Advances in Psychological Science ›› 2025, Vol. 33 ›› Issue (1): 77-91.doi: 10.3724/SP.J.1042.2025.0077
• Regular Articles • Previous Articles Next Articles
Received:
2024-04-18
Online:
2025-01-15
Published:
2024-10-28
Contact:
LI Jing
E-mail:lij@njnu.edu.cn
CLC Number:
ZHANG Yanxia, LI Jing. The effect of turn-by-turn navigation on spatial memory in large-scale environments and ways to improve it[J]. Advances in Psychological Science, 2025, 33(1): 77-91.
[1] |
丁旭华. (2015). 浅析传统纸质地图的转型. 测绘通报, (12), 105-107.
doi: 10.13474/j.cnki.11-2246.2015.391 |
[2] |
马小凤, 李甜甜, 贾瑞红, 魏婕. (2022). 空间路线学习中的前向测试效应. 心理学报, 54(12), 1433-1442.
doi: 10.3724/SP.J.1041.2022.01433 |
[3] | 石祝, 尚俊杰. (2024). 视频游戏对空间能力的影响与作用机制. 中国电化教育, 5, 32-44. |
[4] | 许琴, 罗宇, 刘嘉. (2010). 方向感的加工机制及影响因素. 心理科学进展, 18(8), 1208-1221. |
[5] |
张凤翔, 陈美璇, 蒲艺, 孔祥祯. (2023). 空间导航能力个体差异的多层次形成机制. 心理科学进展, 31(9), 1642-1664.
doi: 10.3724/SP.J.1042.2023.01642 |
[6] | 张锦坤, 白学军, 杨丽娴. (2008). 国外关于测试效应的研究概述. 心理科学进展, 16(4), 661-670. |
[7] | Afrooz, A., White, D., & Parolin, B. (2018). Effects of active and passive exploration of the built environment on memory during wayfinding. Applied Geography, 101, 68-74. https://doi.org/10.1016/j.apgeog.2018.10.009 |
[8] | Aginsky, V., Harris, C., Rensink, R., & Beusmans, J. (1997). Two strategies for learning a route in a driving simulator. Journal of Environmental Psychology, 17(4), 317-331. https://doi.org/10.1006/jevp.1997.0070 |
[9] | Ahmadpoor, N., & Smith, A. D. (2020). Spatial knowledge acquisition and mobile maps: The role of environmental legibility. Cities, 101, 102700. https://doi.org/10.1016/j.cities.2020.102700 |
[10] |
Ahmadpoor, N., Smith, A. D., & Heath, T. (2021). Rethinking legibility in the era of digital mobile maps: An empirical study. Journal of Urban Design, 26(3), 296-318. https://doi.org/10.1080/13574809.2020.1777847
doi: 10.1080/13574809.2020.1777847 URL |
[11] | Aslan, I., Schwalm, M., Baus, J., Krüger, A., & Schwartz, T. (2006). Acquisition of spatial knowledge in location aware mobile pedestrian navigation systems. Proceedings of the 8th Conference on Human-Computer Interaction with Mobile Devices and Services (pp. 105-108). Association for Computing Machinery, New York. https://doi.org/10.1145/1152215.1152237 |
[12] | Bakdash, J. Z., Linkenauger, S. A., & Proffitt, D. (2008). Comparing decision-making and control for learning a virtual environment: Backseat drivers learn where they are going. Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 52, No. 27, pp. 2117-2121). Association for Computing Machinery, New York. https://doi.org/10.1177/154193120805202707 |
[13] | Ben-Elia, E. (2021). An exploratory real-world wayfinding experiment: A comparison of drivers’ spatial learning with a paper map vs. turn-by-turn audiovisual route guidance. Transportation Research Interdisciplinary Perspectives, 9, 100280. https://doi.org/10.1016/j.trip.2020.100280 |
[14] | Brügger, A., Richter, K. -F., & Fabrikant, S. I. (2018). Distributing attention between environment and navigation system to increase spatial knowledge acquisition during assisted wayfinding. In P. Fogliaroni, A. Ballatore, E. Clementini (Eds.), Lecture Notes in Geoinformation and Cartography: Proceedings of Workshops and Posters at the 13th International Conference on Spatial Information Theory (pp.19-22). Springer, Cham. https://doi.org/10.1007/978-3-319-63946-8_5 |
[15] | Brügger, A., Richter, K. -F., & Fabrikant, S. I. (2019). How does navigation system behavior influence human behavior? Cognitive Research: Principles and Implications, 4, 5. https://doi.org/10.1186/s41235-019-0156-5 |
