Advances in Psychological Science ›› 2023, Vol. 31 ›› Issue (12): 2275-2294.doi: 10.3724/SP.J.1042.2023.02275
• Meta-Analysis • Previous Articles Next Articles
LI Yan1, CHEN Wenjin1(), ZHANG Shuwei2
Received:
2023-04-12
Online:
2023-12-15
Published:
2023-09-11
CLC Number:
LI Yan, CHEN Wenjin, ZHANG Shuwei. The behavioral effects of nudge: A meta-analysis based on a dual perspective of “Cognitive Pathway” and “Transparency”[J]. Advances in Psychological Science, 2023, 31(12): 2275-2294.
作者(年份) | 行为领域 | 实验类型 | 干预方式 | 样本来源 | 样本量 |
---|---|---|---|---|---|
Mol等( | 购买洪水灾害保险 | 在线实验 | 描述性社会规范 | 荷兰、西班牙 | 1805 |
Sloman等( | 政策态度(移民、金融、工资、援助) | 在线实验 | 公开公民会议信息 | 美国 | 1359 |
Persian等( | 提前申报税单 | 实地实验 | 简化/指导/提示信息/心理暗示 | 印尼 | 11157069 |
Dewies等( | 误领补贴还款 | 实地实验 | 强化信息可读性和易识别性 | 荷兰 | 3330 |
Hodson ( | 癌症检查 | 在线实验 | 利用“癌症”的可得性偏见 | 美国 | 411 |
Boruchowicz等( | 行程轨迹追踪app安装(疫情防控) | 实地实验 | 默认选项 | 拉丁美洲 | 18000 |
Bradt ( | 购买洪水灾害保险 | 在线实验 | 描述洪灾危害 | 美国 | 331 |
Blanco & Rodriguez ( | 退休储蓄 | 实地实验 | 同辈与家庭看法 | 西班牙 | 347438 |
Chin & Beckett ( | 信息阅读 | 实验室实验 | “旁边有人”与强制等待时间 | 美国 | 408 |
Rinscheid等( | 气候政策态度 | 实地实验 | 描述性社会规范 | 美国 | 1520 |
Kantorowicz-Reznichenko等( | 疫苗接种 | 实地实验 | 传递新冠伤亡信息 | 以色列、 英国 | 2429 |
Sin等( | 冲动购物 | 在线实验 | 延迟/反思/分心 | 美国 | 1226 |
Linos等( | 奖学金申请 | 实地实验 | 简化信息/强调归属 | 美国 | 265570 |
Gråd等( | 促进捐款 | 在线实验 | 默认选项/描述性社会规范/强调道德 | 英国、美国、葡萄牙、波兰 | 1098 |
Chen等( | 疫苗接种 | 实地实验 | 寄送接种卡片提示 | 美国 | 208867 |
Reynolds等( | 饮食政策态度 | 在线实验 | 食物卡路里信息 | 英国 | 4500 |
Keppeler等( | 接种疫苗 | 实地实验 | 激发公民心理所有权 | 德国 | 27298 |
Gerber等( | 参与总统选举投票 | 实地实验 | 语言类型的使用(投票者/去投票) | 美国 | 2219 |
De-loyde等( | 健康饮食 | 在线实验 | 生态标签/描述性社会规范 | 英国 | 1399 |
Renaud & Zimmermann ( | 提高密码设置强度 | 实地实验 | 使用密码使用期限 | 德国 | 672 |
Paunov等( | 课程选择 | 实地实验 | 默认选项 | 美国 | 290 |
Jachimowicz等( | 医疗遵从 | 实地实验 | 个人成本/承诺/社会成本 | 英国 | 16191 |
Gravert & Kurz ( | 健康饮食 | 实地实验 | 改变菜单框架 | 瑞典 | 1388 |
Krpan等( | 新冠期间外出次数 | 在线实验 | 写信/构想活动/强调风险 | 美国、英国 | 2637 |
Ackfeld等( | 提供个人信息 | 实地实验 | 强调公共利益/个人隐私保护 | 德国 | 200000 |
van Roekel等( | 手部卫生 | 实地实验 | 张贴海报(框架效应) | 荷兰 | 88 |
Baggio & Motterlini ( | 促进捐款 | 实地实验 | 改变数额框架/简易捐款流程 | 以色列 | 150000 |
Köbis等( | 减少贿赂行为 | 实验室实验 | 描述性社会规范 | 荷兰 | 311 |
Veltri等( | 网购行为 | 在线实验 | 物品信息序列/易识别性 | 德国、波兰、西班牙、英国 | 4800 |
Chandra ( | 一次性塑料袋使用 | 在线实验 | 问题框架 | 英国 | 189 |
Kölle等( | 参与总统选举投票注册 | 实地实验 | 发送咨询意愿/提示信息短信 | 英国 | 4948 |
Knoll等( | 延迟领取退休金 | 调查实验 | 利用图表描述提前申领退休金的损失 | 美国 | 785 |
Karlan等( | 按期偿还贷款 | 实地实验 | 按期发送提醒短信 | 美国 | 943 |
Castelo等( | 使用政府网上服务平台 | 实地实验 | 利用凸显和框架效应 | 加拿大 | 626212 |
Chapman等( | 疫苗接种 | 实地实验 | 默认选项 | 美国 | 900 |
Grinstein-Weiss等( | 存储退还的税费 | 实地实验 | 提供选项和信息干预 | 美国 | 646116 |
Mobekk & Stokke ( | 使用洗手液 | 实地实验 | 描述性社会规范 | 挪威 | 700 |
Li等( | 行人等红灯 | 实地实验 | 树立警示牌 | 中国 | 12000 |
Berliner Senderey等( | 疫苗接种 | 实地实验 | 描述性社会规范/强调接种疫苗有益健康 | 以色列 | 835282 |
Ritov & Garcia ( | 分配医疗资源 | 调查实验 | 让医疗人员知晓病人信息 | 亚马逊平台(MTurk) | 255 |
作者(年份) | 行为领域 | 实验类型 | 干预方式 | 样本来源 | 样本量 |
---|---|---|---|---|---|
Mol等( | 购买洪水灾害保险 | 在线实验 | 描述性社会规范 | 荷兰、西班牙 | 1805 |
Sloman等( | 政策态度(移民、金融、工资、援助) | 在线实验 | 公开公民会议信息 | 美国 | 1359 |
Persian等( | 提前申报税单 | 实地实验 | 简化/指导/提示信息/心理暗示 | 印尼 | 11157069 |
Dewies等( | 误领补贴还款 | 实地实验 | 强化信息可读性和易识别性 | 荷兰 | 3330 |
Hodson ( | 癌症检查 | 在线实验 | 利用“癌症”的可得性偏见 | 美国 | 411 |
Boruchowicz等( | 行程轨迹追踪app安装(疫情防控) | 实地实验 | 默认选项 | 拉丁美洲 | 18000 |
