Advances in Psychological Science ›› 2025, Vol. 33 ›› Issue (1): 62-76.doi: 10.3724/SP.J.1042.2025.0062
• Regular Articles • Previous Articles Next Articles
WU Ji1,2,3, LI Hui-Jie2,3
Received:
2024-03-11
Online:
2025-01-15
Published:
2024-10-28
CLC Number:
WU Ji, LI Hui-Jie. Cognitive space mapping and its neural mechanisms[J]. Advances in Psychological Science, 2025, 33(1): 62-76.
[1] 吴文雅, 王亮.(2023). 认知地图及其内在机制.心理科学进展,31(10), 1856-1872. https://doi.org/10.3724/SP.J.1042.2023.01856 [2] 张家鑫, 海拉干, 李会杰.(2019). 空间导航的测量及其在认知老化中的应用.心理科学进展,27(12), 2019-2033. https://doi.org/10.3724/sp.J.1042.2019.02019 [3] Aronov D., Nevers R., & Tank D. W. (2017). Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit.Nature,543(7647), 719-722. https://doi.org/10.1038/nature21692 [4] Bao X., Gjorgieva E., Shanahan L. K., Howard J. D., Kahnt T.,& Gottfried, J. A.(2019). Grid-like neural representations support olfactory navigation of a two-dimensional odor space.Neuron,1022019.03.034 [5] Baraduc P., Duhamel J. R., & Wirth S. (2019). Schema cells in the macaque hippocampus.Science,363(6427), 635-639. https://doi.org/10.1126/science.aav5404 [6] Behrens T. E.J., Muller, T. H., Whittington, J. C. R., Mark, S., Baram, A. B., Stachenfeld, K. L., & Kurth-Nelson, Z.(2018). What is a cognitive map? Organizing knowledge for flexible behavior.Neuron,1002018.10.002 [7] Bellmund J. L. S., de Cothi W., Ruiter T. A., Nau M., Barry C., & Doeller C. F. (2020). Deforming the metric of cognitive maps distorts memory.Nature Human Behaviour,4(2), 177-188. https://doi.org/10.1038/s41562-019-0767-3 [8] Bellmund J. L. S., Gardenfors P., Moser E. I., & Doeller C. F. (2018). Navigating cognition: Spatial codes for human thinking.Science,362(6415), eaat6766. https://doi.org/10.1126/science.aat6766 [9] Boccara C. N., Nardin M., Stella F., O’Neill J., & Csicsvari J. (2019). The entorhinal cognitive map is attracted to goals.Science,363(6434), 1443-1447. https://doi.org/10.1126/science.aav4837 [10] Boorman E. D., Sweigart S. C.,& Park, S. A.(2021). Cognitive maps and novel inferences: A flexibility hierarchy.Current Opinion in Behavioral Sciences,38, 141-149. https://doi.org/10.1016/j.cobeha.2021.02.017 [11] Brunec I. K., Bellana B., Ozubko J. D., Man V., Robin J., Liu Z. X., ... Moscovitch, M.(2018). Multiple scales of representation along the hippocampal anteroposterior axis in humans.Current Biology,282018.05.016 [12] Bush D., Barry C., Manson D.,& Burgess, N.(2015). Using grid cells for navigation.Neuron,872015.07.006 [13] Butler W. N., Hardcastle K., & Giocomo L. M. (2019). Remembered reward locations restructure entorhinal spatial maps.Science,363(6434), 1447-1452. https://doi.org/10.1126/science.aav5297 [14] Buzsaki G.,& Tingley, D.(2018). Space and time: The hippocampus as a sequence generator.Trends in Cognitive Sciences,222018.07.006 [15] Cohen N. J.,& Eichenbaum, H. (1993). Memory, amnesia, and the hippocampal system. MIT Press. [16] Colgin L. L., Moser E. I.,& Moser, M. B.(2008). Understanding memory through hippocampal remapping.Trends in Neurosciences,312008.06.008 [17] Constantinescu A. O., O’Reilly J. X., & Behrens, T. E. J. (2016). Organizing conceptual knowledge in humans with a gridlike code.Science,352(6292), 1464-1468. https://doi.org/10.1126/science.aaf0941 [18] Danjo T., Toyoizumi T., & Fujisawa S. (2018). Spatial representations of self and other in the hippocampus.Science,359(6372), 213-218. https://doi.org/10.1126/science.aao3898 [19] Dayan, P. (1993). Improving generalization for temporal difference learning: The successor representation.Neural Computation,5(4), 613-624. https://doi.org/10.1162/neco.1993.5.4.613 [20] de Cothi, W., Nyberg, N., Griesbauer, E. M., Ghaname, C., Zisch, F., Lefort, J. M., ... Spiers, H. J.