[16] | Burnett, G. E., & Lee, K. (2005). The effect of vehicle navigation systems on the formation of cognitive maps. International Conference of Traffic and Transport Psychology (pp. 407-418). Elsevier, Oxford. https://doi.org/10.1016/B978-008044379-9/50188-6 |
[17] |
Chen, W., Liu, B., Li, X., Wang, P., & Wang, B. (2020). Sex differences in spatial memory. Neuroscience, 443, 140-147. https://doi.org/10.1016/j.neuroscience.2020.06.016
doi: S0306-4522(20)30392-4 URL pmid: 32710913 |
[18] | Cheng, B., Lin, E., Wunderlich, A., Gramann, K., & Fabrikant, S. I. (2023). Using spontaneous eye blink-related brain activity to investigate cognitive load during mobile map-assisted navigation. Frontiers in Neuroscience, 17, 1024583. https://doi.org/10.3389/fnins.2023.1024583 |
[19] | Cho, K. W., Neely, J. H., Crocco, S., & Vitrano, D. (2017). Testing enhances both encoding and retrieval for both tested and untested items. Quarterly Journal of Experimental Psychology, 70(7), 1211-1235. https://doi.org/10.1080/17470218.2016.1175485 |
[20] | Chrastil, E. R., & Warren, W. H. (2012). Active and passive contributions to spatial learning. Psychonomic Bulletin & Review, 19(1), 1-23. https://doi.org/10.3758/s13423-011-0182-x |
[21] |
Clemenson, G. D., Maselli, A., Fiannaca, A. J., Miller, A., & Gonzalez-Franco, M. (2021). Rethinking GPS navigation: Creating cognitive maps through auditory clues. Scientific Reports, 11, 7764. https://doi.org/10.1038/s41598-021-87148-4
doi: 10.1038/s41598-021-87148-4 URL pmid: 33833290 |
[22] |
Dahmani, L., & Bohbot, V. D. (2020). Habitual use of GPS negatively impacts spatial memory during self-guided navigation. Scientific Reports, 10, 6310. https://doi.org/10.1038/s41598-020-62877-0
doi: 10.1038/s41598-020-62877-0 URL pmid: 32286340 |
[23] | Dong, W., Wu, Y., Qin, T., Bian, X., Zhao, Y., He, Y., Xu, Y., & Yu, C. (2021). What is the difference between augmented reality and 2D navigation electronic maps in pedestrian wayfinding? Cartography and Geographic Information Science, 48(3), 225-240. https://doi.org/10.1080/15230406.2021.1871646 |
[24] | Erçevik Sönmez, B., & Erinsel Önder, D. (2019). The influence of GPS-based navigation systems on perception and image formation: A case study in urban environments. Cities, 86, 102-112. https://doi.org/10.1016/j.cities.2018.12.018 |
[25] | Fajnerová, I., Greguš, D., Hlinka, J., Nekovářová, T., Škoch, A., Zítka, T., … Horáček, J. (2018). Could prolonged usage of GPS navigation implemented in augmented reality smart glasses affect hippocampal functional connectivity? BioMed Research International, 2716134. https://doi.org/10.1155/2018/2716134 |
[26] | Fenech, E. P., Drews, F. A., & Bakdash, J. Z. (2010). The effects of acoustic turn-by-turn navigation on wayfinding. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 54(23), 1926-1930. https://doi.org/10.1177/154193121005402305 |
[27] | Gardony, A. L., Brunyé, T. T., Mahoney, C. R., & Taylor, H. A. (2013). How navigational aids impair spatial memory: Evidence for divided attention. Spatial Cognition & Computation, 13(4), 319-350. https://doi.org/10.1080/13875868.2013.792821 |
[28] | Gardony, A. L., Brunyé, T. T., & Taylor, H. A. (2015). Navigational Aids and spatial memory impairment: The role of divided attention. Spatial Cognition & Computation, 15(4), 246-284. https://doi.org/10.1080/13875868.2015.1059432 |
[29] | Goodman, J., Brewster, S., & Gray, P. (2005). How can we best use landmarks to support older people in navigation? Behaviour & Information Technology, 24(1), 3-20. https://doi.org/10.1080/01449290512331319021 |
