Advances in Psychological Science ›› 2023, Vol. 31 ›› Issue (4): 608-621.doi: 10.3724/SP.J.1042.2023.00608
• Regular Articles • Previous Articles Next Articles
WANG Yongli1(), GE Shengnan2, Lancy Lantin Huang3, WAN Qin1, LU Haidan1
Received:
2022-06-14
Online:
2023-04-15
Published:
2022-12-30
Contact:
WANG Yongli
E-mail:wylkangfu@126.com
CLC Number:
WANG Yongli, GE Shengnan, Lancy Lantin Huang, WAN Qin, LU Haidan. Neural mechanism of speech imagery[J]. Advances in Psychological Science, 2023, 31(4): 608-621.
研究 | 被试 | 想象对比 | 内容 | 覆盖脑区 | 工具 | 信号 | 结果 |
---|---|---|---|---|---|---|---|
Proix et al. ( | 13例 癫痫患者 | 言语想象 VS 言语产生(发音) | 6个单词: spoon, cowboy, battlefield, swimming, python, telephone | 感觉运动皮层、颞上回、颞中回、颞下回、下额叶 | ECoG (侵入性) | BHA、θ波、β波、γ波 | ①言语想象时BHA不显著, θ波、β波、γ波显著; ②言语执行时以上脑区显著。 |
Chengaiyan et al. ( | 6例 健康成人 | 言语想象 VS 言语产生(发音) | 50个 CVC (辅音−元音−辅音)单词, 包含/a/, /i/, /u/, /e/, /o/: can, car, cat, bad, dad, gas, lab, man, rat, tap; did, fit, kit, lip, pig, pin, rip, sim, sit, zip; bun, bus, cup, gum, hug, hut, jug, pip, sum, sun; bed, den, hen, her, jet, led, let, net, red, vex; box, cop, dog, fog, jog, lot, not, pot, rod, sob. | 全脑区 (额叶、颞叶、顶叶、枕叶) | EEG | α波、δ波、θ波、β波、γ波 | ①言语想象时, 颞叶的θ波占主导; ②言语产生(发音)时, 额叶的γ波占主导 |
Nguyen et al. (2017) | 15例 健康成人 | 言语想象状态下长单词、短单词和元音的对比 | 长单词:cooperate, independent 短单词:in, out, up 元音:/a/, /i/, /u/ | 全脑区 | EEG | 脑电波 | 脑活动信号确实均集中在位于布洛卡区上方的左前额叶, 中额叶和顶叶, 运动皮层和韦尼克区。想象时短单词和长单词在布洛卡区和韦尼克区出现时频差异; 短单词比长单词更容易在高频段(31~70 Hz)和布洛卡区受到抑制。 | 郭苗苗 等( | 9例 健康成人 | 言语想象 VS 空闲期 | 4个字:喝, 右, 吃, 冷 | 全脑区 | EEG | α波、δ波、θ波、β波、γ波 | 想象“喝”时, F5与F6电极的脑电信号能量在9~16 Hz频率区域, 500 ms到2100 ms时间范围内较基线有明显的增强。 想象“右”时, EEG信号在1500 ms之后, 8~14 Hz频率区域能量较基线明显增强。 想象“吃”时, EEG信号在300~1800 ms时间内, 8~14 Hz频率区域内能量较基线明显减弱。 想象“冷”时, EEG信号在300~2000 ms时间内, 6~13 Hz和16~22 Hz频率区域内能量较基线均有明显减弱。 |
Orpella et al. ( | 21例 健康成人 | 言语想象 VS 阅读 | 3个音节:/pa/, /ta/, /ka/ | 全脑区 | MEG 面部sEMG | 脑磁信号 | ①起始阶段的视觉处理信息两种状态共享枕叶视觉皮层; ②言语想象时脑区激活的时间进程按照前120 ms的视觉区域活动, 180 ms时以颞外侧皮质(左侧)为主, 在位置和时间上都与预期的语音编码一致。260~300 ms时到达顶叶(听觉记忆皮层)、岛叶、双侧运动前区, 反映听觉运动整合过程和发音运动计划过程。440 ms后为广泛性左侧听觉皮层活动; 阅读时以视觉信息解码为主; ③言语想象和阅读时均出现面部肌肉微弱电信号, 不同音节/pa/、/ta/、/ka/之间的面部电流无差异。 |
研究 | 被试 | 想象对比 | 内容 | 覆盖脑区 | 工具 | 信号 | 结果 |
---|---|---|---|---|---|---|---|
Proix et al. ( | 13例 癫痫患者 | 言语想象 VS 言语产生(发音) | 6个单词: spoon, cowboy, battlefield, swimming, python, telephone | 感觉运动皮层、颞上回、颞中回、颞下回、下额叶 | ECoG (侵入性) | BHA、θ波、β波、γ波 | ①言语想象时BHA不显著, θ波、β波、γ波显著; ②言语执行时以上脑区显著。 |