Bradt ( | 购买洪水灾害保险 | 在线实验 | 描述洪灾危害 | 美国 | 331 |
Blanco & Rodriguez ( | 退休储蓄 | 实地实验 | 同辈与家庭看法 | 西班牙 | 347438 |
Chin & Beckett ( | 信息阅读 | 实验室实验 | “旁边有人”与强制等待时间 | 美国 | 408 |
Rinscheid等( | 气候政策态度 | 实地实验 | 描述性社会规范 | 美国 | 1520 |
Kantorowicz-Reznichenko等( | 疫苗接种 | 实地实验 | 传递新冠伤亡信息 | 以色列、 英国 | 2429 |
Sin等( | 冲动购物 | 在线实验 | 延迟/反思/分心 | 美国 | 1226 |
Linos等( | 奖学金申请 | 实地实验 | 简化信息/强调归属 | 美国 | 265570 |
Gråd等( | 促进捐款 | 在线实验 | 默认选项/描述性社会规范/强调道德 | 英国、美国、葡萄牙、波兰 | 1098 |
Chen等( | 疫苗接种 | 实地实验 | 寄送接种卡片提示 | 美国 | 208867 |
Reynolds等( | 饮食政策态度 | 在线实验 | 食物卡路里信息 | 英国 | 4500 |
Keppeler等( | 接种疫苗 | 实地实验 | 激发公民心理所有权 | 德国 | 27298 |
Gerber等( | 参与总统选举投票 | 实地实验 | 语言类型的使用(投票者/去投票) | 美国 | 2219 |
De-loyde等( | 健康饮食 | 在线实验 | 生态标签/描述性社会规范 | 英国 | 1399 |
Renaud & Zimmermann ( | 提高密码设置强度 | 实地实验 | 使用密码使用期限 | 德国 | 672 |
Paunov等( | 课程选择 | 实地实验 | 默认选项 | 美国 | 290 |
Jachimowicz等( | 医疗遵从 | 实地实验 | 个人成本/承诺/社会成本 | 英国 | 16191 |
Gravert & Kurz ( | 健康饮食 | 实地实验 | 改变菜单框架 | 瑞典 | 1388 |
Krpan等( | 新冠期间外出次数 | 在线实验 | 写信/构想活动/强调风险 | 美国、英国 | 2637 |
Ackfeld等( | 提供个人信息 | 实地实验 | 强调公共利益/个人隐私保护 | 德国 | 200000 |
van Roekel等( | 手部卫生 | 实地实验 | 张贴海报(框架效应) | 荷兰 | 88 |
Baggio & Motterlini ( | 促进捐款 | 实地实验 | 改变数额框架/简易捐款流程 | 以色列 | 150000 |
Köbis等( | 减少贿赂行为 | 实验室实验 | 描述性社会规范 | 荷兰 | 311 |
Veltri等( | 网购行为 | 在线实验 | 物品信息序列/易识别性 | 德国、波兰、西班牙、英国 | 4800 |
Chandra ( | 一次性塑料袋使用 | 在线实验 | 问题框架 | 英国 | 189 |
Kölle等( | 参与总统选举投票注册 | 实地实验 | 发送咨询意愿/提示信息短信 | 英国 | 4948 |
Knoll等( | 延迟领取退休金 | 调查实验 | 利用图表描述提前申领退休金的损失 | 美国 | 785 |
Karlan等( | 按期偿还贷款 | 实地实验 | 按期发送提醒短信 | 美国 | 943 |
Castelo等( | 使用政府网上服务平台 | 实地实验 | 利用凸显和框架效应 | 加拿大 | 626212 |
Chapman等( | 疫苗接种 | 实地实验 | 默认选项 | 美国 | 900 |
Grinstein-Weiss等( | 存储退还的税费 | 实地实验 | 提供选项和信息干预 | 美国 | 646116 |
Mobekk & Stokke ( | 使用洗手液 | 实地实验 | 描述性社会规范 | 挪威 | 700 |
Li等( | 行人等红灯 | 实地实验 | 树立警示牌 | 中国 | 12000 |
Berliner Senderey等( | 疫苗接种 | 实地实验 | 描述性社会规范/强调接种疫苗有益健康 | 以色列 | 835282 |
Ritov & Garcia ( | 分配医疗资源 | 调查实验 | 让医疗人员知晓病人信息 | 亚马逊平台(MTurk) | 255 |
类别 | 研究数量 | 效应量 | 标准误 | 95.0%置信区间 | |
---|---|---|---|---|---|
下限 | 上限 | ||||
透明型系统1 | 16 | 0.07 | 0.01 | 0.05 | 0.08 |
透明型系统2 | 40 | 0.27 | 0.02 | 0.23 | 0.32 |
不透明型系统1 | 40 | 0.27 | 0.04 | 0.2 | 0.34 |
不透明型系统2 | 12 | 0.1 | 0.02 | 0.06 | 0.13 |
类别 | 研究数量 | 效应量 | 标准误 | 95.0%置信区间 | |
---|---|---|---|---|---|
下限 | 上限 | ||||
透明型系统1 | 16 | 0.07 | 0.01 | 0.05 | 0.08 |
透明型系统2 | 40 | 0.27 | 0.02 | 0.23 | 0.32 |
不透明型系统1 | 40 | 0.27 | 0.04 | 0.2 | 0.34 |
不透明型系统2 | 12 | 0.1 | 0.02 | 0.06 | 0.13 |
变量名称 | 变量定义 |
---|---|
效应量 | 每个研究的标准化均值差, 即Cohen’s d值作为因变量 |
助推类型 | |
系统1 | 系统1助推赋值为1, 其他赋值为0 |
透明型 | 透明型助推赋值为1, 其他赋值为0 |
透明型系统1 | 透明型系统1助推赋值为1, 其他赋值为0 |
透明型系统2 | 透明型系统2助推赋值为1, 其他赋值为0 |
不透明型系统1 | 不透明型系统1助推赋值为1, 其他赋值为0 |
研究设计 | |
样本量 | 单个实验中控制组与对照组合计被试人数大于等于1000赋值为1, 小于1000赋值为0 |
实验类型 | 实地实验赋值为1, 其他实验赋值为0 |
数据类型 | 连续变量赋值为1, 二分类变量赋值为0 |
行为特征 | |
行为动机 | 自利行为赋值为1, 利他行为赋值为0 |
金钱变动 | 有实际金钱变动赋值为1, 无金钱变动赋值为0 |
行为领域 | |
健康 | 健康领域赋值为1, 其他领域赋值为0 |
消费 | 消费领域赋值为1, 其他领域赋值为0 |
金融 | 金融领域赋值为1, 其他领域赋值为0 |
公共利益 | 涉及公共利益赋值为1, 其他赋值为0 |
变量名称 | 变量定义 |
---|---|
效应量 | 每个研究的标准化均值差, 即Cohen’s d值作为因变量 |
助推类型 | |
系统1 | 系统1助推赋值为1, 其他赋值为0 |
透明型 | 透明型助推赋值为1, 其他赋值为0 |
透明型系统1 | 透明型系统1助推赋值为1, 其他赋值为0 |
透明型系统2 | 透明型系统2助推赋值为1, 其他赋值为0 |
不透明型系统1 | 不透明型系统1助推赋值为1, 其他赋值为0 |
研究设计 | |
样本量 | 单个实验中控制组与对照组合计被试人数大于等于1000赋值为1, 小于1000赋值为0 |
实验类型 | 实地实验赋值为1, 其他实验赋值为0 |
