Advances in Psychological Science ›› 2023, Vol. 31 ›› Issue (10): 1924-1936.doi: 10.3724/SP.J.1042.2023.01924
• Regular Articles • Previous Articles Next Articles
KUANG Ziyi1, ZHU Wanling1, CHENG Meixia1, WANG Fuxing1(), HU Xiangen1,2()
Received:
2023-04-05
Online:
2023-10-15
Published:
2023-07-25
CLC Number:
KUANG Ziyi, ZHU Wanling, CHENG Meixia, WANG Fuxing, HU Xiangen. The effectiveness of learning by enacting and its mechanisms[J]. Advances in Psychological Science, 2023, 31(10): 1924-1936.
研究 | 样本量 | 样本学段 | 实验操纵 | 实验材料 | 主观体验 | 学习效果 |
---|---|---|---|---|---|---|
Fujimura et al., | 76 | 小学生 | 操作实物模型 vs 填空 vs 控制组 | 浓度问题 | / | T* (0.72) |
Glenberg et al., | 32 | 小学生 | 操作实物模型vs 阅读 vs控制组 | 故事阅读理解 | / | R* (0.35) |
Glenberg et al., | 28 | 小学生 | 操作实物模型vs 阅读 vs控制组 | 故事阅读理解 | / | R* (0.81), T* (0.72) |
Glenberg et al., | 25 | 小学生 | 想象操作实物模型 vs 阅读 | 故事阅读理解 | / | R* (1.47), T* (0.69) |
Marley et al., | 45 | 小学生 | 操作实物模型 vs 观察操作实物模型vs 自由学习 | 故事听觉理解 | / | R* |
Marley & Szabo, | 76 | 小学生 | 操作实物模型 vs 观看图片 | 故事听觉理解 | / | R* (1.01) |
Marley et al., | 45 | 小学生 | 操作实物模型 vs 观察操作实物模型 vs 观看图片 | 故事阅读理解 | / | R* |
Marley et al., | 40 | 小学生 | 操作实物模型vs 阅读 | 故事阅读理解 | / | R* |
Marley et al., | 78 | 小学生 | 操作实物模型 vs阅读 | 故事阅读理解 | / | R* (0.78) |
Glenberg et al., | 53 | 小学生 | 操作实物模型 vs 操作虚拟模型 vs 阅读 | 故事阅读理解 | / | R* (0.33) |
Stull et al., | 64 | 大学生 | 操作实物模型 vs 部分操作模型 vs 无模型 | 化学分子结构式 | / | T* (0.56) |
Stull et al., | 59 | 大学生 | 操作实物模型 vs 部分操作模型 vs 无模型 | 化学分子结构式 | / | T* (0.53) |
Preece et al., | 64 | 大学生 | 操作实物模型 vs操作虚拟模型 vs 无模型 | 马蹄解剖结构 | C* | R* |
Kontra et al., | 42 | 大学生 | 操作实物模型 vs 观察操作实物模型 | 角动量知识 | / | T* (0.72) |
Kontra et al., | 34 | 大学生 | 操作实物模型 vs 观察操作实物模型 | 角动量知识 | / | T* (0.84) |
Stieff et al., | 415 | 大学生 | 操作实物模型 vs 观察操作实物模型 vs 无模型 | 化学分子结构式 | / | T* (0.60) |
Stull & Hegarty, | 105 | 大学生 | 操作实物模型 vs操作虚拟模型 vs 无模型 | 化学分子结构式 | / | T* (2.88) |
Stull & Hegarty, | 104 | 大学生 | 操作实物模型 vs操作虚拟模型 vs 无模型 | 化学分子结构式 | / | T* (0.47) |
Stull et al., | 61 | 大学生 | 观察操作+操作实物模型 vs 观察操作实物模型 | 化学分子结构式 | CL (0.30), LI (0.23) | R (0.04), T* (0.47) |
Stull et al., | 81 | 大学生 | 观察操作+操作实物模型 vs 观察操作实物模型 | 化学分子结构式 | / | R (0.36), T* (0.66) |