Chengaiyan et al. ( | 6例 健康成人 | 言语想象 VS 言语产生(发音) | 50个 CVC (辅音−元音−辅音)单词, 包含/a/, /i/, /u/, /e/, /o/: can, car, cat, bad, dad, gas, lab, man, rat, tap; did, fit, kit, lip, pig, pin, rip, sim, sit, zip; bun, bus, cup, gum, hug, hut, jug, pip, sum, sun; bed, den, hen, her, jet, led, let, net, red, vex; box, cop, dog, fog, jog, lot, not, pot, rod, sob. | 全脑区 (额叶、颞叶、顶叶、枕叶) | EEG | α波、δ波、θ波、β波、γ波 | ①言语想象时, 颞叶的θ波占主导; ②言语产生(发音)时, 额叶的γ波占主导 |
Nguyen et al. (2017) | 15例 健康成人 | 言语想象状态下长单词、短单词和元音的对比 | 长单词:cooperate, independent 短单词:in, out, up 元音:/a/, /i/, /u/ | 全脑区 | EEG | 脑电波 | 脑活动信号确实均集中在位于布洛卡区上方的左前额叶, 中额叶和顶叶, 运动皮层和韦尼克区。想象时短单词和长单词在布洛卡区和韦尼克区出现时频差异; 短单词比长单词更容易在高频段(31~70 Hz)和布洛卡区受到抑制。 | 郭苗苗 等( | 9例 健康成人 | 言语想象 VS 空闲期 | 4个字:喝, 右, 吃, 冷 | 全脑区 | EEG | α波、δ波、θ波、β波、γ波 | 想象“喝”时, F5与F6电极的脑电信号能量在9~16 Hz频率区域, 500 ms到2100 ms时间范围内较基线有明显的增强。 想象“右”时, EEG信号在1500 ms之后, 8~14 Hz频率区域能量较基线明显增强。 想象“吃”时, EEG信号在300~1800 ms时间内, 8~14 Hz频率区域内能量较基线明显减弱。 想象“冷”时, EEG信号在300~2000 ms时间内, 6~13 Hz和16~22 Hz频率区域内能量较基线均有明显减弱。 |
Orpella et al. ( | 21例 健康成人 | 言语想象 VS 阅读 | 3个音节:/pa/, /ta/, /ka/ | 全脑区 | MEG 面部sEMG | 脑磁信号 | ①起始阶段的视觉处理信息两种状态共享枕叶视觉皮层; ②言语想象时脑区激活的时间进程按照前120 ms的视觉区域活动, 180 ms时以颞外侧皮质(左侧)为主, 在位置和时间上都与预期的语音编码一致。260~300 ms时到达顶叶(听觉记忆皮层)、岛叶、双侧运动前区, 反映听觉运动整合过程和发音运动计划过程。440 ms后为广泛性左侧听觉皮层活动; 阅读时以视觉信息解码为主; ③言语想象和阅读时均出现面部肌肉微弱电信号, 不同音节/pa/、/ta/、/ka/之间的面部电流无差异。 |
[1] | 安娟, 牟海荣. (2019). 基于EEG和fNIRS的多模态脑机接口运动想象参数研究. 科学技术创新, 28, 101-102. |
[2] | 白学军, 张琪涵, 章鹏, 周菘, 刘颖, 宋星, 彭国慧. (2016). 基于fNIRS的运动执行与运动想象脑激活模式比较. 心理学报, 48(5), 495-508. |
[3] | 蔡笑, 张清芳. (2020). 言语运动系统中前馈和反馈控制整合加工的作用机制. 心理科学进展, 28(4), 588-603. |
[4] | 陈霏, 潘昌杰. (2020). 基于发音想象的脑机接口的研究综述. 信号处理, 36(6), 816-830. |
[5] | 窦智, 肖凯龙, 陈颖, 邓泽华. (2021). 运动想象疗法联合语言训练对脑卒中后失语症患者语言功能的影响. 中外医学研究, 19(6), 154-156. |
[6] | 高晨阳, 修嘉, 李婷. (2022). 运动想象任务下近红外光谱脑激活程度适应性研究. 中国激光, 49(5), 204-212. |
[7] | 高晴, 陈华富. (2010). 基于动态因果模型的运动执行和运动想象脑网络研究. 电子科技大学学报, 39(3), 457-460. |
[8] | 郭苗苗, 齐志光, 王磊, 徐桂芝. (2018). 语言脑机接口康复系统中的参数优化研究. 信号处理, 34(8), 974-983. |
[9] | 刘华, 周军, 杨少峰, 史清钊, 程钰琦, 李洋, … 张通. (2017). 中文版运动觉-视觉想象问卷在脑卒中患者中的信度. 中华物理医学与康复杂志, 39(4), 259-263. |
[10] | 刘艳鹏, 龚安民, 丁鹏, 赵磊, 钱谦, 周建华, …伏云发. (2022). 基于言语想象的脑机交互关键技术. 生物医学工程学杂志, 39(3), 596-611. |
[11] | 吴金香. (2019). 运动想象在脑卒中运动性失语患者中的应用研究. 护士进修杂志, 34(6), 533-535. |
[12] | 吴拾瑶, 随力, 杨兰, 刘亮. (2021). 运动想象重塑脑功能的研究进展. 中国医学物理学杂志, 38(11), 1449-1452. |
[13] |
杨帆, 桑德春, 张晓钰, 卢利萍, 褚宏宇. (2017). 运动想象疗法对脑卒中患者运动功能康复的效果. 中国康复理论与实践, 23(9), 1081-1085.