[30] |
Gramann, K., Hoepner, P., & Karrer-Gauss, K. (2017). Modified navigation instructions for spatial navigation assistance systems lead to incidental spatial learning. Frontiers in Psychology, 8, 193. https://doi.org/10.3389/fpsyg.2017.00193
doi: 10.3389/fpsyg.2017.00193 URL pmid: 28243219 |
[31] | He, C., & Hegarty, M. (2020). How anxiety and growth mindset are linked to navigation ability: Impacts of exploration and GPS use. Journal of Environmental Psychology, 71, 101475. https://doi.org/10.1016/j.jenvp.2020.101475 |
[32] | Hegarty, M., Montello, D. R., Richardson, A. E., Ishikawa, T., & Lovelace, K. (2006). Spatial abilities at different scales: Individual differences in aptitude-test performance and spatial-layout learning. Intelligence, 34(2), 151-176. https://doi.org/10.1016/j.intell.2005.09.005 |
[33] | Hegarty, M., Richardson, A. E., Montello, D. R., Lovelace, K., & Subbiah, I. (2002). Development of a self-report measure of environmental spatial ability. Intelligence, 30(5), 425-447. https://doi.org/10.1016/S0160-2896(02)00116-2 |
[34] | Hejtmánek, L., Oravcová, I., Motýl, J., Horáček, J., & Fajnerová, I. (2018). Spatial knowledge impairment after GPS guided navigation: Eye-tracking study in a virtual town. International Journal of Human-Computer Studies, 116, 15-24. https://doi.org/10.1016/j.ijhcs.2018.04.006 |
[35] | Hergan, I., & Umek, M. (2017). Comparison of children’s wayfinding, using paper map and mobile navigation. International Research in Geographical and Environmental Education, 26(2), 91-106. https://doi.org/10.1080/10382046.2016.1183935 |
[36] | Huang, H., Mathis, T., & Weibel, R. (2022). Choose your own route - supporting pedestrian navigation without restricting the user to a predefined route. Cartography and Geographic Information Science, 49(2), 95-114. https://doi.org/10.1080/15230406.2021.1983731 |
[37] | Huang, H., Schmidt, M., & Gartner, G. (2012). Spatial knowledge acquisition with mobile maps, augmented reality and voice in the context of GPS-based pedestrian navigation: Results from a field test. Cartography and Geographic Information Science, 39(2), 107-116. https://doi.org/10.1559/15230406392107 |
[38] | Huston, V., & Hamburger, K. (2023). Navigation aid use and human wayfinding: How to engage people in active spatial learning. Künstliche Intelligenz. https://doi.org/10.1007/s13218-023-00799-5 |
[39] | Ishikawa, T. (2019). Satellite navigation and geospatial awareness: Long-term effects of using navigation tools on wayfinding and spatial orientation. The Professional Geographer, 71(2), 197-209. https://doi.org/10.1080/00330124.2018.1479970 |
[40] | Ishikawa, T. (2021). Spatial thinking, cognitive mapping, and spatial awareness. Cognitive Processing, 22(1), 89-96. https://doi.org/10.1007/s10339-021-01046-1 |
[41] | Ishikawa, T., Fujiwara, H., Imai, O., & Okabe, A. (2008). Wayfinding with a GPS-based mobile navigation system: A comparison with maps and direct experience. Journal of Environmental Psychology, 28(1), 74-82. https://doi.org/10.1016/j.jenvp.2007.09.002 |
[42] | Kapaj, A., Lin, E., & Lanini-Maggi, S. (2022). The effect of abstract vs. realistic 3d visualization on landmark and route knowledge acquisition. In A. Susanne (Series Ed.) & T. Ishikawa (Vol. Ed). 15th International Conference on Spatial Information Theory (Vol. 240, pp. 15:1-15:8). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Wadern. https://doi.org/10.4230/LIPICS.COSIT.2022.15 |
