Advances in Psychological Science ›› 2025, Vol. 33 ›› Issue (7): 1091-1103.doi: 10.3724/SP.J.1042.2025.1091
• Conceptual Framework • Previous Articles Next Articles
WANG Yifeng(), TANG Yuzhu, XIAO Kunchen, JING Xiujuan(
)
Received:
2024-11-13
Online:
2025-07-15
Published:
2025-04-27
Contact:
WANG Yifeng, JING Xiujuan
E-mail:wyf@sicnu.edu.cn;jxjsicnu@163.com
CLC Number:
WANG Yifeng, TANG Yuzhu, XIAO Kunchen, JING Xiujuan. The mechanism and intervention of low-frequency fluctuations of sustained attention[J]. Advances in Psychological Science, 2025, 33(7): 1091-1103.
[1] | 张晓. (2022). 奖惩预期对持续性注意的影响 [硕士学位论文]. 天津师范大学. |
[2] | Adamo, N., Huo, L., Adelsberg, S., Petkova, E., Castellanos, F. X., & Di Martino, A. (2014). Response time intra- subject variability: Commonalities between children with autism spectrum disorders and children with ADHD. European Child and Adolescent Psychiatry, 23(2), 69-79. |
[3] | Ao, Y., Yang, C., Drewes, J., Jiang, M., Huang, L., Jing, X., Northoff, G., & Wang, Y. (2023). Spatiotemporal dedifferentiation of the global brain signal topography along the adult lifespan. Human Brain Mapping, 44(17), 5906-5918. |
[4] |
Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403-450.
pmid: 16022602 |
[5] |
Axelrod, V., Rees, G., Lavidor, M., & Bar, M. (2015). Increasing propensity to mind-wander with transcranial direct current stimulation. Proceedings of the National Academy of Sciences of the United States of America, 112(11), 3314-3319.
doi: 10.1073/pnas.1421435112 pmid: 25691738 |
[6] | Axelrod, V., Zhu, X., & Qiu, J. (2018). Transcranial stimulation of the frontal lobes increases propensity of mind-wandering without changing meta-awareness. Scientific Reports, 8(1), 15975. |
[7] | Bast, N., Poustka, L., & Freitag, C. M. (2018). The locus coeruleus-norepinephrine system as pacemaker of attention -a developmental mechanism of derailed attentional function in autism spectrum disorder. European Journal of Neuroscience, 47(2), 115-125. |
[8] | Buzsáki, G. (2009). Rhythms of the brain. Oxford University Press. |
[9] |
Callejas, A., Lupiàñez, J., Funes, M. J., & Tudela, P. (2005). Modulations among the alerting, orienting and executive control networks. Experimental Brain Research, 167(1), 27-37.
doi: 10.1007/s00221-005-2365-z pmid: 16021429 |
[10] |
Christakou, A., Murphy, C. M., Chantiluke, K., Cubillo, A. I., Smith, A. B., Giampietro, V.,... Rubia, K. (2013). Disorder- specific functional abnormalities during sustained attention in youth with Attention Deficit Hyperactivity Disorder (ADHD) and with autism. Molecular Psychiatry, 18(2), 236-244.
doi: 10.1038/mp.2011.185 pmid: 22290121 |
[11] |
Clayton, M. S., Yeung, N., & Cohen Kadosh, R. (2015). The roles of cortical oscillations in sustained attention. Trends in Cognitive Sciences, 19(4), 188-195.
doi: 10.1016/j.tics.2015.02.004 pmid: 25765608 |
[12] | Clayton, M. S., Yeung, N., & Cohen Kadosh, R. (2019). Electrical stimulation of alpha oscillations stabilizes performance on visual attention tasks. Journal of Experimental Psychology: General, 148(2), 203-220. |
[13] |
Draheim, C., Mashburn, C. A., Martin, J. D., & Engle, R. W. (2019). Reaction time in differential and developmental research: A review and commentary on the problems and alternatives. Psychological Bulletin, 145(5), 508-535.
doi: 10.1037/bul0000192 pmid: 30896187 |
[14] | Esterman, M., Noonan, S. K., Rosenberg, M., & DeGutis, J. (2013). In the zone or zoning out? Tracking behavioral and neural fluctuations during sustained attention. Cerebral Cortex, 23(11), 2712-2723. |
[15] |
Esterman, M., & Rothlein, D. (2019). Models of sustained attention. Current Opinion in Psychology, 29, 174-180.