(2022). Predictive maps in rats and humans for spatial navigation.Current Biology,322022.06.090 [21] Deuker L., Bellmund J. L., Navarro Schroder T., & Doeller C. F. (2016). An event map of memory space in the hippocampus.Elife,5, e16534. https://doi.org/10.7554/eLife.16534 [22] Doeller C. F., Barry C., & Burgess N. (2010). Evidence for grid cells in a human memory network.Nature,463(7281), 657-661. https://doi.org/10.1038/nature08704 [23] Duvernoy, H. M. (2005).The human hippocampus: Functional anatomy, vascularization, and serial sections with MRI(3rd ed.). Springer. [24] Eichenbaum, H. (2004). Hippocampus: Cognitive processes and neural representations that underlie declarative memory.Neuron,44(1), 109-120. https://doi.org/10.1016/j.neuron.2004.08.028 [25] Eichenbaum, H. (2014). Time cells in the hippocampus: A new dimension for mapping memories.Nature Reviews Neuroscience,15(11), 732-744. https://doi.org/10.1038/nrn3827 [26] Eichenbaum H., Dudchenko P., Wood E., Shapiro M., & Tanila H. (1999). The hippocampus, memory, and place cells: Is it spatial memory or a memory space?Neuron,23(2), 209-226. https://doi.org/10.1016/S0896-6273(00)80773-4 [27] Ekstrom A. D., Harootonian S. K., & Huffman D. J. (2020). Grid coding, spatial representation, and navigation: Should we assume an isomorphism?Hippocampus,30(4), 422-432. https://doi.org/10.1002/hipo.23175 [28] Ekstrom A. D.,& Yonelinas, A. P.(2020). Precision, binding, and the hippocampus: Precisely what are we talking about?Neuropsychologia,138, 107341. https://doi.org/10.1016/j.neuropsychologia.2020.107341 [29] Epstein R. A., Patai E. Z., Julian J. B., & Spiers H. J. (2017). The cognitive map in humans: Spatial navigation and beyond.Nature Neuroscience,20(11), 1504-1513. https://doi.org/10.1038/nn.4656 [30] Farzanfar D., Spiers H. J., Moscovitch M., & Rosenbaum R. S. (2023). From cognitive maps to spatial schemas.Nature Reviews Neuroscience,24(2), 63-79. https://doi.org/10.1038/s41583-022-00655-9 [31] Fyhn M., Hafting T., Treves A., Moser M. B., & Moser E. I. (2007). Hippocampal remapping and grid realignment in entorhinal cortex.Nature,446(7132), 190-194. https://doi.org/10.1038/nature05601 [32] Gärdenfors, P. (2000). Conceptual spaces: The geometry of thought. MIT Press. [33] Garvert M. M., Dolan R. J., & Behrens T. E. (2017). A map of abstract relational knowledge in the human hippocampal- entorhinal cortex.Elife,6, e17086. https://doi.org/10.7554/eLife.17086 [34] Gauthier, B., & van Wassenhove, V. (2016). Time is not space: Core computations and domain-specific networks for mental travels.The Journal of Neuroscience,36(47), 11891- 11903. https://doi.org/10.1523/JNEUROSCI.1400-16.2016 [35] Hafting T., Fyhn M., Molden S., Moser M. B., & Moser E. I. (2005). Microstructure of a spatial map in the entorhinal cortex.Nature,436(7052), 801-806. https://doi.org/10.1038/nature03721 [36] Hawkins J., Lewis M., Klukas M., Purdy S.,& Ahmad, S.