doi: 10.3969/j.issn.1006-9771.2017.09.019 |
[14] | 杨晓芳, 江铭虎. (2014). 基于汉语音位发音想象的脑机接口研究. 中文信息学报, 28(5), 13-23. |
[15] | 姚婧璠, 徐成, 陈红燕, 王铄, 张玉梅. (2021). 卒中后失语语言和非语言认知功能相关的静息态功能磁共振成像研究. 中国卒中杂志, 16(3), 251-258. |
[16] | 张清芳, 钱宗愉, 朱雪冰. (2021). 汉语口语词汇产生中的多重音韵激活: 单词翻译任务的ERP研究. 心理学报, 53(1), 1-14. |
[17] | 张清芳, 杨玉芳. (2003). 言语产生中的词汇通达理论. 心理科学进展, 11(1), 6-11. |
[18] | Ackermann H., & Hertrich I. (2003). Cerebellar contributions to speech motor control and auditory verbal imagery: Acoustic / kinematic analyses of ataxic dysarthria and functional magnetic resonance imaging in healthy subjects. In: SoléM. J.,Recasens D., & Romero J. (Eds), Proceedings of the 15th International Congress of Phonetic Sciences (Vol. 1, pp. 163-167). Causal Productions, Adelaide. |
[19] |
Alderson-Day B., & Fernyhough C. (2015). Inner speech: Development, cognitive functions, phenomenology, and neurobiology. Psychological Bulletin, 141(5), 931-965.
doi: 10.1037/bul0000021 pmid: 26011789 |
[20] |
André A., Elia F., Heidi K., Peter H., Haan E. H. F. D., & Kahn R. S. (2005). The functional neuroanatomy of metrical stress evaluation of perceived and imagined spoken words. Cerebral Cortex, 15(2), 221-228.
pmid: 15269107 |
[21] | Arongna, Sakai, N., Yasu, K., & Mori, K. (2020). Disfluencies and strategies used by people who stutter during a working memory task. Journal of Speech, Language, and Hearing Research, 63( 3), 688-701. |
[22] |
Barrows P. D., Thomas S. A., & Gordon W. V. (2021). Assessing self-reported mood in aphasia following stroke: Challenges, innovations and future directions. Journal of Stroke and Cerebrovascular Diseases, 30(1), 105425-105425.
doi: 10.1016/j.jstrokecerebrovasdis.2020.105425 URL |
[23] |
Birn R. M., Bandettini P. A., Cox R. W., & Shaker R. (1999). Event-related fMRI of tasks involving brief motion. Human Brain Mapping, 7(2), 106-114.
pmid: 9950068 |
[24] |
Bohland J. W., & Guenther F. H. (2006). An fMRI investigation of syllable sequence production. NeuroImage, 32(2), 821-841.
doi: 10.1016/j.neuroimage.2006.04.173 pmid: 16730195 |
[25] |
Bruno V., Fossataro C., & Garbarini F. (2018). Inhibition or facilitation? Modulation of corticospinal excitability during motor imagery. Neuropsychologia, 111, 360-368.
doi: S0028-3932(18)30077-0 pmid: 29462639 |
[26] |
Chengaiyan S., Retnapandian A. S., & Anandan K. (2020). Identification of vowels in consonant-vowel-consonant words from speech imagery based EEG signals. Cognitive Neurodynamics, 14(1), 1-19.
doi: 10.1007/s11571-019-09558-5 pmid: 32015764 |
[27] |
Cooney C., Folli R., & Coyle D. (2018). Neurolinguistics research advancing development of a direct-speech brain- computer interface. iScience, 8, 103-125.