doi: S2352-250X(18)30226-4 pmid: 30986621 |
[16] |
Falahpour, M., Chang, C., Wong, C. W., & Liu, T. T. (2018). Template-based prediction of vigilance fluctuations in resting-state fMRI. Neuroimage, 174, 317-327.
doi: S1053-8119(18)30207-6 pmid: 29548849 |
[17] |
Fan, J., Byrne, J., Worden, M. S., Guise, K. G., McCandliss, B. D., Fossella, J., & Posner, M. I. (2007). The relation of brain oscillations to attentional networks. Journal of Neuroscience, 27(23), 6197-6206.
doi: 10.1523/JNEUROSCI.1833-07.2007 pmid: 17553991 |
[18] |
Fiebelkorn, I. C., & Kastner, S. (2019). A rhythmic theory of attention. Trends in Cognitive Sciences, 23(2), 87-101.
doi: S1364-6613(18)30281-X pmid: 30591373 |
[19] |
Filmer, H. L., Griffin, A., & Dux, P. E. (2019). For a minute there, I lost myself … dosage dependent increases in mind wandering via prefrontal tDCS. Neuropsychologia, 129, 379-384.
doi: S0028-3932(19)30086-7 pmid: 31071322 |
[20] | Fortenbaugh, F. C., DeGutis, J., & Esterman, M. (2017). Recent theoretical, neural, and clinical advances in sustained attention research. Annals of the New York Academy of Sciences, 1396(1), 70-91. |
[21] |
Hasenkamp, W., Wilson-Mendenhall, C. D., Duncan, E., & Barsalou, L. W. (2012). Mind wandering and attention during focused meditation: A fine-grained temporal analysis of fluctuating cognitive states. Neuroimage, 59(1), 750-760.
doi: 10.1016/j.neuroimage.2011.07.008 pmid: 21782031 |
[22] | Hegerl, U., & Hensch, T. (2014). The vigilance regulation model of affective disorders and ADHD. Neuroscience & Biobehavioral Reviews, 44, 45-57. |
[23] |
Howells, F. M., Stein, D. J., & Russell, V. A. (2012). Synergistic tonic and phasic activity of the locus coeruleus norepinephrine (LC-NE) arousal system is required for optimal attentional performance. Metabolic Brain Disease, 27(3), 267-274.
doi: 10.1007/s11011-012-9287-9 pmid: 22399276 |
[24] | Irrmischer, M., van der Wal, C. N., Mansvelder, H. D., & Linkenkaer-Hansen, K. (2018). Negative mood and mind wandering increase long-range temporal correlations in attention fluctuations. PLoS ONE, 13(5), e0196907. |
[25] | Jayakumar, M., Balusu, C., & Aly, M. (2023). Attentional fluctuations and the temporal organization of memory. Cognition, 235, 105408. |
[26] | Jin, C. Y., Borst, J. P., & van Vugt, M. K. (2019). Predicting task-general mind-wandering with EEG. Cognitive, Affective, & Behavioral Neuroscience, 19(4), 1059-1073. |
[27] | Karalunas, S. L., Huang-Pollock, C. L., & Nigg, J. T. (2013). Is reaction time variability in ADHD mainly at low frequencies? The Journal of Child Psychology and Psychiatry, 54(5), 536-544. |
[28] | Keitel, A., & Gross, J. (2016). Individual human brain areas can be identified from their characteristic spectral activation fingerprints. PLoS Biology, 14(6), e1002498. |
[29] |
Kringelbach, M. L., McIntosh, A. R., Ritter, P., Jirsa, V. K., & Deco, G. (2015). The rediscovery of slowness: Exploring the timing of cognition. Trends in Cognitive Sciences, 19(10), 616-628.
doi: S1364-6613(15)00175-8 pmid: 26412099 |
[30] |
Kucyi, A., Hove, M. J., Esterman, M., Hutchison, R. M., & Valera, E. M. (2017). Dynamic brain network correlates of spontaneous fluctuations in attention. Cereb Cortex, 27(3), 1831-1840.