(2018). A framework for intelligence and cortical function based on grid cells in the neocortex.Frontiers in Neural Circuits,12, 121. https://doi.org/10.3389/fncir.2018.00121 [37] Hok V., Lenck-Santini P. P., Roux S., Save E., Muller R. U., & Poucet B. (2007). Goal-related activity in hippocampal place cells.The Journal of Neuroscience,27(3), 472-482. https://doi.org/10.1523/JNEUROSCI.2864-06.2007 [38] Howard L. R., Javadi A. H., Yu Y., Mill R. D., Morrison L. C., Knight R., ... Spiers, H. J.(2014). The hippocampus and entorhinal cortex encode the path and Euclidean distances to goals during navigation.Current Biology,242014.05.001 [39] Hsieh L. T., Gruber M. J., Jenkins L. J.,& Ranganath, C.(2014). Hippocampal activity patterns carry information about objects in temporal context.Neuron,812014.01.015 [40] Julian J. B., Keinath A. T., Frazzetta G., & Epstein R. A. (2018). Human entorhinal cortex represents visual space using a boundary-anchored grid.Nature Neuroscience,21(2), 191-194. https://doi.org/10.1038/s41593-017-0049-1 [41] Killian N. J., Jutras M. J., & Buffalo E. A. (2012). A map of visual space in the primate entorhinal cortex.Nature,491(7426), 761-764. https://doi.org/10.1038/nature11587 [42] Knudsen E. B.,& Wallis, J. D.(2021). Hippocampal neurons construct a map of an abstract value space.Cell,1842021.07.010 [43] Komorowski R. W., Manns J. R., & Eichenbaum H. (2009). Robust conjunctive item-place coding by hippocampal neurons parallels learning what happens where.The Journal of Neuroscience,29(31), 9918-9929. https://doi.org/10.1523/JNEUROSCI.1378-09.2009 [44] Kraus B. J., Brandon M. P., Robinson R. J.,2nd, Connerney, M. A., Hasselmo, M. E., & Eichenbaum, H.(2015). During running in place, grid cells integrate elapsed time and distance run.Neuron,882015.09.031 [45] Kraus B. J., Robinson R. J.,2nd, White, J. A., Eichenbaum, H., & Hasselmo, M. E.(2013). Hippocampal "time cells": Time versus path integration.Neuron,782013.04.015 [46] Kumaran D., Summerfield J. J., Hassabis D.,& Maguire, E. A.(2009). Tracking the emergence of conceptual knowledge during human decision making.Neuron,632009.07.030 [47] Kunz L., Maidenbaum S., Chen D., Wang L., Jacobs J.,& Axmacher, N.(2019). Mesoscopic neural representations in spatial navigation.Trends in Cognitive Sciences,232019.04.011 [48] Lisman J., Buzsaki G., Eichenbaum H., Nadel L., Ranganath C., & Redish A. D. (2017). Viewpoints: How the hippocampus contributes to memory, navigation and cognition.Nature Neuroscience,20(11), 1434-1447. https://doi.org/10.1038/nn.4661 [49] Long X., Deng B., Cai J., Chen Z. S., & Zhang S. -J. (2021). A compact spatial map in V2 visual cortex.bioRxiv.https://doi.org/10.1101/2021.02.11.430687 [50] Long, X., & Zhang, S. J. (2021). A novel somatosensory spatial navigation system outside the hippocampal formation.Cell Research,31(6), 649-663. https://doi.org/10.1038/s41422-020-00448-8 [51] MacDonald, C. J., Lepage, K. Q., Eden, U. T., & Eichenbaum, H.(2011). Hippocampal "time cells" bridge the gap in memory for discontiguous events.Neuron,712011.07.012 [52] Mack M. L., Preston A. R., & Love B. C. (2020). Ventromedial prefrontal cortex compression during concept learning.Nature Communications,11(1), 46. https://doi.org/10.1038/s41467-019-13930-8 [53] Manns, J. R., & Eichenbaum, H. (2006). Evolution of declarative memory.Hippocampus,16(9), 795-808. https://doi.org/10.1002/hipo.20205 [54] Mark S., Moran R., Parr T., Kennerley S. W., & Behrens, T. E. J. (2020). Transferring structural knowledge across cognitive maps in humans and models.Nature Communications,11(1), 4783. https://doi.org/10.1038/s41467-020-18254-6 [55] Morton N. W.,& Preston, A. R.