doi: 10.1016/j.isci.2018.09.016 URL |
[28] |
Courson M., & Tremblay P. (2020). Neural correlates of manual action language: Comparative review, ALE meta- analysis and ROI meta-analysis. Neuroscience & Biobehavioral Reviews, 116, 221-238.
doi: 10.1016/j.neubiorev.2020.06.025 URL |
[29] |
DaSalla C. S., Kambara H., Sato M., & Koike Y. (2009). Single-trial classification of vowel speech imagery using common spatial patterns. Neural Networks, 22(9), 1334-1339.
doi: 10.1016/j.neunet.2009.05.008 pmid: 19497710 |
[30] |
Dash D., Paul F., & Wang J. (2020). Decoding imagined and spoken phrases from non-invasive neural (MEG) signals. Frontiers in Neuroscience, 14, 290-304.
doi: 10.3389/fnins.2020.00290 pmid: 32317917 |
[31] |
Djordjevic J., Zatorre R. J., Petrides M., Boyle J. A., & Jones-Gotman M. (2005). Functional neuroimaging of odor imagery. NeuroImage, 24(3), 791-801.
pmid: 15652314 |
[32] | Duffy J. R. (2013). Motor speech disorders: Substrates, differential diagnosis, and management. St. Louis, MO: Elsevier. |
[33] | Durand E., Berroir P., & Ansaldo A. I. (2018). The neural and behavioral correlates of anomia recovery following personalized observation, execution, and mental imagery therapy: A proof of concept. Neural Plasticity, https:// doi.org/10.1155/2018/5943759. |
[34] |
Ehrsson H. H., Geyer S., & Naito E. (2003). Imagery of voluntary movement of fingers, toes, and tongue activates corresponding body-part-specific motor representations. Journal of Neurophysiology, 90(5), 3304-3316.
doi: 10.1152/jn.01113.2002 pmid: 14615433 |
[35] |
Fama M. E., Hayward W., Snider S. F., Friedman R. B., & Turkeltaub P. E. (2017). Subjective experience of inner speech in aphasia: Preliminary behavioral relationships and neural correlates. Brain and Language, 164, 32-42.
doi: S0093-934X(16)30015-3 pmid: 27694017 |
[36] | Fama M. E., Snider S. F., Henderson M. P., Hayward W., Friedman R. B., & Turkeltaub P. E. (2019). The subjective experience of inner speech in aphasia is a meaningful reflection of lexical retrieval. Journal of Speech, Language, and Hearing Research, 62( 1), 106-122. |
[37] | Fyshe A. (2020). Studying language in context using the temporal generalization method. Philosophical Transactions of the Royal Society B, 375(1791), 20180531. |
[38] |
Gajardo-Vidal A., Lorca-Puls D., Team P., Warner H., Pshdary B., Crinion J., … Price C. (2021). Damage to Broca’s area does not contribute to long-term speech production outcome after stroke. Brain, 144(3), 817-832.
doi: 10.1093/brain/awaa460 pmid: 33517378 |
[39] |
Geva S., Jones P. S., Crinion J. T., Price C. J., Baron J. -C., & Warburton E. A. (2011). The neural correlates of inner speech defined by voxel-based lesion-symptom mapping. Brain, 134(10), 3071-3082.
doi: 10.1093/brain/awr232 URL |
[40] |
Gu J., Zhang H., Liu B., Li X., Wang P., & Wang B. (2019). An investigation of the neural association between auditory imagery and perception of complex sounds. Brain Structure and Function, 224(8), 2925-2937.
doi: 10.1007/s00429-019-01948-z pmid: 31468120 |
[41] |
Guenther F. H. (1994). A neural network model of speech acquisition and motor equivalent speech production. Biological Cybernetics, 72(1), 43-53.
pmid: 7880914 |
[42] |
Guenther F. H. (1995). Speech sound acquisition, coarticulation, and rate effects in a neural network model of speech production. Psychological Review, 102(3), 594-621.
doi: 10.1037/0033-295x.102.3.594 pmid: 7624456 |
[43] |
Guenther F. H. (2006). Cortical interactions underlying the production of speech sounds. Journal of Communication Disorders, 39(5), 350-365.
doi: 10.1016/j.jcomdis.2006.06.013 pmid: 16887139 |
[44] | Guenther F. H., Brumberg J. S., Wright E. J., Nieto- Castanon A., Tourville J. A., Panko M., … Kennedy P. R. (2009). A wireless brain-machine interface for real-time speech synthesis. PLoS One, 4(12), e8218. |
[45] |
Guenther F. H., Ghosh S. S., & Tourville J. A. (2006). Neural modeling and imaging of the cortical interactions underlying syllable production. Brain and Language, 96(3), 280-301.
