. (2021). Synchronous spiking associated with prefrontal high γ oscillations evokes a 5-Hz rhythmic modulation of spiking in locus coeruleus.Journal of Neurophysiology,125(4), 1191-1201. https://doi.org/10.1152/jn.00677.2020 [140] Unsworth, N., & Robison, M. K. (2016). Pupillary correlates of lapses of sustained attention.Cognitive, Affective, & Behavioral Neuroscience,16(4), 601-615. https://doi.org/10.3758/s13415-016-0417-4 [141] Unsworth, N., & Robison, M. K. (2017). A locus coeruleus- norepinephrine account of individual differences in working memory capacity and attention control.Psychonomic Bulletin & Review,24(4), 1282-1311. https://doi.org/10.3758/s13423-016-1220-5 [142] Usher M., Cohen J. D., Servan-Schreiber D., Rajkowski J., & Aston-Jones G. (1999). The role of locus coeruleus in the regulation of cognitive performance.Science,283(5401), 549-554. https://doi.org/10.1126/science.283.5401.549 [143] Vanicek T., Spies M.,Rami-Mark, C., Savli, M., Höflich, A., Kranz, G. S., .. Lanzenberger, R.(2014). The norepinephrine transporter in attention-deficit/hyperactivity disorder investigated with positron emission tomography.JAMA Psychiatry,712014.1226 [144] Varazzani C., San-Galli A., Gilardeau S., & Bouret S. (2015). Noradrenaline and dopamine neurons in the reward/effort trade-off: A direct electrophysiological comparison in behaving monkeys.Journal of Neuroscience,35(20), 7866-7877. https://doi.org/10.1523/JNEUROSCI.0454-15.2015 [145] Vazey E. M., Moorman D. E., & Aston-Jones G. (2018). Phasic locus coeruleus activity regulates cortical encoding of salience information.Proceedings of the National Academy of Sciences,115(40), E9439-E9448. https://doi.org/10.1073/pnas.1803716115 [146] Verguts T.,& Notebaert, W.(2009). Adaptation by binding: A learning account of cognitive control.Trends in Cognitive Sciences,132009.02.007 [147] Versiani M., Cassano G., Perugi G., Benedetti A., Mastalli L., Nardi A., & Savino M. (2002). Reboxetine, a selective norepinephrine reuptake inhibitor, is an effective and well-tolerated treatment for panic disorder.The Journal of Clinical Psychiatry,63(1), 31-37. https://doi.org/10.4088/JCP.v63n0107 [148] Walz J. M., Goldman R. I., Carapezza M., Muraskin J., Brown T. R., & Sajda P. (2013). Simultaneous EEG- fMRI reveals temporal evolution of coupling between supramodal cortical attention networks and the brainstem.The Journal of Neuroscience,33(49), 19212-19222. https://doi.org/10.1523/JNEUROSCI.2649-13.2013 [149] Warren C. M.,& Holroyd, C. B.(2012). The impact of deliberative strategy dissociates ERP components related to conflict processing vs. reinforcement learning.Frontiers in Neuroscience,6, 43. https://doi.org/10.3389/fnins.2012.00043 [150] Warren C. M., Tanaka J. W., & Holroyd C. B. (2011). What can topology changes in the oddball N2 reveal about underlying processes?NeuroReport,22(17), 870-874. https://doi.org/10.1097/WNR.0b013e32834bbe1f [151] Woodward D. J., Moises H. C., Waterhouse B. D., Hoffer B. J., & Freedman R. (1979). Modulatory actions of norepinephrine in the central nervous system.Federation Proceedings,38(7), 2109-2116. [152] Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit‐formation.Journal of Comparative Neurology and Psychology,18(5), 459-482. https://doi.org/10.1002/cne.920180503 [153] Zhang Y., Chen Y., Xin Y., Peng B.,& Liu, S.(2023). Norepinephrine system at the interface of attention and reward.Progress in Neuro-Psychopharmacology and Biological Psychiatry,125, 110751. https://doi.org/10.1016/j.pnpbp.2023.110751 |
| [1] | SUN Yifan, HE Qin, ZHANG Chang, CHEN Ning. Does music listening facilitate cognitive processing? Revisiting previous debates from an attention network perspective [J]. Advances in Psychological Science, 2026, 34(2): 283-298. |
| [2] | ZHUANG Binyuan, YANG Jing. Bilingual control mechanism in voluntary language switching [J]. Advances in Psychological Science, 2026, 34(1): 97-107. |
| [3] | CHEN Yilin, TAN Qingsong, GONG Mengyuan. Selective attention based on feature relationship [J]. Advances in Psychological Science, 2025, 33(9): 1592-1603. |
| [4] | WANG Yifeng, TANG Yuzhu, XIAO Kunchen, JING Xiujuan. The mechanism and intervention of low-frequency fluctuations of sustained attention [J]. Advances in Psychological Science, 2025, 33(7): 1091-1103. |
| [5] | YIN Huazhan, XIAO Chunhua. The relationship between time perception and pain [J]. Advances in Psychological Science, 2025, 33(6): 1047-1056. |
| [6] | JIA Yuncheng, CHENG Gang, DING Fangyuan, CHEN jia, LONG Nv, CHEN Yurong, LIN Nan. The relationship between attentional bias toward neutral infant faces and uncertainty in facial expressions [J]. Advances in Psychological Science, 2024, 32(9): 1393-1407. |
| [7] | CHEN Yan, LI Jing. The impact of interpersonal synchronization on autistic children’s cooperative behavior and its intervention promotion [J]. Advances in Psychological Science, 2024, 32(4): 639-653. |
| [8] | LIU Yiming, LUO Haocheng, FU Shimin. Is visual consciousness dichotomous or continuous? The integrated perspective based on attentional blink [J]. Advances in Psychological Science, 2024, 32(2): 264-275. |
| [9] | ZHANG Xiangyi, WU Yilin. The impact of visual attention on decision-making and its mechanisms [J]. Advances in Psychological Science, 2024, 32(11): 1829-1843. |
| [10] | SUN Meng, LIU Zejun, JIA Xi, SHANG Chenyang, ZHANG Qin. Emotional T2 attenuates attentional blink: A window to understanding the preferential processing of emotion [J]. Advances in Psychological Science, 2024, 32(1): 58-74. |
| [11] | Tianyu Zhang, Yongchun Cai. The Effect of Pre-saccadic Attention on Contrast Appearance [J]. Advances in Psychological Science, 2023, 31(suppl.): 15-15. |
| [12] | Ruoying Zheng, Guomei Zhou. The Cheerleader Effect in Multiple Social Groups [J]. Advances in Psychological Science, 2023, 31(suppl.): 47-47. |
| [13] | Binglong Li, Jiehui Qian. Attention Reorientation in 3D Space: Depth-based Statistical Learning Modulates Attention Capture [J]. Advances in Psychological Science, 2023, 31(suppl.): 48-48. |
| [14] | Suqi Huang, Yiping Ge, Li Wang, Yi Jiang. Biological Motion Cues Modulate Visual Working Memory [J]. Advances in Psychological Science, 2023, 31(suppl.): 85-85. |
| [15] | Yongyue Wang, Zhe Qu. The Influence of Dynamic Attention in Working Memory on Feature Binding [J]. Advances in Psychological Science, 2023, 31(suppl.): 91-91. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||