数据类型 | 连续变量赋值为1, 二分类变量赋值为0 |
行为特征 | |
行为动机 | 自利行为赋值为1, 利他行为赋值为0 |
金钱变动 | 有实际金钱变动赋值为1, 无金钱变动赋值为0 |
行为领域 | |
健康 | 健康领域赋值为1, 其他领域赋值为0 |
消费 | 消费领域赋值为1, 其他领域赋值为0 |
金融 | 金融领域赋值为1, 其他领域赋值为0 |
公共利益 | 涉及公共利益赋值为1, 其他赋值为0 |
变量 | 模型1 | 模型2 | 模型3 | 模型4 | 模型5 | 模型6 |
---|---|---|---|---|---|---|
常数项 | 0.26 (4.22) | 0.32 (5.17) | 0.08 (0.59) | 0.51** (3.35) | 0.51** (2.97) | 0.39* (1.91) |
助推类型 | ||||||
透明型 | 0.11 (1.3) | 0.07 (0.78) | ||||
系统1 | −0.01 (0.39) | 0.00 (0.01) | ||||
透明型系统1 | 0.24 (1.39) | 0.21 (1.02) | ||||
透明型系统2 | 0.32 (2.21) | 0.19 (1.17) | ||||
不透明型系统1 | 0.24 (1.66) | 0.15 (0.92) | ||||
研究设计 | ||||||
样本量 | −0.52*** (-5.05) | −0.53*** (−5.11) | −0.48*** (−4.25) | |||
实地实验 | 0.12 (1.05) | 0.15 (1.31) | 0.1 (0.8) | |||
数据类型 | 0.02 (0.23) | 0.03 (0.26) | 0.03 (0.03) | |||
行为特征 | ||||||
行为动机 | −0.06 (−0.56) | −0.04 (−0.38) | −0.06 (−0.51) | |||
金钱变动 | 0.1 (0.11) | 0.02 (0.25) | 0.00 (−0.04) | |||
行为领域 | ||||||
健康 | 0.23* (2.1) | 0.22* (1.97) | 0.26* (2.17) | |||
消费 | −0.21 (-1.2) | −0.21 (−1.21) | −0.23 (−1.28) | |||
金融 | 0.26* (1.8) | 0.28* (1.93) | 0.25* (1.62) | |||
公共利益 | −0.15 (-1.35) | −0.14 (−1.26) | −0.17 (−1.48) | |||
Adjusted R² | 0.01 | −0.01 | 0.02 | 0.25 | 0.24 | 0.24 |
F统计量 | 1.68 | 0.01 | 1.63 | 4.5*** | 4.41*** | 3.78*** |
变量 | 模型1 | 模型2 | 模型3 | 模型4 | 模型5 | 模型6 |
---|---|---|---|---|---|---|
常数项 | 0.26 (4.22) | 0.32 (5.17) | 0.08 (0.59) | 0.51** (3.35) | 0.51** (2.97) | 0.39* (1.91) |
助推类型 | ||||||
透明型 | 0.11 (1.3) | 0.07 (0.78) | ||||
系统1 | −0.01 (0.39) | 0.00 (0.01) | ||||
透明型系统1 | 0.24 (1.39) | 0.21 (1.02) | ||||
透明型系统2 | 0.32 (2.21) | 0.19 (1.17) | ||||
不透明型系统1 | 0.24 (1.66) | 0.15 (0.92) | ||||
研究设计 | ||||||
样本量 | −0.52*** (-5.05) | −0.53*** (−5.11) | −0.48*** (−4.25) | |||
实地实验 | 0.12 (1.05) | 0.15 (1.31) | 0.1 (0.8) | |||
数据类型 | 0.02 (0.23) | 0.03 (0.26) | 0.03 (0.03) | |||
行为特征 | ||||||
行为动机 | −0.06 (−0.56) | −0.04 (−0.38) | −0.06 (−0.51) | |||
金钱变动 | 0.1 (0.11) | 0.02 (0.25) | 0.00 (−0.04) | |||
行为领域 | ||||||
健康 | 0.23* (2.1) | 0.22* (1.97) | 0.26* (2.17) | |||
消费 | −0.21 (-1.2) | −0.21 (−1.21) | −0.23 (−1.28) | |||
金融 | 0.26* (1.8) | 0.28* (1.93) | 0.25* (1.62) | |||
公共利益 | −0.15 (-1.35) | −0.14 (−1.26) | −0.17 (−1.48) | |||
Adjusted R² | 0.01 | −0.01 | 0.02 | 0.25 | 0.24 | 0.24 |
F统计量 | 1.68 | 0.01 | 1.63 | 4.5*** | 4.41*** | 3.78*** |
交互项 | 模型1 | 模型2 | 模型3 | 模型4 | 模型5 | 模型6 | 模型7 | 模型8 | 模型9 |
---|---|---|---|---|---|---|---|---|---|
样本量 | 实地实验 | 数据类型 | 行为动机 | 金钱变动 | 健康 | 消费 | 金融 | 公共利益 | |
β1 | −0.27** (−2.31) | 0.04 (0.31) | 0.04 (0.33) | 0.04 (0.28) | 0.15 (1.28) | 0.04 (0.34) | 0.00 (0.00) | 0.59 (0.64) | −0.12 (−0.89) |
β2 | −0.56*** (−4.73) | −0.1 (−0.78) | 0.1 (0.75) | 0.13 (0.92) | 0.267 (2.07) | 0.08 (0.67) | 0.11 (0.46) | 0.36* (2.43) | −0.35** (−2.86) |
β3 | 0.29* (1.77) | −0.1 (−0.6) | −0.1 (−0.56) | 0.00 (−0.01) | −0.39 (−2.21) | −0.1 (−0.48) | −0.1 (−0.35) | −0.16 (−0.54) | 0.24 (1.37) |
Adjusted R² | 0.19 | 0.00 | −0.02 | −0.01 | 0.02 | −0.02 | −0.03 | 0.03 | 0.05 |
F统计量 | 9.43*** | 1.14 | 0.19 | 0.66 | 1.77 | 0.15 | 0.07 | 2.16* | 2.98* |
交互项 | 模型1 | 模型2 | 模型3 | 模型4 | 模型5 | 模型6 | 模型7 | 模型8 | 模型9 |
---|---|---|---|---|---|---|---|---|---|
样本量 | 实地实验 | 数据类型 | 行为动机 | 金钱变动 | 健康 | 消费 | 金融 | 公共利益 | |