doi: 10.1016/j.bandl.2005.06.001 pmid: 16040108 |
[46] |
Guenther F. H., & Vladusich T. (2012). A neural theory of speech acquisition and production. Journal of Neurolinguistics, 25(5), 408-422.
pmid: 22711978 |
[47] | Haire C. M., Tremblay L., Vuong V., Patterson K. K., Chen J. L., Burdette J. H., … Thaut M. H. (2021). Therapeutic instrumental music training and motor imagery in post-stroke upper-extremity rehabilitation: A randomized-controlled pilot study. Archives of Rehabilitation Research and Clinical Translation, 3(4), 100162. |
[48] |
Heremans E., Feys P., Nieuwboer A., Vercruysse S., Vandenberghe W., Sharma N., & Helsen W. (2011). Motor imagery ability in patients with early- and mid-stage Parkinson disease. Neurorehabil Neural Repair, 25(2), 168-177.
doi: 10.1177/1545968310370750 pmid: 21239707 |
[49] | Hickok G. (2012). Computational neuroanatomy of speech production. Nature Reviews Neuroence, 13(2), 135-145. |
[50] |
Hickok G., Houde J., & Rong F. (2011). Sensorimotor integration in speech processing: Computational basis and neural organization. Neuron, 69(3), 407-422.
doi: 10.1016/j.neuron.2011.01.019 pmid: 21315253 |
[51] |
Houde J. F., & Nagarajan S. S. (2011). Speech production as state feedback control. Frontiers in Human Neuroscience, 5, 82-95.
doi: 10.3389/fnhum.2011.00082 pmid: 22046152 |
[52] | Hurlburt R. T., Alderson-Day B., Kühn S., & Fernyhough C. (2016). Exploring the ecological validity of thinking on demand: Neural correlates of elicited vs. spontaneously occurring inner speech. PLoS One, 11(2), e0147932. |
[53] | Jahangiri A., & Sepulveda F. (2017). The contribution of different frequency bands in class separability of covert speech tasks for BCIs. Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2093-2096. |
[54] |
Jahangiri A., & Sepulveda F. (2018). The relative contribution of high-gamma linguistic processing stages of word production, and motor imagery of articulation in class separability of covert speech tasks in EEG data. Journal of Medical Systems, 43(2), 20-28.
doi: 10.1007/s10916-018-1137-9 pmid: 30564961 |
[55] |
Jones S. R., & Fernyhough C. (2007). Thought as action: Inner speech, self-monitoring, and auditory verbal hallucinations. Consciousness Cognition, 16(2), 391-399.
doi: 10.1016/j.concog.2005.12.003 URL |
[56] | Kearney E., & Guenther F. H. (2019). Articulating: The neural mechanisms of speech production. Language, Cognition and Neuroscience, 34( 9), 1214-1229. |
[57] |
Keller G. B., & Mrsic-Flogel T. D. (2018). Predictive processing: A canonical cortical computation. Neuron, 100(2), 424-435.
doi: S0896-6273(18)30857-2 pmid: 30359606 |
[58] | Kilteni K., Andersson B. J., Houborg C., & Ehrsson H. H. (2018). Motor imagery involves predicting the sensory consequences of the imagined movement. Nature Communnications, 9(1), 1617-1625. |
[59] |
Klingbeil J., Wawrzyniak M., Stockert A., & Saur D. (2019). Resting-state functional connectivity: An emerging method for the study of language networks in post-stroke aphasia. Brain and Cognition, 131, 22-33.
doi: S0278-2626(17)30107-0 pmid: 28865994 |
[60] |
Langland-Hassan P., Faries F. R., Richardson M. J., & Dietz A. (2015). Inner speech deficits in people with aphasia. Frontiers in Psychology, 6, 528.
doi: 10.3389/fpsyg.2015.00528 pmid: 25999876 |
[61] |
Laures-Gore J., Stache M., Moore E., & Tullis C. (2021). App-based data collection, mental imagery, and naming performance in adults with aphasia. Complementary Therapies in Clinical Practice, 44, 101422.
doi: 10.1016/j.ctcp.2021.101422 URL |
[62] |
Lebon F., Rouffet D., Collet C., & Guillot A. (2008). Modulation of EMG power spectrum frequency during motor imagery. Neuroscience Letters, 435(3), 181-185.
doi: 10.1016/j.neulet.2008.02.033 pmid: 18343579 |
[63] | Lee S. H., Lee M., Jeong J. H., & Lee S. W. (2019). Towards an EEG-based intuitive BCI communication system using imagined speech and visual imagery. Paper presented at the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy. |
[64] |
Li F., Zhang T., Li B. J., Zhang W., Zhao J., & Song L. P. (2018). Motor imagery training induces changes in brain neural networks in stroke patients. Neural Regeneration Research, 13(10), 1771-1781.