[43] | Kelly, J. W., Carpenter, S. K., & Sjolund, L. A. (2015). Retrieval enhances route knowledge acquisition, but only when movement errors are prevented. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(5), 1540-1547. https://doi.org/10.1037/a0038685 |
[44] | Kelly, J. W., Lim, A. F., & Carpenter, S. K. (2022). Turn-by- turn route guidance does not impair route learning. Journal of Applied Research in Memory and Cognition, 11(1), 76-84. https://doi.org/10.1016/j.jarmac.2021.06.001 |
[45] | Knierim, P., Maurer, S., Wolf, K., & Funk, M. (2018, April). Quadcopter-projected in-situ navigation cues for improved location awareness. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (No. 433, pp. 1-6). Association for Computing Machinery, New York. https://doi.org/10.1145/3173574.3174007 |
[46] | Krüger, A., Aslan, I., & Zimmer, H. (2004). The effects of mobile pedestrian navigation systems on the concurrent acquisition of route and survey knowledge. In S. Brewster & M. Dunlop (Eds.), Lecture Notes in Computer Science: Mobile Human-Computer Interaction—MobileHCI 2004 (Vol. 3160, pp. 446-450). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28637-0_54 |
[47] | Kumar, S., Hajela, A., & Singh, E. (2023). Legibility in a city:An overview of the factors affecting perceptions of way-finding in the built environment. In R. A. Khaddar, S. K. Singh, N. D. Kaushika, R. K. Tomar, S. K. Jain (Eds.), Lecture notes in civil engineering: Recent developments in energy and environmental engineering (Vol. 333, pp. 475-482). Springer, Singapore. https://doi.org/10.1007/978-981-99-1388-6_37 |
[48] | Kuo, T. -Y., Chang, Y. -J., & Chu, H. -K. (2023). Investigating four navigation aids for supporting navigator performance and independence in virtual reality. International Journal of Human-Computer Interaction, 39(12), 2524-2541. https://doi.org/10.1080/10447318.2022.2078926 |
[49] | Lakehal, A., Lepreux, S., Efstratiou, C., Kolski, C., & Nicolaou, P. (2023). Spatial knowledge acquisition for pedestrian navigation: A comparative study between smartphones and AR glasses. Information, 14(7), 353. https://doi.org/10.3390/info14070353 |
[50] | Lanini-Maggi, S., Hilton, C., & Fabrikant, S. I. (2023). Limiting the reliance on navigation assistance with navigation instructions containing emotionally salient narratives for confident wayfinding. Journal of Environmental Psychology, 91, 102151. https://doi.org/10.1016/j.jenvp.2023.102151 |
[51] | Leshed, G., Velden, T., Rieger, O., Kot, B., & Sengers, P. (2008, April). In-car GPS navigation:Engagement with and disengagement from the environment. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1675-1684). Association for Computing Machinery, New York. https://doi.org/10.1145/1357054.1357316 |
[52] | Lin, C. -H., Chen, C. -M., & Lou, Y. -C. (2014). Developing spatial orientation and spatial memory with a treasure hunting game. Educational Technology & Society, 17(3), 79-92. |
[53] |
Liu, J., Singh, A. K., Wunderlich, A., Gramann, K., & Lin, C. -T. (2022). Redesigning navigational aids using virtual global landmarks to improve spatial knowledge retrieval. Npj Science of Learning, 7(1), 17. https://doi.org/10.1038/s41539-022-00132-z
doi: 10.1038/s41539-022-00132-z URL pmid: 35853945 |
[54] | Lu, J., Han, Y., Xin, Y., Yue, K., & Liu, Y. (2021). Possibilities for designing enhancing spatial knowledge acquirements navigator:A User Study on the role of different contributors in impairing human spatial memory during navigation. In Y. Kitamura, A. Quigley, K. Isbister & T. Igarashi. Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems (No. 295, pp. 1-6). Association for Computing Machinery, New York. https://doi.org/10.1145/3411763.3451641 |