(2021). Concept formation as a computational cognitive process.Current Opinion in Behavioral Sciences,38, 83-89. https://doi.org/10.1016/j.cobeha.2020.12.005 [56] Morton N. W., Schlichting M. L., & Preston A. R. (2020). Representations of common event structure in medial temporal lobe and frontoparietal cortex support efficient inference.Proceedings of the National Academy of Sciences of the United States of America,117(47), 29338-29345. https://doi.org/10.1073/pnas.1912338117 [57] Nieh E. H., Schottdorf M., Freeman N. W., Low R. J., Lewallen S., Koay S. A., ... Tank D. W. (2021). Geometry of abstract learned knowledge in the hippocampus.Nature,595(7865), 80-84. https://doi.org/10.1038/s41586-021-03652-7 [58] Nielson D. M., Smith T. A., Sreekumar V., Dennis S., & Sederberg P. B. (2015). Human hippocampus represents space and time during retrieval of real-world memories.Proceedings of the National Academy of Sciences of the United States of America,112(35), 11078-11083. https://doi.org/10.1073/pnas.1507104112 [59] Niv, Y. (2019). Learning task-state representations.Nature Neuroscience,22(10), 1544-1553. https://doi.org/10.1038/s41593-019-0470-8 [60] O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford University Press.. [61] Omer D. B., Maimon S. R., Las L., & Ulanovsky N. (2018). Social place-cells in the bat hippocampus.Science,359(6372), 218-224. https://doi.org/10.1126/science.aao3474 [62] Park S. A., Miller D. S., & Boorman E. D. (2021). Inferences on a multidimensional social hierarchy use a grid-like code.Nature Neuroscience,24(9), 1292-1301. https://doi.org/10.1038/s41593-021-00916-3 [63] Park S. A., Miller D. S., Nili H., Ranganath C.,& Boorman, E. D.(2020). Map making: Constructing, combining, and inferring on abstract cognitive maps.Neuron,1072020.06.030 [64] Pastalkova E., Itskov V., Amarasingham A., & Buzsaki G. (2008). Internally generated cell assembly sequences in the rat hippocampus.Science,321(5894), 1322-1327. https://doi.org/10.1126/science.1159775 [65] Peer M., Brunec I. K., Newcombe N. S.,& Epstein, R. A.(2021). Structuring knowledge with cognitive maps and cognitive graphs.Trends in Cognitive Sciences,252020.10.004 [66] Poo C., Agarwal G., Bonacchi N., & Mainen Z. F. (2022). Spatial maps in piriform cortex during olfactory navigation.Nature,601(7894), 595-599. https://doi.org/10.1038/s41586-021-04242-3 [67] Poucet B.,& Hok, V.(2017). Remembering goal locations.Current Opinion in Behavioral Sciences,17, 51-56. https://doi.org/10.1016/j.cobeha.2017.06.003 [68] Quiroga, R. Q. (2012). Concept cells: The building blocks of declarative memory functions.Nature Review Neuroscience,13(8), 587-597. https://doi.org/10.1038/nrn3251 [69] Quiroga, R. Q. (2019). Neural representations across species: Nonspatial cognitive factors modulate the firing of spatially tuned neurons.Science,363(6434), 1388-1389. https://doi.org/10.1126/science.aaw8829 [70] Quiroga R. Q., Reddy L., Kreiman G., Koch C., & Fried I. (2005). Invariant visual representation by single neurons in the human brain.Nature,435(7045), 1102-1107. https://doi.org/10.1038/nature03687 [71] Radvansky, B. A., & Dombeck, D. A. (2018). An olfactory virtual reality system for mice.Nature communications,9(1), 839. https://doi.org/10.1038/s41467-018-03262-4 [72] Reddy L., Zoefel B., Possel J. K., Peters J., Dijksterhuis D. E., Poncet M., ... Self M. W. (2021). Human hippocampal neurons track moments in a sequence of events.The Journal of Neuroscience,41(31), 6714-6725. https://doi.org/10.1523/JNEUROSCI.3157-20.2021 [73] Salz D. M., Tiganj Z., Khasnabish S., Kohley A., Sheehan D., Howard M. W., & Eichenbaum H. (2016). Time cells in hippocampal area CA3.The Journal of Neuroscience,36(28), 7476-7484. https://doi.org/10.1523/JNEUROSCI. 