doi: 10.4103/1673-5374.238616 pmid: 30136692 |
[65] |
Lust J. M., Wilson P. H., & Steenbergen B. (2016). Motor imagery difficulties in children with cerebral palsy: A specific or general deficit? Research in Developmental Disabilities, 57, 102-111.
doi: 10.1016/j.ridd.2016.06.010 pmid: 27399206 |
[66] | Ma S. Y., Jin D. T., Zhang M., Zhang B. X., Wang Y., Li G., & Yang M. (2019). Silent speech recognition based on surface electromyography. 2019 Chinese Automation Congress. |
[67] | MacKay D. G. (1992). Auditory imagery. New York: Psychology Press. https://doi.org/10.4324/9781315807621. |
[68] |
Martin S., Iturrate I., Millán J. D. R., Knight R. T., & Pasley B. N. (2018). Decoding inner speech using electrocorticography: Progress and challenges toward a speech prosthesis. Frontiers in Neuroscience, 12, 422-422.
doi: 10.3389/fnins.2018.00422 pmid: 29977189 |
[69] |
Naito E., Kochiyama T., Kitada R., Nakamura S., Matsumura M., Yonekura Y., & Sadato N. (2002). Internally simulated movement sensations during motor imagery activate cortical motor areas and the cerebellum. Journal of Neuroscience, 22(9), 3683-3691.
pmid: 11978844 |
[70] |
Neef N. E., Anwander A., Bütfering C., Schmidt-Samoa C., Friederici A. D., Paulus W., & Sommer M. (2018). Structural connectivity of right frontal hyperactive areas scales with stuttering severity. Brain, 141(1), 191-204.
doi: 10.1093/brain/awx316 pmid: 29228195 |
[71] |
Neef N. E., Bütfering C., Anwander A., Friederici A. D., Paulus W., & Sommer M. (2016). Left posterior-dorsal area 44 couples with parietal areas to promote speech fluency, while right area 44 activity promotes the stopping of motor responses. NeuroImage, 142, 628-644.
doi: S1053-8119(16)30415-3 pmid: 27542724 |
[72] | Netsell R., & Bakker K. (2017). Fluent and dysfluent inner speech of persons who stutter: Self-report. Unpublished manuscript. Missouri State University, Springfield, MO. |
[73] | Nguyen C. H., Karavas G. K., & Artemiadis P. (2017). Inferring imagined speech using EEG signals: A new approach using Riemannian manifold features. Journal of Neural Engineering, 15(1), 016002. |
[74] | Oppenheim G. M., & Dell G. S. (2010). Motor movement matters: The flexible abstractness of inner speech. Memory & Cognition, 38(8), 1147-1160. |
[75] | Orpella J., Mantegna F., Assaneo M. F., & Poeppel D. (2022). Speech imagery decoding as a window to speech planning and production. BioRxiv, 494046. |
[76] | Orpella J., Mas-Herrero E., Ripollés P., Marco-Pallarés J., & de Diego-Balaguer R. (2021). Statistical learning as reinforcement learning phenomena. PLoS Biology, 19(9), e3001119. |
[77] |
Palmer E. D., Rosen H. J., Ojemann J. G., Buckner R. L., Kelley W. M., & Petersen S. E. (2001). An event-related fMRI study of overt and covert word stem completion. NeuroImage, 14(1), 182-193.
doi: 10.1006/nimg.2001.0779 URL |
[78] |
Parrell B., Agnew Z., Nagarajan S., Houde J., & Ivry R. B. (2017). Impaired feedforward control and enhanced feedback control of speech in patients with cerebellar degeneration. Journal of Neuroscience, 37(38), 9249-9258.
doi: 10.1523/JNEUROSCI.3363-16.2017 pmid: 28842410 |
[79] |
Pearson J. (2019). The human imagination: The cognitive neuroscience of visual mental imagery. Nature Reviews Neuroscience, 20(10), 624-634.
doi: 10.1038/s41583-019-0202-9 pmid: 31384033 |
[80] |
Pei X. M., Leuthardt E. C., Gaona C. M., Brunner P., Wolpaw J. R., & Schalk G. (2011). Spatiotemporal dynamics of electrocorticographic high gamma activity during overt and covert word repetition. NeuroImage, 54(4), 2960-2972.
doi: 10.1016/j.neuroimage.2010.10.029 pmid: 21029784 |
[81] |
Perrone-Bertolotti M., Rapin L., Lachaux J. P., Baciu M., & Lœvenbruck H. (2014). What is that little voice inside my head? Inner speech phenomenology, its role in cognitive performance, and its relation to self-monitoring. Behavioural Brain Research, 261, 220-239.