[55] | Lynch, K. (1960). The image of the city. Massachusetts: The MIT Press. |
[56] | Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S. J., & Frith, C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences, 97(8), 4398-4403. https://doi.org/10.1073/pnas.070039597 |
[57] |
Maguire, E. A., Woollett, K., & Spiers, H. J. (2006). London taxi drivers and bus drivers: A structural MRI and neuropsychological analysis. Hippocampus, 16(12), 1091-1101. https://doi.org/10.1002/hipo.20233
URL pmid: 17024677 |
[58] | Martin-Gutierrez, J., Luis Saorin, J., Martin-Dorta, N., & Contero, M. (2009). Do video games improve spatial abilities of engineering students? International Journal of Engineering Education, 25(6), 1194-1204. |
[59] |
May, A. J., & Ross, T. (2006). Presence and quality of navigational landmarks: Effect on driver performance and implications for design. Human Factors, 48(2), 346-361. https://doi.org/10.1518/001872006777724453
URL pmid: 16884054 |
[60] | Mazurkiewicz, B., Kattenbeck, M., & Giannopoulos, I. (2023). Free choice navigation in the real world: giving back freedom to wayfinders. ISPRS International Journal of Geo-Information, 12(2), 27. https://doi.org/10.3390/ijgi12020027 |
[61] | McKinlay, R. (2016). Technology: Use or lose our navigation skills. Nature, 531, 573-575. https://doi.org/10.1038/531573a |
[62] | Miller, J., & Carlson, L. (2011). Selecting landmarks in novel environments. Psychonomic Bulletin & Review, 18(1), 184-191. https://doi.org/10.3758/s13423-010-0038-9 |
[63] | Miola, L., Meneghetti, C., Muffato, V., & Pazzaglia, F. (2023). Orientation behavior in men and women: The relationship between gender stereotype, growth mindset, and spatial self-efficacy. Journal of Environmental Psychology, 86, 101952. https://doi.org/10.1016/j.jenvp.2022.101952 |
[64] | Muffato, V., Borella, E., Pazzaglia, F., & Meneghetti, C. (2022). Orientation experiences and navigation aid use: A self-report lifespan study on the role of age and visuospatial factors. International Journal of Environmental Research and Public Health, 19(3), 1225. https://doi.org/10.3390/ijerph19031225 |
[65] | Murias, K., Kwok, K., Castillejo, A. G., Liu, I., & Iaria, G. (2016). The effects of video game use on performance in a virtual navigation task. Computers in Human Behavior, 58, 398-406. https://doi.org/10.1016/j.chb.2016.01.020 |
[66] | Münzer, S., Zimmer, H. D., & Baus, J. (2012). Navigation assistance: A trade-off between wayfinding support and configural learning support. Journal of Experimental Psychology: Applied, 18(1), 18-37. https://doi.org/10.1037/a0026553 |
[67] | Münzer, S., Zimmer, H. D., Schwalm, M., Baus, J., & Aslan, I. (2006). Computer-assisted navigation and the acquisition of route and survey knowledge. Journal of Environmental Psychology, 26(4), 300-308. https://doi.org/10.1016/j.jenvp.2006.08.001 |
[68] | Nazareth, A., Huang, X., Voyer, D., & Newcombe, N. (2019). A meta-analysis of sex differences in human navigation skills. Psychonomic Bulletin & Review, 26(5), 1503-1528. https://doi.org/10.3758/s13423-019-01633-6 |
[69] | Parush, A., Ahuvia, S., & Erev, I. (2007). Degradation in spatial knowledge acquisition when using automatic navigation systems. In In S. Winter, M. Duckham, L. Kulik, & B. Kuipers (Eds.), Lecture Notes in Computer Science: Spatial information theory (Vol. 4736, pp. 238-254). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74788-8_15 |