β1 | −0.27** (−2.31) | 0.04 (0.31) | 0.04 (0.33) | 0.04 (0.28) | 0.15 (1.28) | 0.04 (0.34) | 0.00 (0.00) | 0.59 (0.64) | −0.12 (−0.89) |
β2 | −0.56*** (−4.73) | −0.1 (−0.78) | 0.1 (0.75) | 0.13 (0.92) | 0.267 (2.07) | 0.08 (0.67) | 0.11 (0.46) | 0.36* (2.43) | −0.35** (−2.86) |
β3 | 0.29* (1.77) | −0.1 (−0.6) | −0.1 (−0.56) | 0.00 (−0.01) | −0.39 (−2.21) | −0.1 (−0.48) | −0.1 (−0.35) | −0.16 (−0.54) | 0.24 (1.37) |
Adjusted R² | 0.19 | 0.00 | −0.02 | −0.01 | 0.02 | −0.02 | −0.03 | 0.03 | 0.05 |
F统计量 | 9.43*** | 1.14 | 0.19 | 0.66 | 1.77 | 0.15 | 0.07 | 2.16* | 2.98* |
交互项 | 模型1 | 模型2 | 模型3 | 模型4 | 模型5 | 模型6 | 模型7 | 模型8 | 模型9 |
---|---|---|---|---|---|---|---|---|---|
样本量 | 实地实验 | 数据类型 | 行为动机 | 金钱变动 | 健康 | 消费 | 金融 | 公共利益 | |
β1 | 0.25* (2.23) | 0.16 (1.26) | 0.05 (0.49) | −0.12 (−0.93) | 0.08 (0.76) | −0.02 (−0.21) | 0.12 (1.28) | 0.06 (0.71) | 0.36** (2.72) |
β2 | −0.26* (−2.23) | −0.2 (−1.58) | −0.03 (−0.2) | −0.09 (−0.72) | −0.06 (−0.57) | −0.16 (−1.25) | 0.07 (0.41) | 0.32 (1) | −0.02 (−0.13) |
β3 | 0.23 (−1.46) | 0.00 (0.01) | 0.19 (1.05) | 0.38* (2.18) | 0.03 (0.21) | 0.42* (2.3) | −0.02 (−0.06) | −0.04 (−0.12) | −0.4* (−2.41) |
Adjusted R² | 0.19 | 0.03 | 0.00 | 0.04 | −0.01 | 0.04 | −0.01 | 0.03 | 0.1 |
F统计量 | 9.29*** | 2.21* | 1.1 | 2.59* | 0.66 | 2.45* | 0.62 | 2.15* | 4.97** |
交互项 | 模型1 | 模型2 | 模型3 | 模型4 | 模型5 | 模型6 | 模型7 | 模型8 | 模型9 |
---|---|---|---|---|---|---|---|---|---|
样本量 | 实地实验 | 数据类型 | 行为动机 | 金钱变动 | 健康 | 消费 | 金融 | 公共利益 | |
β1 | 0.25* (2.23) | 0.16 (1.26) | 0.05 (0.49) | −0.12 (−0.93) | 0.08 (0.76) | −0.02 (−0.21) | 0.12 (1.28) | 0.06 (0.71) | 0.36** (2.72) |
β2 | −0.26* (−2.23) | −0.2 (−1.58) | −0.03 (−0.2) | −0.09 (−0.72) | −0.06 (−0.57) | −0.16 (−1.25) | 0.07 (0.41) | 0.32 (1) | −0.02 (−0.13) |
β3 | 0.23 (−1.46) | 0.00 (0.01) | 0.19 (1.05) | 0.38* (2.18) | 0.03 (0.21) | 0.42* (2.3) | −0.02 (−0.06) | −0.04 (−0.12) | −0.4* (−2.41) |
Adjusted R² | 0.19 | 0.03 | 0.00 | 0.04 | −0.01 | 0.04 | −0.01 | 0.03 | 0.1 |
F统计量 | 9.29*** | 2.21* | 1.1 | 2.59* | 0.66 | 2.45* | 0.62 | 2.15* | 4.97** |
(标*的文献为纳入元分析的文献) | |
[1] | 付春野, 吕小康, 张雅睿. (2022). 公共政策中助推策略的伦理争议. 公共行政评论, 15(3), 179-195+200. |
[2] | 李燕, 苏一丹, 朱春奎. (2021). 公民政策遵从研究述评: 基于“政策情境”与“行为特征”的二元视角. 公共行政评论, 14(4), 175-195+200. |
[3] | 张书维, 胡鑫雅, 王宇. (2022). 助推生育意愿的默认选项效应研究: 以“二孩”为支点. 公共行政评论, 15(5), 4-26+196. |
[4] |
赵宁, 刘鑫, 李纾, 郑蕊. (2022). 默认选项设置的助推效果: 来自元分析的证据. 心理科学进展, 30(6), 1230-1241.
doi: 10.3724/SP.J.1042.2022.01230 |
[5] | *Ackfeld, V., Rohloff, T., & Rzepka, S. (2021). Increasing personal data contributions for the greater public good: A field experiment on an online education platform. Behavioural Public Policy. Advance online publication. 10.1017/bpp.2021.39 |
[6] |
Arad, A., & Rubinstein, A. (2018). The people’s perspective on libertarian-paternalistic policies. The Journal of Law and Economics, 61(2), 311-333.
doi: 10.1086/698608 URL |
[7] | Arno, A., & Thomas, S. (2016). The efficacy of nudge theory strategies in influencing adult dietary behaviour: A systematic review and meta-analysis. BMC Public Health, 16, Article 676. 10.1186/s12889-016-3272-x |
[8] |
*Baggio, M., & Motterlini, M. (2022). Testing donation menus: On charitable giving for cancer research-Evidence from a natural field experiment. Behavioural Public Policy, 6(3), 417-438.