doi: 10.1016/j.bbr.2013.12.034 pmid: 24412278 |
[82] |
Proix T., Delgado S J., Christen A., Martin S., Pasley B., Knight R.,… (2021). Imagined speech can be decoded from low-and cross-frequency features in perceptual space. Preprint version. DOI: 10.1101/2021.01.26.428315
doi: 10.1101/2021.01.26.428315 |
[83] | Ramirez-Quintana J. A., Macias-Macias J. M., Ramirez- Alonso G., Chacon-Murguia M. I., & Corral-Martinez L. F. (2021). A novel deep capsule neural network for vowel imagery patterns from EEG signals. Available at SSRN: http://dx.doi.org/10.2139/ssrn.3991518 |
[84] | Riaz A., Akhtar S., Iftikhar S., Khan A., & Salman A. (2015). Inter comparison of classification techniques for vowel speech imagery using EEG sensors. The 2014 2nd International Conference on Systems and Informatics (ICSAI 2014), Shanghai, China. |
[85] | Sandhya C., Srinidhi G., Vaishali R., Visali M., & Kavitha A. (2015). Analysis of speech imagery using brain connectivity estimators. In 2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC). http://dx.doi.org/10.1109/ICCI-CC.2015.7259410. |
[86] |
Schumacher R., Halai A. D., & Lambon Ralph M. A. (2019). Assessing and mapping language, attention and executive multidimensional deficits in stroke aphasia. Brain, 142(10), 3202-3216.
doi: 10.1093/brain/awz258 pmid: 31504247 |
[87] | Scott M., Yeung H. H., Gick B., & Werker J. F. (2013). Inner speech captures the perception of external speech. The Journal of the Acoustical Society of America, 133(4), EL286-EL292. |
[88] | Sereshkeh A. R., Yousefi R., Wong A. T., & Chau T. (2018). Online classification of imagined speech using functional near-infrared spectroscopy signals. Journal of Neural Engineering, 16(1), 016005. |
[89] |
Shergill S. S., Bullmore E. T., Brammer M. J., Williams S. C., Murray R. M., & McGuire P. K. (2001). A functional study of auditory verbal imagery. Psychological Medicine, 31(2), 241-253.
pmid: 11232912 |
[90] |
Solms M. (2000). Dreaming and REM sleep are controlled by different brain mechanisms. Behavioral and Brain Sciences, 23(6), 843-850.
pmid: 11515144 |
[91] | Souto D. O., Cruz T., Fontes P., & Haase V. G. (2020). Motor imagery in children with unilateral cerebral palsy: A case-control study. Developmental Medicine & Child Neurology, 62(12), 1396-1405. |
[92] | Stark B. C., Geva S., & Warburton E. A. (2017). Inner speech's relationship with overt speech in poststroke aphasia. Journal of Speech, Language, and Hearing Research, 60( 9), 2406-2415. |
[93] |
Tak S., Kempny A. M., Friston K. J., Leff A. P., & Penny W. D. (2015). Dynamic causal modelling for functional near-infrared spectroscopy. NeuroImage, 111, 338-349.
doi: 10.1016/j.neuroimage.2015.02.035 pmid: 25724757 |
[94] |
Tian X., & Poeppel D. (2010). Mental imagery of speech and movement implicates the dynamics of internal forward models. Frontiers in Psychology, 1, 166-188.
doi: 10.3389/fpsyg.2010.00166 pmid: 21897822 |
[95] |
Tian X., & Poeppel D. (2012). Mental imagery of speech: Linking motor and perceptual systems through internal simulation and estimation. Frontiers in Human Neuroscience, 6, 314-323.
doi: 10.3389/fnhum.2012.00314 pmid: 23226121 |
[96] |
Tian X., & Poeppel D. (2015). Dynamics of self-monitoring and error detection in speech production: Evidence from mental imagery and MEG. Journal of Cognitive Neuroscience, 27(2), 352-364.
doi: 10.1162/jocn_a_00692 pmid: 25061925 |
[97] |
Tian X., Zarate J. M., & Poeppel D. (2016). Mental imagery of speech implicates two mechanisms of perceptual reactivation. Cortex, 77(7), 1-12.
doi: 10.1016/j.cortex.2016.01.002 URL |
[98] |
Torres-García A. A., Reyes-García C. A., Villaseñor-Pineda L., & García-Aguilar G. (2016). Implementing a fuzzy inference system in a multi-objective EEG channel selection model for imagined speech classification. Expert Systems with Applications, 59, 1-12.