0087-16.2016 [74] Sanders H., Wilson M., Klukas M., Sharma S.,& Fiete, I.(2020). Efficient inference in structured spaces.Cell,1832020.11.008 [75] Schafer M.,& Schiller, D.(2018). Navigating social space.Neuron,1002018.10.006 [76] Schlichting M. L., Mumford J. A., & Preston A. R. (2015). Learning-related representational changes reveal dissociable integration and separation signatures in the hippocampus and prefrontal cortex.Nature Communications,6(1), 8151. https://doi.org/10.1038/ncomms9151 [77] Schuck N. W., Cai M. B., Wilson R. C.,& Niv, Y.(2016). Human orbitofrontal cortex represents a cognitive map of state space.Neuron,912016.08.019 [78] Stachenfeld K. L., Botvinick M. M., & Gershman S. J. (2017). The hippocampus as a predictive map.Nature Neuroscience,20(11), 1643-1653. https://doi.org/10.1038/nn.4650 [79] Stalnaker T. A., Cooch N. K., & Schoenbaum G. (2015). What the orbitofrontal cortex does not do.Nature Neuroscience,18(5), 620-627. https://doi.org/10.1038/nn.3982 [80] Stensola H., Stensola T., Solstad T., Froland K., Moser M. B., & Moser E. I. (2012). The entorhinal grid map is discretized.Nature,492(7427), 72-78. https://doi.org/10.1038/nature11649 [81] Stoewer P., Schilling A., Maier A., & Krauss P. (2023). Neural network based formation of cognitive maps of semantic spaces and the putative emergence of abstract concepts.Scientific Reports,13(1), 3644. https://doi.org/10.1038/s41598-023-30307-6 [82] Stoewer P., Schlieker C., Schilling A., Metzner C., Maier A., & Krauss P. (2022). Neural network based successor representations to form cognitive maps of space and language.Scientific Reports,12(1), 11233. https://doi.org/10.1038/s41598-022-14916-1 [83] Strange B. A., Witter M. P., Lein E. S., & Moser E. I. (2014). Functional organization of the hippocampal longitudinal axis.Nature Review Neuroscience,15(10), 655-669. https://doi.org/10.1038/nrn3785 [84] Sun C., Yang W., Martin J., & Tonegawa S. (2020). Hippocampal neurons represent events as transferable units of experience.Nature Neuroscience,23(5), 651-663. https://doi.org/10.1038/s41593-020-0614-x [85] Tavares R. M., Mendelsohn A., Grossman Y., Williams C. H., Shapiro M., Trope Y.,& Schiller, D.(2015). A map for social navigation in the human brain.Neuron,872015.06.011 [86] Theves S., Fernandez G.,& Doeller, C. F.(2019). The hippocampus encodes distances in multidimensional feature space.Current Biology,292019.02.035 [87] Theves S., Fernandez G., & Doeller C. F. (2020). The hippocampus maps concept space, not feature space.The Journal of Neuroscience,40(38), 7318-7325. https://doi.org/10.1523/JNEUROSCI.0494-20.2020 [88] Theves S., Neville D. A., Fernandez G., & Doeller C. F. (2021). Learning and representation of hierarchical concepts in hippocampus and prefrontal cortex.The Journal of Neuroscience,41(36), 7675-7686. https://doi.org/10.1523/JNEUROSCI.0657-21.2021 [89] Tolman, E. C. (1948). Cognitive maps in rats and men.Psychological Review,55(4), 189-208. https://doi.org/10.1037/h0061626 [90] Umbach G., Kantak P., Jacobs J., Kahana