doi: 10.1017/bpp.2019.13 URL |
[9] | Banerjee, S., & John, P. (2021). Nudge plus: Incorporating reflection into behavioral public policy. Behavioural Public Policy. Advance online publication. https://doi.org/10.1017/bpp.2021.6 |
[10] | *Berliner Senderey, A., Ohana, R., Perchik, S., Erev, I., & Balicer, R. D. (2022). Encouraging COVID-19 vaccination through behaviorally informed reminders: Results from a national randomized field experiment in Israel. Behavioral Science & Policy, 8(1), 25-32. |
[11] |
*Blanco, L., & Rodriguez, L. (2020). Delivering information about retirement saving among Hispanic women: Two Facebook experiments. Behavioural Public Policy, 4(3), 343-369.
doi: 10.1017/bpp.2018.33 pmid: 34084943 |
[12] | Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2009). Introduction to meta-analysis. Chichester: John Wiley & Sons Ltd. |
[13] |
*Boruchowicz, C., Lopez Boo, F., Roseth, B., & Tejerina, L. (2023). Default options: A powerful behavioral tool to increase COVID-19 contact tracing app acceptance in Latin America? Behavioural Public Policy, 7(3), 662-678.
doi: 10.1017/bpp.2021.38 URL |
[14] | Bovens, L. (2009). The ethics of nudge. In T. Grüne-Yanoff & S. O. Hansson (Eds), Preference change: Approaches from philosophy, economics and psychology (Vol. 42, pp. 207-219). Springer-Dordrecht. |
[15] |
*Bradt, J. (2022). Comparing the effects of behaviorally informed interventions on flood insurance demand: An experimental analysis of ‘boosts’ and ‘nudges’. Behavioural Public Policy, 6(3), 485-515.
doi: 10.1017/bpp.2019.31 URL |
[16] |
Bruns, H., Kantorowicz-Reznichenko, E., Klement, K., Jonsson, M. L., & Rahali, B. (2018). Can nudges be transparent and yet effective? Journal of Economic Psychology, 65, 41-59.
doi: 10.1016/j.joep.2018.02.002 URL |
[17] |
Cadario, R., & Chandon, P. (2019). Which healthy eating nudges work best? A meta-analysis of field experiments. Marketing Science, 39(3), 465-486.
doi: 10.1287/mksc.2018.1128 URL |
[18] | *Castelo, N., Hardy, E., House, J., Mazar, N., Tsai, C., & Zhao, M. (2015). Moving citizens online: Using salience & message framing to motivate behavior change. Behavioral Science & Policy, 1(2), 57-68. |
[19] |
*Chandra, G. (2023). Non-monetary intervention to discourage consumption of single-use plastic bags. Behavioural Public Policy, 7(1), 143-156.
doi: 10.1017/bpp.2020.9 URL |
[20] | *Chapman, G. B., Li, M., Leventhal, H., & Leventhal, E. A. (2016). Default clinic appointments promote influenza vaccination uptake without a displacement effect. Behavioral Science & Policy, 2(2), 40-50. |
[21] |
*Chen, N., Trump, K., Hall, S., & Le, Q. (2023). The effect of postcard reminders on vaccinations among the elderly: A block-randomized experiment. Behavioural Public Policy, 7(2), 240-265.
doi: 10.1017/bpp.2020.34 URL |
[22] |
*Chin, A., & Beckett, D. (2021). Don't watch me read: How mere presence and mandatory waiting periods affect consumer attention to disclosures. Behavioural Public Policy, 5(2), 202-221.
doi: 10.1017/bpp.2018.44 URL |
[23] | Cohen, J. (1988). Statistical power analysis for the behavioral sciences. New York: Lawrence Erlbaum Associates. |
[24] |
Cooper, H. M. (1981). On the significance of effects and the effects of significance. Journal of Personality and Social Psychology, 41(5), 1013-1018.
doi: 10.1037/0022-3514.41.5.1013 URL |
[25] |
de Ridder, D., Kroese, F., & van Gestel, L. (2022). Nudgeability: Mapping conditions of susceptibility to nudge influence. Perspectives on Psychological Science, 17(2), 346-359.
doi: 10.1177/1745691621995183 URL |
[26] |
DellaVigna, S., & Linos, E. (2022). RCTs to scale: Comprehensive evidence from two nudge units. Econometrica, 90(1), 81-116.
doi: 10.3982/ECTA18709 URL |
[27] | *De-loyde, K., Pilling, M., Thornton, A., Spencer, G., & Maynard, O. (2022). Promoting sustainable diets using eco-labelling and social nudges: A randomised online experiment. Behavioural Public Policy. Advance online publication. 10.1017/bpp.2022.27 |
[28] | *Dewies, M., Schop-Etman, A., Merkelbach, I., Rohde, K., & Denktaş, S. (2022). Call first, pay later: Stimulating debtors to contact their creditors improves debt collection in the context of financial scarcity. Behavioural Public Policy. Advance online publication. 10.1017/bpp.2022.7 |
[29] |
Dolan, P., Hallsworth, M., Halpern, D., King, D., Metcalfe, R., & Vlaev, I. (2012). Influencing behaviour: The mindspace way. Journal of Economic Psychology, 33(1), 264-277.
doi: 10.1016/j.joep.2011.10.009 URL |
[30] | Dolan, P., Hallsworth, M., Halpern, D., King, D., & Vlaev, I. (2010). MINDSPACE: Influencing behaviour through public policy. Retrieved June 23, 2023, from https://www.bi.team/publications/mindspace/ |
[31] | Frey, B. S., & Oberholzer-Gee, F. (1997). The cost of price incentives: An empirical analysis of motivation crowding- out. The American Economic Review, 87(4), 746-755. |
[32] |
*Gerber, A., Huber, G., & Fang, A. (2023). Voting behavior is unaffected by subtle linguistic cues: Evidence from a psychologically authentic replication. Behavioural Public Policy, 7(2), 380-394.
doi: 10.1017/bpp.2020.57 URL |
[33] |
Gigerenzer, G. (2015). On the supposed evidence for libertarian paternalism. Review of Philosophy and Psychology, 6(3), 361-383.
pmid: 26213590 |
[34] | *Gråd, E., Erlandsson, A., & Tinghög, G. (2021). Do nudges crowd out prosocial behavior? Behavioural Public Policy. Advance online publication. 10.1017/bpp.2021.10 |
[35] |
*Gravert, C., & Kurz, V. (2021). Nudging à la carte: A field experiment on climate-friendly food choice. Behavioural Public Policy, 5(3), 378-395.
doi: 10.1017/bpp.2019.11 URL |
[36] | *Grinstein-Weiss, M., Cryder, C., Despard, M. R., Perantie, D. C., Oliphant, J. E., & Ariely, D. (2017). The role of choice architecture in promoting saving at tax time: Evidence from a large-scale field experiment. Behavioral Science & Policy, 3(2), 20-38. |
[37] |
Hansen, P. G., & Jespersen, A. M. (2013). Nudge and the manipulation of choice: A framework for the responsible use of the nudge approach to behaviour change in public policy. European Journal of Risk Regulation, 4(1), 3-28.