doi: 10.1016/j.eswa.2016.04.011 URL |
[99] |
Wang L., Zhang X., Zhong X., & Zhang Y. (2013). Analysis and classification of speech imagery EEG for BCI. Biomedical Signal Processing and Control, 8(6), 901-908.
doi: 10.1016/j.bspc.2013.07.011 URL |
[100] |
Weber R. J., & Bach M. (1969). Visual and speech imagery. British Journal of Psychology, 60(2), 199-202.
pmid: 5787678 |
[101] | Wilson G., Stavisky S., Willett F., Avansino D., Kelemen J., Hochberg L., … Shenoy K. V. (2020). Decoding spoken English from intracortical electrode arrays in dorsal precentral gyrus. Journal of Neural Engineering, 17(6), 066007. |
[102] |
Yoo S. S., Freeman D. K., McCarthy J. J., & Jolesz F. A. (2003). Neural substrates of tactile imagery: A functional MRI study. Neuroreport, 14(4), 581-585.
doi: 10.1097/00001756-200303240-00011 URL |
[103] |
Zhang X., Li H., & Chen F. (2020). EEG-based classification of imaginary Mandarin tones. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 3889-3892). Montreal, QC, Canada. doi: 10.1109/EMBC44109.2020.9176608.
doi: 10.1109/EMBC44109.2020.9176608 |
[1] | ZHANG Mingxia, LI Yuxin, LI Jin, LIU Xun. The influence of extrinsic and intrinsic motivation on memory in adolescents and the underlying neural mechanisms [J]. Advances in Psychological Science, 2023, 31(1): 1-9. |
[2] | WANG Songxue, CHENG Si, JIANG Ting, LIU Xun, ZHANG Mingxia. The effect of external rewards on declarative memory [J]. Advances in Psychological Science, 2023, 31(1): 78-86. |
[3] | DENG Xun, CHEN Ning, WANG Dandan, ZHAO Huanhuan, HE Wen. Neural mechanism of NSSI and comparative study with comorbidities [J]. Advances in Psychological Science, 2022, 30(7): 1561-1573. |
[4] | DENG Yao, WANG Mengmeng, RAO Hengyi. Risk-taking research based on the Balloon Analog Risk Task [J]. Advances in Psychological Science, 2022, 30(6): 1377-1392. |
[5] | LI Liang, LI Hong. Cognitive mechanism and neural basis of shyness [J]. Advances in Psychological Science, 2022, 30(5): 1038-1049. |
[6] | ZHANG Lina, XUAN Bin. Neural mechanisms and time course of the age-related word frequency effect in language production [J]. Advances in Psychological Science, 2022, 30(2): 333-342. |
[7] | LI Hehui, HUANG Huiya, DONG Lin, LUO Yuejia, TAO Wuhai. Developmental dyslexia and cerebellar abnormalities: Multiple roles of the cerebellum and causal relationships between the two [J]. Advances in Psychological Science, 2022, 30(2): 343-353. |
[8] | HU Jia-Bao, LEI Yang, DING Xian-Feng, CHENG Xiao-Rong, FAN Zhao. Shared vs. private aesthetic tastes: The cognitive and neural mechanisms [J]. Advances in Psychological Science, 2022, 30(2): 354-364. |
[9] | CHEN Qunlin, DING Ke. Serial order effect during divergent thinking: A new perspective on the dynamic mechanism of creative thought processes [J]. Advances in Psychological Science, 2022, 30(11): 2507-2517. |
[10] | HUANG Jianping, XU Jingxian, WAN Xiaoang. Influence of associative learning on consumer behavior: From the perspective of product search experience [J]. Advances in Psychological Science, 2022, 30(11): 2414-2423. |
[11] | WANG Zile, ZHANG Qi. The internal mechanisms of attentional templates in facilitating visual search [J]. Advances in Psychological Science, 2022, 30(10): 2206-2218. |
[12] | LIU Wang-Juan, DING Xian-Feng, CHENG Xiao-Rong, FAN Zhao. Serial dependence effect: A novel “history effect” [J]. Advances in Psychological Science, 2022, 30(10): 2228-2239. |
[13] | HU Xiaoyong, DU Tangyan, LI Lanyu, WANG Tiantian. Neural mechanisms underlying the effect of low socioeconomic status on self-regulation [J]. Advances in Psychological Science, 2022, 30(10): 2278-2290. |
[14] | GAN Jiaqun, WANG Enguo. Attentional disengagement in autism spectrum disorders [J]. Advances in Psychological Science, 2022, 30(1): 129-140. |
[15] | WANG Lin, WANG Zhidan, WANG Hongjing. The neural mechanisms of developmental motor disorders in children with autism spectrum disorder [J]. Advances in Psychological Science, 2021, 29(7): 1239-1250. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||