doi: 10.1093/cercor/bhw029 pmid: 26874182 |
[31] | Lewis, F. C., Reeve, R. A., Kelly, S. P., & Johnson, K. A. (2017). Sustained attention to a predictable, unengaging Go/No-Go task shows ongoing development between 6 and 11 years. Attention, Perception, & Psychophysics, 79(6), 1726-1741. |
[32] | Luna, F. G., Román-Caballero, R., Barttfeld, P., Lupiáñez, J., & Martín-Arévalo, E. (2020). A high-definition tDCS and EEG study on attention and vigilance: Brain stimulation mitigates the executive but not the arousal vigilance decrement. Neuropsychologia, 142, 107447. |
[33] | Luna, F. G., Tortajada, M., Martín-Arévalo, E., Botta, F., & Lupiáñez, J. (2022). A vigilance decrement comes along with an executive control decrement: Testing the resource- control theory. Psychonomic Bulletin & Review, 29(5), 1831-1843. |
[34] | Mackworth, N. H. (1948). The breakdown of vigilance during prolonged visual search. Quarterly Journal of Experimental Psychology, 1(1), 6-21. |
[35] | Martínez-Pérez, V., Andreu, A., Sandoval-Lentisco, A., Tortajada, M., Palmero, L. B., Castillo, A.,... Fuentes, L. J. (2023). Vigilance decrement and mind-wandering in sustained attention tasks: Two sides of the same coin? Front Neuroscience, 17, 1122406. |
[36] | Martínez-Pérez, V., Tortajada, M., Palmero, L. B., Campoy, G., & Fuentes, L. J. (2022). Effects of transcranial alternating current stimulation over right-DLPFC on vigilance tasks depend on the arousal level. Scientific Reports, 12(1), 547. |
[37] |
Monto, S., Palva, S., Voipio, J., & Palva, J. M. (2008). Very slow EEG fluctuations predict the dynamics of stimulus detection and oscillation amplitudes in humans. Journal of Neuroscience, 28(33), 8268-8272.
doi: 10.1523/JNEUROSCI.1910-08.2008 pmid: 18701689 |
[38] |
Neigel, A. R., Claypoole, V. L., & Szalma, J. L. (2019). Effects of state motivation in overload and underload vigilance task scenarios. Acta Psychologica, 197, 106-114.
doi: S0001-6918(18)30369-X pmid: 31132570 |
[39] | Northoff, G. (2024). From brain dynamics to the mind: Spatiotemporal neuroscience. Academic Press. |
[40] | Palva, J. M., & Palva, S. (2012). Infra-slow fluctuations in electrophysiological recordings, blood-oxygenation-level- dependent signals, and psychophysical time series. Neuroimage, 62(4), 2201-2211. |
[41] | Parasuraman, R., & Mouloua, M. (1987). Interaction of signal discriminability and task type in vigilance decrement. Perception, & Psychophysic, 41(1), 17-22. |
[42] |
Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 73-89.
doi: 10.1146/annurev-neuro-062111-150525 pmid: 22524787 |
[43] |
Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25-42.
pmid: 2183676 |
[44] | Qiao, J., Li, X., Wang, Y., Wang, Y., Li, G., Lu, P., & Wang, S. (2022). The infraslow frequency oscillatory transcranial direct current stimulation over the left dorsolateral prefrontal cortex enhances sustained attention. Frontiers in Aging Neuroscience, 14, 879006. |
[45] |
Rodriguez-Larios, J., & Alaerts, K. (2021). EEG alpha-theta dynamics during mind wandering in the context of breath focus meditation: An experience sampling approach with novice meditation practitioners. European Journal of Neuroscience, 53(6), 1855-1868.
doi: 10.1111/ejn.15073 pmid: 33289167 |
[46] | Rosso, M., Moens, B., Leman, M., & Moumdjian, L. (2023). Neural entrainment underpins sensorimotor synchronization to dynamic rhythmic stimuli. Neuroimage, 277, 120226. |
[47] |
Sala, G., & Gobet, F. (2019). Cognitive training does not enhance general cognition. Trends in Cognitive Sciences, 23(1), 9-20.
doi: S1364-6613(18)30252-3 pmid: 30471868 |
[48] | Sarter, M., Givens, B., & Bruno, J. P. (2001). The cognitive neuroscience of sustained attention: Where top-down meets bottom-up. Brain Research Reviews, 35(2), 146-160. |
[49] |
Shalev, N., Humphreys, G., & Demeyere, N. (2016). Assessing the temporal aspects of attention and its correlates in aging and chronic stroke patients. Neuropsychologia, 92, 59-68.
doi: S0028-3932(16)30283-4 pmid: 27496786 |
[50] |
Siegel, M., Donner, T. H., & Engel, A. K. (2012). Spectral fingerprints of large-scale neuronal interactions. Nature Reviews Neuroscience, 13(2), 121-134.