doi: 10.1017/S1867299X00002762 URL |
[38] |
Hertwig, R., & Grüne-Yanoff, T. (2017). Nudging and boosting: Steering or empowering good decisions. Perspectives on Psychological Science, 12(6), 973-986.
doi: 10.1177/1745691617702496 pmid: 28792862 |
[39] |
*Hodson, N. (2023). Cancer screening and accessibility bias: People want screening when informed it saves no lives. Behavioural Public Policy, 7(1), 157-169.
doi: 10.1017/bpp.2020.10 URL |
[40] |
Hummel, D., & Maedche, A. (2019). How effective is nudging? A quantitative review on the effect sizes and limits of empirical nudging studies. Journal of Behavioral and Experimental Economics, 80, 47-58.
doi: 10.1016/j.socec.2019.03.005 URL |
[41] |
Jachimowicz, J. M., Duncan, S., Weber, E. U., & Johnson, E. J. (2019). When and why defaults influence decisions: A meta-analysis of default effects. Behavioural Public Policy, 3(2), 159-186.
doi: 10.1017/bpp.2018.43 URL |
[42] |
*Jachimowicz, J. M., Gladstone, J., Berry, D., Kirkdale, C., Thornley, T., & Galinsky, A. (2021). Making medications stick: Improving medication adherence by highlighting the personal health costs of non-compliance. Behavioural Public Policy, 5(3), 396-416.
doi: 10.1017/bpp.2019.1 URL |
[43] | John, P., Cotterill, S., Moseley, A., Richardson, L., Smith, G., Stoker, G., & Wales, C. (2013). Nudge, nudge, think, think: Experimenting with ways to change civic behaviour. London: Bloomsbury Academic. |
[44] | John, P., & Stoker, G. (2019). Rethinking the role of experts and expertise in behavioural public policy. Policy & Politics, 47(2), 209-225. |
[45] |
Jung, J. Y., & Mellers, B. A. (2016). American attitudes toward nudges. Judgment and Decision Making, 11(1), 62-74.
doi: 10.1017/S1930297500007592 URL |
[46] | Kahneman, D. (2011). Thinking, fast and slow. New York: Farrar, Straus and Giroux. |
[47] | Kalkstein, D. A., De Lima, F., Brady, S. T., Rozek, C. S., Johnson, E. J., & Walton, G. M. (2022). Defaults are not a panacea: Distinguishing between default effects on choices and on outcomes. Behavioural Public Policy. Advance online publication. 10.1017/bpp.2022.24 |
[48] | *Kantorowicz-Reznichenko, E., Kantorowicz, J., & Wells, L. (2022). Can vaccination intentions against COVID-19 be nudged? Behavioural Public Policy. Advance online publication. 10.1017/bpp.2022.20 |
[49] | *Karlan, D., Morten, M., & Zinman, J. (2015). A personal touch in text messaging can improve microloan repayment. Behavioral Science & Policy, 1(2), 25-31. |
[50] | *Keppeler, F., Sievert, M., & Jilke, S. (2022). Increasing COVID-19 vaccination intentions: A field experiment on psychological ownership. Behavioural Public Policy. Advance online publication. 10.1017/bpp.2022.16 |
[51] |
Kjaergard, L. L., Villumsen, J., & Gluud, C. (2001). Reported methodologic quality and discrepancies between large and small randomized trials in meta-analyses. Annals of Internal Medicine, 135(11), 982-989.
doi: 10.7326/0003-4819-135-11-200112040-00010 pmid: 11730399 |
[52] | *Knoll, M. A. Z., Appelt, K. C., Johnson, E. J., & Westfall, J. E. (2015). Time to retire: Why Americans claim benefits early & how to encourage delay. Behavioral Science & Policy, 1(1), 53-62. |
[53] |
*Köbis, N., Troost, M., Brandt, C., & Soraperra, I. (2022). Social norms of corruption in the field: Social nudges on posters can help to reduce bribery. Behavioural Public Policy, 6(4), 597-624.
doi: 10.1017/bpp.2019.37 URL |
[54] |
*Kölle, F., Lane, T., Nosenzo, D., & Starmer, C. (2020). Promoting voter registration: The effects of low-cost interventions on behaviour and norms. Behavioural Public Policy, 4(1), 26-49.
doi: 10.1017/bpp.2019.10 URL |
[55] | Krijnen, J. M., Tannenbaum, D., & Fox, C. R. (2017). Choice architecture 2.0: Behavioral policy as an implicit social interaction. Behavioral Science & Policy, 3(2), i-18. |
[56] | Kroese, F. M., Marchiori, D. R., & de Ridder, D. (2016). Nudging healthy food choices: A field experiment at the train station. Journal of Public Health, 38(2), E133-E137. |
[57] |
*Krpan, D., Makki, F., Saleh, N., Brink, S., & Klauznicer, H. (2021). When behavioural science can make a difference in times of COVID-19. Behavioural Public Policy, 5(2), 153-179.
doi: 10.1017/bpp.2020.48 URL |
[58] |
Lelorier, J., Grégoire, G., Benhaddad, A., Lapierre, J., & Derderian, F. (1997). Discrepancies between meta- analyses and subsequent large randomized, controlled trials. New England Journal of Medicine, 337(8), 536-542.
doi: 10.1056/NEJM199708213370806 URL |
[59] | *Li, X., Hsee, C. K., & Wang, L. (2021). Incivility awareness could save lives. Behavioral Science & Policy, 7(1), 1-8. |
[60] | *Linos, E., Reddy, V., & Rothstein, J. (2022). Demystifying college costs: How nudges can and can't help. Behavioural Public Policy. Advance online publication. 10.1017/bpp.2022.1 |
[61] | Loewenstein, G., Bryce, C., Hagmann, D., & Rajpal, S. (2015). Warning: You are about to be nudged. Behavioral Science & Policy, 1(1), 35-42. |
[62] |
Loewenstein, G., & Chater, N. (2017). Putting nudges in perspective. Behavioural Public Policy, 1(1), 26-53.
doi: 10.1017/bpp.2016.7 URL |
[63] |
Loewenstein, G., Sunstein, C. R., & Golman, R. (2014). Disclosure: Psychology changes everything. Annual Review of Economics, 6, 391-419.
doi: 10.1146/economics..6.issue-1 URL |
[64] |
Lunn, P. D., & Choisdealbha, Á. N. (2018). The case for laboratory experiments in behavioural public policy. Behavioural Public Policy, 2(1), 22-40.