M., Pfeiffer B. E., Sperling M., & Lega B. (2020). Time cells in the human hippocampus and entorhinal cortex support episodic memory.Proceedings of the National Academy of Sciences of the United States of America,117(45), 28463-28474. https://doi.org/10.1073/pnas.2013250117 [91] Vigano, S., & Piazza, M. (2020). Distance and direction codes underlie navigation of a novel semantic space in the human brain.The Journal of Neuroscience,40(13), 2727- 2736. https://doi.org/10.1523/JNEUROSCI.1849-19.2020 [92] Whittington J. C. R., McCaffary D., Bakermans J. J. W., & Behrens, T. E. J. (2022). How to build a cognitive map.Nature Neuroscience,25(10), 1257-1272. https://doi.org/10.1038/s41593-022-01153-y [93] Whittington, J. C. R., Muller, T. H., Barry, C., Mark, S., & Behrens, T. E. J. (2018).Generalisation of structural knowledge in the hippocampal-entorhinal system.32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada. [94] Whittington J. C.R., Muller, T. H., Mark, S., Chen, G., Barry, C., Burgess, N., & Behrens, T. E. J.(2020). The Tolman-Eichenbaum machine: Unifying space and relational memory through generalization in the hippocampal formation.Cell,1832020.10.024 [95] Wikenheiser A. M.,Marrero-Garcia, Y., & Schoenbaum, G.(2017). Suppression of ventral hippocampal output impairs integrated orbitofrontal encoding of task structure.Neuron,952017.08.003 [96] Wikenheiser A. M.,& Schoenbaum, G.(2016). Over the river, through the woods: Cognitive maps in the hippocampus and orbitofrontal cortex.Nature Review Neuroscience,172016.56 [97] Wirth S., Baraduc P., Plante A., Pinede S., & Duhamel J. R. (2017). Gaze-informed, task-situated representation of space in primate hippocampus during virtual navigation.PLoS Biology,15(2), e2001045. https://doi.org/10.1371/journal.pbio.2001045 [98] Zeithamova D., Dominick A. L.,& Preston, A. R.(2012). Hippocampal and ventral medial prefrontal activation during retrieval-mediated learning supports novel inference.Neuron,752012.05.010 [99] Zhang J. X., Wang L., Hou H. Y., Yue C. L., Wang L., & Li H. J. (2021). Age-related impairment of navigation and strategy in virtual star maze.BMC Geriatrics,21(1), 108. https://doi.org/10.1186/s12877-021-02034-y [100] Zhang L., Chen P., Schafer M., Zheng S., Chen L., Wang S., ... Huang R. (2022). A specific brain network for a social map in the human brain.Scientific Reports,12(1), 1773. https://doi.org/10.1038/s41598-022-05601-4 |
[1] | ZHANG Fengxiang, CHEN Meixuan, PU Yi, KONG Xiang-Zhen. Individual differences in spatial navigation: A multi-scale perspective [J]. Advances in Psychological Science, 2023, 31(9): 1642-1664. |
[2] | KONG Xiang-Zhen, ZHANG Fengxiang, PU Yi. The functional brain network that supports human spatial navigation [J]. Advances in Psychological Science, 2023, 31(3): 330-337. |
[3] | WU Wenya, WANG Liang. The cognitive map and its intrinsic mechanisms [J]. Advances in Psychological Science, 2023, 31(10): 1856-1872. |
[4] | NIE Jing;LING Wenquan;LI Ming. Cognitive Mapping Technique and Application in Management Psychology [J]. Advances in Psychological Science, 2013, 21(1): 155-165. |
[5] | XU Qin;LUO Yu;LIU Jia. The Mechanism of Sense of Direction and Its Modulating Factors [J]. , 2010, 18(8): 1208-1221. |
[6] | YU Ping; XU Hui; YIN Wen-Juan; WEI Shu-Guang; YU Ping. The Roles of Grid Cells in Spatial Memory [J]. , 2009, 17(6): 1228-1233. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||