[70] | Pielot, M., Poppinga, B., Heuten, W., & Boll, S. (2012). PocketNavigator:Studying tactile navigation systems in-situ. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 3130-3140). Association for Computing Machinery, New York. https://doi.org/10.1145/2207676.2208728 |
[71] | Qiu, X., Yang, Z., Yang, J., Wang, Q., & Wang, D. (2023, January). Impact of AR navigation display methods on wayfinding performance and spatial knowledge acquisition. International Journal of Human-Computer Interaction, 40(10), 2676-2696. https://doi.org/10.1080/10447318.2023.2169524 |
[72] | Rauschnabel, P. A., Felix, R., Hinsch, C., Shahab, H., & Alt, F. (2022). What is XR? Towards a framework for augmented and virtual reality. Computers in Human Behavior, 133, 107289. https://doi.org/10.1016/j.chb.2022.107289 |
[73] |
Ruginski, I. T., Creem-Regehr, S. H., Stefanucci, J. K., & Cashdan, E. (2019). GPS use negatively affects environmental learning through spatial transformation abilities. Journal of Environmental Psychology, 64, 12-20. https://doi.org/10.1016/j.jenvp.2019.05.001
doi: 10.1016/j.jenvp.2019.05.001 URL |
[74] | Schade, E., Savino, G. -L., Niess, J., & Schöning, J. (2023). MapUncover:Fostering spatial exploration through gamification in mobile map apps. In A. Schmidt, K. Väänänen, T. Goyal, P. O. Kristensson, A. Peters, S. Mueller, J. R. Williamson & M. L. Wilson (Eds), Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (No. 678, pp. 1-13). Association for Computing Machinery, New York.https://doi.org/10.1145/3544548.3581428 |
[75] | Schwering, A., Krukar, J., Li, R., Anacta, V. J., & Fuest, S. (2017). Wayfinding through orientation. Spatial Cognition & Computation, 17(4), 273-303. https://doi.org/10.1080/13875868.2017.1322597 |
[76] | Siegel, A. W., & White, S. H. (1975). The Development of spatial representations of large-scale environments. In H. W. Reese (Ed.), Advances in child development and behavior (Vol. 10, pp. 9-55). JAI Press. https://doi.org/10.1016/S0065-2407(08)60007-5 |
[77] | Sugimoto, M., Kusumi, T., Nagata, N., & Ishikawa, T. (2022). Online mobile map effect: How smartphone map use impairs spatial memory. Spatial Cognition & Computation, 22(1-2), 161-183. https://doi.org/10.1080/13875868.2021.1969401 |
[78] | Süzer, Ö. K., & Olguntürk, N. (2018). The aid of colour on visuospatial navigation of elderly people in a virtual polyclinic environment. Color Research & Application, 43(6), 872-884. https://doi.org/10.1002/col.22272 |
[79] | Taylor, N. (2009). Legibility and Aesthetics in Urban Design. Journal of Urban Design, 14(2), 189-202. https://doi.org/10.1080/13574800802670929 |
[80] | Topete, A., He, C., Protzko, J., Schooler, J., & Hegarty, M. (2024). How is GPS used? Understanding navigation system use and its relation to spatial ability. Cognitive Research: Principles and Implications, 9, 16. https://doi.org/10.1186/s41235-024-00545-x |
[81] | van Asselen, M., Fritschy, E., & Postma, A. (2006). The influence of intentional and incidental learning on acquiring spatial knowledge during navigation. Psychological Research, 70(2), 151-156. https://doi.org/10.1007/s00426-004-0199-0 |
[82] | Velázquez, R., Pissaloux, E., Rodrigo, P., Carrasco, M., Giannoccaro, N., & Lay-Ekuakille, A. (2018). An outdoor navigation system for blind pedestrians using gps and tactile-foot feedback. Applied Sciences, 8(4), 578. https://doi.org/10.3390/app8040578 |
[83] | Wen, W., Ishikawa, T., & Sato, T. (2011). Working memory in spatial knowledge acquisition: Differences in encoding processes and sense of direction. Applied Cognitive Psychology, 25(4), 654-662. https://doi.org/10.1002/acp.1737 |