doi: 10.1017/bpp.2016.6 URL |
[65] | Marchiori, D. R., Adriaanse, M. A., & de Ridder, D. (2017). Unresolved questions in nudging research: Putting the psychology back in nudging. Social and Personality Psychology Compass, 11(1), Article e12297. https://doi.org/10.1111/spc3.12297 |
[66] | Mertens, S., Herberz, M., Hahnel, U. J., & Brosch, T. (2022). The effectiveness of nudging: A meta-analysis of choice architecture interventions across behavioral domains. PNAS of the United States of America, 119(1), Article e2107346118. 10.1073/pnas.2107346118 |
[67] | Michie, S., van Stralen, M. M., & West, R. (2011). The behaviour change wheel: A new method for characterising and designing behaviour change interventions. Implementation Science, 6, Article 42. 10.1186/1748-5908-6-42 |
[68] |
Mills, S. (2022). Personalized nudging. Behavioural Public Policy, 6(1), 150-159.
doi: 10.1017/bpp.2020.7 URL |
[69] | Mills, S., & Whittle, R. (2023). Seeing the nudge from the trees: The 4S framework for evaluating nudges. Public Administration. Advance online publication. https://doi.org/10.1111/padm.12941 |
[70] | *Mobekk, H., & Stokke, L. (2020). Nudges emphasizing social norms increased hospital visitors’ hand sanitizer use. Behavioral Science & Policy, 6(2), 51-57. |
[71] | *Mol, J., Botzen, W., Blasch, J., Kranzler, E., & Kunreuther, H. (2021). All by myself? Testing descriptive social norm-nudges to increase flood preparedness among homeowners. Behavioural Public Policy. Advance online publication. 10.1017/bpp.2021.17 |
[72] |
Mols, F., Haslam, S. A., Jetten, J., & Steffens, N. K. (2015). Why a nudge is not enough: A social identity critique of governance by stealth. European Journal of Political Research, 54(1), 81-98.
doi: 10.1111/ejpr.2015.54.issue-1 URL |
[73] | Nemati, M., & Penn, J. (2020). The impact of information- based interventions on conservation behavior: A meta- analysis. Resource and Energy Economics, 62, Article 101201. 10.1016/j.reseneeco.2020.101201 |
[74] | Nisa, C. F., Bélanger, J. J., Schumpe, B. M., & Faller, D. G. (2019). Meta-analysis of randomised controlled trials testing behavioural interventions to promote household action on climate change. Nature Communications, 10, Article 4545. 10.1038/s41467-019-12457-2 |
[75] |
Paunov, Y., Wänke, M., & Vogel, T. (2019a). Ethical defaults: Which transparency components can increase the effectiveness of default nudges? Social Influence, 14(3-4), 104-116.
doi: 10.1080/15534510.2019.1675755 URL |
[76] |
*Paunov, Y., Wänke, M., & Vogel, T. (2019b). Transparency effects on policy compliance: Disclosing how defaults work can enhance their effectiveness. Behavioural Public Policy, 3(2), 187-208.
doi: 10.1017/bpp.2018.40 URL |
[77] |
*Persian, R., Prastuti, G., Adityawarman, Bogiatzis-Gibbons, D., Kurniawan, M., Subroto, G., … Sutherland, A. (2023). Behavioural prompts to increase early filing of tax returns: A population-level randomised controlled trial of 11.2 million taxpayers in Indonesia. Behavioural Public Policy, 7(3), 701-720.
doi: 10.1017/bpp.2022.25 URL |
[78] |
Peterson, R. A., Albaum, G., & Beltramini, R. F. (1985). A meta-analysis of effect sizes in consumer behavior experiments. Journal of Consumer Research, 12(1), 97-103.
doi: 10.1086/jcr.1985.12.issue-1 URL |
[79] |
*Renaud, K., & Zimmermann, V. (2019). Nudging folks towards stronger password choices: Providing certainty is the key. Behavioural Public Policy, 3(2), 228-258.
doi: 10.1017/bpp.2018.3 URL |
[80] | Reñosa, M. D. C., Landicho, J., Wachinger, J., Dalglish, S. L., Bärnighausen, K., Bärnighausen, T., & McMahon, S. A. (2021). Nudging toward vaccination: A systematic review. BMJ Global Health, 6(9), Article e006237. http://dx.doi.org/10.1136/bmjgh-2021-006237 |
[81] | *Reynolds, J., Hobson, A., Ventsel, M., Pilling, M., Marteau, T., & Hollands, G. (2022). Effect of visualising and re-expressing evidence of policy effectiveness on perceived effectiveness: A population-based survey experiment. Behavioural Public Policy. Advance online publication. https://doi.org/10.1017/bpp.2022.32 |
[82] |
*Rinscheid, A., Pianta, S., & Weber, E. (2021). What shapes public support for climate change mitigation policies? The role of descriptive social norms and elite cues. Behavioural Public Policy, 5(4), 503-527.
doi: 10.1017/bpp.2020.43 URL |
[83] | *Ritov, I., & Garcia, S. M. (2022). Ventilator allocations: The effect of mere identifiability. Behavioral Science & Policy, 8(1), 35-44. |
[84] |
Sánchez-Meca, J., Marín-Martínez, F., & Chacón-Moscoso, S. (2003). Effect-size indices for dichotomized outcomes in meta-analysis. Psychological Methods, 8(4), 448-467.
pmid: 14664682 |
[85] | *Sin, R., Harris, T., Nilsson, S., & Beck, T. (2022). Dark patterns in online shopping: Do they work and can nudges help mitigate impulse buying? Behavioural Public Policy. Advance online publication. https://doi.org/10.1017/bpp.2022.11 |
[86] |
Slavin, R., & Smith, D. (2009). The Relationship Between Sample Sizes and Effect Sizes in Systematic Reviews in Education. Educational Evaluation and Policy Analysis, 31(4), 500-506.
doi: 10.3102/0162373709352369 URL |
[87] |
*Sloman, S., Kupor, D., & Yokum, D. (2023). Are voters influenced by the results of a consensus conference? Behavioural Public Policy, 7(2), 395-416.
doi: 10.1017/bpp.2021.2 URL |
[88] |
Steffel, M., Williams, E. F., & Pogacar, R. (2016). Ethically deployed defaults: Transparency and consumer protection through disclosure and preference articulation. Journal of Marketing Research, 53(5), 865-880.
doi: 10.1509/jmr.14.0421 URL |
[89] | Sunstein, C. R. (2015). The ethics of nudging. Yale Journal on Regulation, 32(2), 413-450. |
[90] | Sunstein, C. R. (2016). People prefer system 2 nudges (kind of). Duke Law Journal, 66(1), 121-168. |
[91] |
Sunstein, C. R. (2017). Nudges that fail. Behavioural Public Policy, 1(1), 4-25.