doi: 10.1038/nrn3137 pmid: 22233726 |
[51] | Smallwood, J. (2010). Why the global availability of mind wandering necessitates resource competition: Reply to McVay and Kane (2010). Psychological Bulletin, 136(2), 202-207. |
[52] |
Smallwood, J., & Schooler, J. W. (2015). The science of mind wandering: Empirically navigating the stream of consciousness. Annual Review of Psychology, 66, 487-518.
doi: 10.1146/annurev-psych-010814-015331 pmid: 25293689 |
[53] |
Thompson, G. J., Pan, W. J., Billings, J. C., Grooms, J. K., Shakil, S., Jaeger, D., & Keilholz, S. D. (2014). Phase- amplitude coupling and infraslow (<1 Hz) frequencies in the rat brain: Relationship to resting state fMRI. Frontiers in Integrative Neuroscience, 8, 41.
doi: 10.3389/fnint.2014.00041 pmid: 24904325 |
[54] |
Thomson, D. R., Besner, D., & Smilek, D. (2015). A resource-control account of sustained attention: Evidence from mind-wandering and vigilance paradigms. Perspectives on Psychological Science, 10(1), 82-96.
doi: 10.1177/1745691614556681 pmid: 25910383 |
[55] |
van Schouwenburg, M. R., Sligte, I. G., Giffin, M. R., Günther, F., Koster, D., Spronkers, F. S.,... Slagter, H. A. (2021). Effects of midfrontal brain stimulation on sustained attention. Journal of Cognitive Enhancement, 5(1), 62-72.
doi: 10.1007/s41465-020-00179-z |
[56] |
Wang, Y., Chen, W., Ye, L., Biswal, B. B., Yang, X., Zou, Q.,... Chen, H. (2018). Multiscale energy reallocation during low-frequency steady-state brain response. Human Brain Mapping, 39(5), 2121-2132.
doi: 10.1002/hbm.23992 pmid: 29389047 |
[57] | Wang, Y., Zou, Q., Ao, Y., Liu, Y., Ouyang, Y., Wang, X.,... Chen, H. (2020). Frequency-dependent circuits anchored in the dorsal and ventral left anterior insula. Scientific Reports, 10(1), 16394. |
[58] | Wang, Y. F., Cui, Q., Liu, F., Huo, Y. J., Lu, F. M., Chen, H., & Chen, H. F. (2014). A new method for computing attention network scores and relationships between attention networks. PLoS ONE, 9(3), e89733. |
[59] | Wang, Y. F., Jing, X. J., Liu, F., Li, M. L., Long, Z. L., Yan, J. H., & Chen, H. F. (2015). Reliable attention network scores and mutually inhibited inter-network relationships revealed by mixed design and non-orthogonal method. Scientific Reports, 5, 10251. |
[60] | Wang, Y. F., Long, Z., Cui, Q., Liu, F., Jing, X. J., Chen, H.,... Chen, H. F. (2016). Low frequency steady-state brain responses modulate large scale functional networks in a frequency-specific means. Human Brain Mapping, 37(1), 381-394. |
[61] | Wang, Y. F., Zhang, C., Liu, Q., & Jing, X. J. (2025). The intrinsic spatiotemporal structure of cognitive functions inspires the intervention of brain functions. Frontiers in Neurology, 16, 1494673. |
[62] |
Warm, J. S., Parasuraman, R., & Matthews, G. (2008). Vigilance requires hard mental work and is stressful. Human Factors, 50(3), 433-441.
pmid: 18689050 |
[63] | Wei, J., Zhang, Z., Yao, Z., Ming, D., & Zhou, P. (2021). Modulation of sustained attention by theta-tACS over the lateral and medial frontal cortices. Neural Plasticity, 2021, 5573471. |
[64] |
Wilckens, K. A., Ferrarelli, F., Walker, M. P., & Buysse, D. J. (2018). Slow-wave activity enhancement to improve cognition. Trends in Neurosciences, 41(7), 470-482.
doi: S0166-2236(18)30064-X pmid: 29628198 |
[65] |
Xuan, B., Mackie, M. A., Spagna, A., Wu, T., Tian, Y., Hof, P. R., & Fan, J. (2016). The activation of interactive attentional networks. Neuroimage, 129, 308-319.