[84] | Willis, K. S., Hölscher, C., Wilbertz, G., & Li, C. (2009). A comparison of spatial knowledge acquisition with maps and mobile maps. Computers, Environment and Urban Systems, 33(2), 100-110. https://doi.org/10.1016/j.compenvurbsys.2009.01.004 |
[85] | Woollett, K., & Maguire, E. A. (2011). Acquiring “the knowledge” of london’s layout drives structural brain changes. Current Biology, 21(24), 2109-2114. https://doi.org/10.1016/j.cub.2011.11.018 |
[86] | Woyciechowicz, A., & Shliselberg, R. (2005). Wayfinding in public transportation. Transportation Research Record, 1903(1), 35-42. https://doi.org/10.1177/0361198105190300105 |
[87] | Wunderlich, A., & Gramann, K. (2018). Electrocortical evidence for long-term incidental spatial learning through modified navigation instructions. In S. Creem-Regehr, J. Schöning, & A. Klippel (Eds.), Lecture notes in computer science: spatial cognition XI (Vol. 11034, pp. 261-278). Springer, Cham.https://doi.org/10.1007/978-3-319-96385-3_18 |
[88] | Wunderlich, A., & Gramann, K. (2021a). Eye movement‐related brain potentials during assisted navigation in real- world environments. European Journal of Neuroscience, 54(12), 8336-8354. https://doi.org/10.1111/ejn.15095 |
[89] | Wunderlich, A., & Gramann, K. (2021b). Landmark-based navigation instructions improve incidental spatial knowledge acquisition in real-world environments. Journal of Environmental Psychology, 77, 101677. https://doi.org/10.1016/j.jenvp.2021.101677 |
[90] | Wunderlich, A., Grieger, S., & Gramann, K. (2023). Landmark information included in turn-by-turn instructions induce incidental acquisition of lasting route knowledge. Spatial Cognition & Computation, 23(1), 31-56. https://doi.org/10.1080/13875868.2021.2022681 |
[91] | Xu, Y., Qin, T., Wu, Y., Yu, C., & Dong, W. (2022). How do voice-assisted digital maps influence human wayfinding in pedestrian navigation? Cartography and Geographic Information Science, 49(3), 271-287. https://doi.org/10.1080/15230406.2021.2017798 |
[92] | Yan, W., Li, J., Mi, C., Wang, W., Xu, Z., Xiong, W., … Wang, S. (2022). Does global positioning system-based navigation dependency make your sense of direction poor? A psychological assessment and eye-tracking study. Frontiers in Psychology, 13, 983019. https://doi.org/10.3389/fpsyg.2022.983019 |
[93] | Yavuz, E., He, C., Gahnstrom, C. J., Goodroe, S., Coutrot, A., Hornberger, M., Hegarty, M., & Spiers, H. J. (2024). Video gaming, but not reliance on GPS, is associated with spatial navigation performance. Journal of Environmental Psychology, 96, 102296. https://doi.org/10.1016/j.jenvp.2024.102296 |
[94] | Yount, Z. F., Kass, S. J., & Arruda, J. E. (2022). Route learning with augmented reality navigation aids. Transportation Research Part F: Traffic Psychology and Behaviour, 88, 132-140. https://doi.org/10.1016/j.trf.2022.05.019 |
[95] | Zhu, L., Shen, J., Zhou, J., Stachoň, Z., Hong, S., & Wang, X. (2022). Personalized landmark adaptive visualization method for pedestrian navigation maps: Considering user familiarity. Transactions in GIS, 26(2), 669-690. https://doi.org/10.1111/tgis.12877 |
[1] | YU Ping; XU Hui; YIN Wen-Juan; WEI Shu-Guang; YU Ping. The Roles of Grid Cells in Spatial Memory [J]. , 2009, 17(6): 1228-1233. |
[2] | Mou Weimin;Zhao Mintao;Li Xiaoou. Human Spatial Memory and Spatial Navigation [J]. , 2006, 14(4): 497-504. |
[3] | Zhou Ronggang,Zhang Kan. The Theories of Spatial Memory and Retrieval [J]. , 2004, 12(3): 330-339. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||