doi: 10.1017/bpp.2016.3 URL |
[92] | Tang, L. L., Caudy, M., & Taxman, F. (2013). A statistical method for synthesizing meta-analyses. Computational and Mathematical Methods in Medicine, 2013, Article 732989. https://doi.org/10.1155/2013/732989 |
[93] | Thaler, R. (2015). Misbehaving: The making of behavioral economics. New York: W.W. Norton & Company. |
[94] |
Thaler, R. H., & Sunstein, C. R. (2003). Libertarian paternalism. American Economic Review, 93(2), 175-179.
doi: 10.1257/000282803321947001 URL |
[95] | Thaler, R. H., & Sunstein, C. R. (2008). Nudge: Improving decisions about health, wealth and happiness. New Haven: Yale University Press. |
[96] |
Tor, A. (2020). Nudges that should fail? Behavioural Public Policy, 4(3), 316-342.
doi: 10.1017/bpp.2019.5 URL |
[97] | van der Linden, S., & Goldberg, M. H. (2020). Alternative meta-analysis of behavioral interventions to promote action on climate change yields different conclusions. Nature Communications, 11(1), Article 3915. https://doi.org/10.1038/s41467-020-17613-7 |
[98] |
van Gestel, L. C., Adriaanse, M. A., & de Ridder, D. (2021). Do nudges make use of automatic processing? Unraveling the effects of a default nudge under type 1 and type 2 processing. Comprehensive Results in Social Psychology, 5(1-3), 4-24.
doi: 10.1080/23743603.2020.1808456 URL |
[99] |
*van Roekel, H., Reinhard, J., & Grimmelikhuijsen, S. (2022). Improving hand hygiene in hospitals: Comparing the effect of a nudge and a boost on protocol compliance. Behavioural Public Policy, 6(1), 52-74.
doi: 10.1017/bpp.2021.15 URL |
[100] |
Vasas, Z. (2023). Do nudges increase consumer search and switching? Evidence from financial markets. Behavioural Public Policy, 7(3), 808-824.
doi: 10.1017/bpp.2022.23 URL |
[101] |
*Veltri, G., Lupiáñez-Villanueva, F., Folkvord, F., Theben, A., & Gaskell, G. (2023). The impact of online platform transparency of information on consumers’ choices. Behavioural Public Policy, 7(1), 55-82.
doi: 10.1017/bpp.2020.11 URL |
[102] |
Weijers, R. J., de Koning, B. B., & Paas, F. (2021). Nudging in education: From theory towards guidelines for successful implementation. European Journal of Psychology of Education, 36(3), 883-902.
doi: 10.1007/s10212-020-00495-0 |
[103] |
Wood, W., & Quinn, J. M. (2003). Forewarned and forearmed? Two meta-analysis syntheses of forewarnings of influence appeals. Psychological Bulletin, 129(1), 119-138.
doi: 10.1037/0033-2909.129.1.119 URL |
[104] | Wooldridge, J. M. (2016). Introductory econometrics: A modern approach. Boston: Cengage Learning. |
[105] | Yeung, K. (2017). ‘Hypernudge’: Big Data as a mode of regulation by design. Information, Communication & Society, 20(1), 118-136. |
[1] | YIN Kui, CHI Zhikang, DONG Niannian, LI Peikai, ZHAO Jing. The relationship between team reflexivity and team resources development, team resources utilization, and team outcomes: A meta-analysis [J]. Advances in Psychological Science, 2024, 32(2): 228-245. |
[2] | MENG Xianxin, CHEN Yijing, WANG Xinyi, YUAN Jiajin, YU Delin. The relationship between school connectedness and depression: A three-level meta-analytic review [J]. Advances in Psychological Science, 2024, 32(2): 246-263. |
[3] | CHEN Yanyan, WU Junhui, LUAN Shenghua. The mechanisms and promotion strategies of cooperation in the intergenerational dilemma [J]. Advances in Psychological Science, 2023, 31(9): 1728-1741. |
[4] | KANG Dan, WEN Min, ZHANG Yingjie. The relationship between fine motor skills and mathematical ability in children: A meta-analysis [J]. Advances in Psychological Science, 2023, 31(8): 1443-1459. |
[5] | LI Ying, ZHAO Hongyu, ZHANG Mujun, FAN Zixuan, WANG Yue. The bilingual advantage effect on executive control and its moderators: Evidence from meta-analysis [J]. Advances in Psychological Science, 2023, 31(6): 970-987. |
[6] | ZHANG Ting, ZHANG Kelin, ZHOU Renlai. HPA axis dysfunction in women with premenstrual syndrome: A meta-analysis based on cortisol levels [J]. Advances in Psychological Science, 2023, 31(6): 988-1001. |
[7] | LI Yadan, DU Ying, XIE Cong, LIU Chunyu, YANG Yilong, LI Yangping, QIU Jiang. A meta-analysis of the relationship between semantic distance and creative thinking [J]. Advances in Psychological Science, 2023, 31(4): 519-534. |
[8] | ZENG Runxi, LI You. The Relationship between self-efficacy and online health information seeking: A meta-analysis [J]. Advances in Psychological Science, 2023, 31(4): 535-551. |
[9] | WU Jiahui, FU Hailun, ZHANG Yuhuan. A meta-analysis of the relationship between perceived social support and student academic achievement: The mediating role of student engagement [J]. Advances in Psychological Science, 2023, 31(4): 552-569. |
[10] | ZHANG Ning, WANG Anran. Behavioral intervention strategies to nudge smoking cessation [J]. Advances in Psychological Science, 2023, 31(4): 684-696. |
[11] | GUO Ying, TIAN Xin, HU Dong, BAI Shulin, ZHOU Shuxi. The effects of shame on prosocial behavior: A systematic review and three-level meta-analysis [J]. Advances in Psychological Science, 2023, 31(3): 371-385. |
[12] | CHEN Lijun, HUANG Meilin, JIANG Xiaoliu, WANG Xinjian. Does classical music make you smarter? A meta-analysis based on generalized Mozart effect [J]. Advances in Psychological Science, 2023, 31(12): 2232-2262. |
[13] | ZHANG Xinggui, HU Xiandan, SU Tao. Do high performance work systems impair employee well-being? Evidence from a meta-analysis [J]. Advances in Psychological Science, 2023, 31(11): 2005-2024. |
[14] | CONG Xinrui, WU Zeyu, MANZULA·Aishanjiang , JIANG Yunpeng, LIU Yan, WU Xia. Effects of action video games on different attentional subnetworks: Evidence from a meta-analysis [J]. Advances in Psychological Science, 2023, 31(10): 1843-1855. |
[15] | CHEN Bizhong, SUN Xiaojun. Cross-temporal changes of college students' time management disposition in the mainland of China during 1999~2020 [J]. Advances in Psychological Science, 2022, 30(9): 1968-1980. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||