doi: S1053-8119(16)00023-9 pmid: 26794640 |
[66] | Yakubov, B., Das, S., Zomorrodi, R., Blumberger, D. M., Enticott, P. G., Kirkovski, M., Rajji, T. K., & Desarkar, P. (2022). Cross-frequency coupling in psychiatric disorders: A systematic review. Neuroscience and Biobehavioral, 138, 104690. |
[67] | Yang, C., Biswal, B., Cui, Q., Jing, X., Ao, Y., & Wang, Y. (2024). Frequency-dependent alterations of global signal topography in patients with major depressive disorder. Psychological Medicine, 54(9), 2152-2161. |
[68] | Yordanova, J., Albrecht, B., Uebel, H., Kirov, R., Banaschewski, T., Rothenberger, A., & Kolev, V. (2011). Independent oscillatory patterns determine performance fluctuations in children with attention deficit/hyperactivity disorder. Brain, 134(6), 1740-1750. |
[69] | Zhang, C., Wang, Y., Jing, X., & Yan, J. H. (2023). Brain mechanisms of mental processing: from evoked and spontaneous brain activities to enactive brain activity. Psychoradiology, 3, kkad010. |
[1] | HUANG Jianping, CHEN Chunchun, LIU Mengying. Computational and neural mechanisms underlying healthy food decisions nudged by multisensory cues [J]. Advances in Psychological Science, 2025, 33(9): 1457-1471. |
[2] | CHEN Yilin, TAN Qingsong, GONG Mengyuan. Selective attention based on feature relationship [J]. Advances in Psychological Science, 2025, 33(9): 1592-1603. |
[3] | ZHANG Manhao, ZHOU Wei, CHEN Chaoyang, ZHU Yi, CHENG Yahua. The relationship between Chinese lexical tone awareness and children’s reading ability [J]. Advances in Psychological Science, 2025, 33(9): 1604-1616. |
[4] | PENG Yujia, WANG Yuxi, JU Qianqian, LIU Feng, XU Jia. Investigating social cognitive characteristics of social anxiety within the Bayesian framework [J]. Advances in Psychological Science, 2025, 33(8): 1267-1274. |
[5] | SUI Xue, AN Yusi, XU Yinan, LI Yutong. Eye movement characteristics, cognitive characteristics and neural mechanisms of speed reading [J]. Advances in Psychological Science, 2025, 33(8): 1358-1366. |
[6] | YANG Tongshu, HUANG Yanli, XIE Jiushu. The cognitive mechanisms of cross-situational word learning deficits in children with autism spectrum disorder [J]. Advances in Psychological Science, 2025, 33(8): 1367-1378. |
[7] | HE Hong, ZHANG Xinyue, SHI Jinghong, LIU Qiang. Exploring the impact of focus back effort training on mind wandering and its mechanisms [J]. Advances in Psychological Science, 2025, 33(7): 1077-1090. |
[8] | ZHANG Lu, WANG Ziqian, ZHANG Qingfang. Cognitive mechanisms underlying the age of acquisition effects: Insights from a three-level meta-analysis [J]. Advances in Psychological Science, 2025, 33(7): 1199-1220. |
[9] | LI Ying, ZHAI Yihui, HAO Shoubin, DAI Yaxing, MA Xiaobo, LI Tiantian, WANG Yue. Embodiment effect in second language and its influences: Evidence based on meta-analysis [J]. Advances in Psychological Science, 2025, 33(7): 1221-1233. |
[10] | YU Lingfeng, ZHANG Jie, MING Xianchao, LEI Yi. Unconscious fear and its neural mechanisms [J]. Advances in Psychological Science, 2025, 33(7): 1234-1245. |
[11] | LI Ting, WANG Li, LUO Yuejia, FENG Chunliang. Third-party punishment under uncertainty: psychological and brain network mechanisms [J]. Advances in Psychological Science, 2025, 33(6): 1036-1046. |
[12] | LIU Jiali, ZHAO Haichao, HE Qinghua. Neural mechanisms underlying the transformation between egocentric and allocentric spatial reference frames [J]. Advances in Psychological Science, 2025, 33(6): 1027-1035. |
[13] | YIN Huazhan, XIAO Chunhua. The relationship between time perception and pain [J]. Advances in Psychological Science, 2025, 33(6): 1047-1056. |
[14] | LUO Lijuan, WANG Kang, HU Jinmiao, XU Sihua. When artificial intelligence faces human emotions: The impact mechanism of emotion expression in AI-empowered service robots on user experience [J]. Advances in Psychological Science, 2025, 33(6): 1006-1026. |
[15] | XUE Xiaoran, CUI Wei, ZHANG Li. A three-level meta-analysis of gender differences in spatial navigation ability [J]. Advances in Psychological Science, 2025, 33(5): 843-862. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||