Jee & Anggoro, | 54 | 小学生 | 操作实物模型 vs 无模型 vs 关联支架 vs 无关联支架 | 昼夜更替知识 | / | T* (0.52) |
Zhang, | 97 | 小学生 | 提供答案+操作实物模型 vs 提供答案+操作实物模型vs 无答案+无模型 | 能量知识 | / | T (0.18) |
Casselman et al., | 64 | 大学生 | 操作实物模型 vs 操作虚拟模型 vs 仅文本教学 vs 无教学 | 化学分子结构式 | / | T* (0.68) |
Mierdel & Bogner, | 254 | 中学生 | 制作实物模型 vs 观察实物模型 | DNA知识 | CL | T& (−0.34) |
Novak & Schwan, | 163 | 成年人 | (触摸实物模型: 有 vs 无) × (观看实物模型:有 vs 无) | 畜牧业知识 | LI (0.21) | R* |
Makransky et al., | 82 | 中学生 | (操作实物模型 vs 不操作实物模型) × (观看视频 vs 观看VR) | DNA知识 | LI (0.09) | T* (0.76) |
Zhang & van Reet, | 53 | 小学生 | (操作实物模型 vs 观察操作实物模型) × (提供答案 vs 不提供答案) | 光的知识 | / | T (0.26) |
Zacharias & Olympiou, | 115 | 大学生 | 实物+虚拟 vs 虚拟+实物 vs实物vs虚拟vs 无模型 | 温度知识 | / | T* (1.38) |
Jian, | 79 | 大学生 | (操作实物模型 vs 仅阅读) × (困难材料 vs 简单材料) | 力学知识 | / | T* (0.57) |
研究 | 样本量 | 样本学段 | 实验操纵 | 实验材料 | 主观体验 | 学习效果 |
---|---|---|---|---|---|---|
Fujimura et al., | 76 | 小学生 | 操作实物模型 vs 填空 vs 控制组 | 浓度问题 | / | T* (0.72) |
Glenberg et al., | 32 | 小学生 | 操作实物模型vs 阅读 vs控制组 | 故事阅读理解 | / | R* (0.35) |
Glenberg et al., | 28 | 小学生 | 操作实物模型vs 阅读 vs控制组 | 故事阅读理解 | / | R* (0.81), T* (0.72) |
Glenberg et al., | 25 | 小学生 | 想象操作实物模型 vs 阅读 | 故事阅读理解 | / | R* (1.47), T* (0.69) |
Marley et al., | 45 | 小学生 | 操作实物模型 vs 观察操作实物模型vs 自由学习 | 故事听觉理解 | / | R* |
Marley & Szabo, | 76 | 小学生 | 操作实物模型 vs 观看图片 | 故事听觉理解 | / | R* (1.01) |
Marley et al., | 45 | 小学生 | 操作实物模型 vs 观察操作实物模型 vs 观看图片 | 故事阅读理解 | / | R* |
Marley et al., | 40 | 小学生 | 操作实物模型vs 阅读 | 故事阅读理解 | / | R* |
Marley et al., | 78 | 小学生 | 操作实物模型 vs阅读 | 故事阅读理解 | / | R* (0.78) |
Glenberg et al., | 53 | 小学生 | 操作实物模型 vs 操作虚拟模型 vs 阅读 | 故事阅读理解 | / | R* (0.33) |
Stull et al., | 64 | 大学生 | 操作实物模型 vs 部分操作模型 vs 无模型 | 化学分子结构式 | / | T* (0.56) |
Stull et al., | 59 | 大学生 | 操作实物模型 vs 部分操作模型 vs 无模型 | 化学分子结构式 | / | T* (0.53) |
Preece et al., | 64 | 大学生 | 操作实物模型 vs操作虚拟模型 vs 无模型 | 马蹄解剖结构 | C* | R* |
Kontra et al., | 42 | 大学生 | 操作实物模型 vs 观察操作实物模型 | 角动量知识 | / | T* (0.72) |
Kontra et al., | 34 | 大学生 | 操作实物模型 vs 观察操作实物模型 | 角动量知识 | / | T* (0.84) |
Stieff et al., | 415 | 大学生 | 操作实物模型 vs 观察操作实物模型 vs 无模型 | 化学分子结构式 | / | T* (0.60) |
Stull & Hegarty, | 105 | 大学生 | 操作实物模型 vs操作虚拟模型 vs 无模型 | 化学分子结构式 | / | T* (2.88) |
Stull & Hegarty, | 104 | 大学生 | 操作实物模型 vs操作虚拟模型 vs 无模型 | 化学分子结构式 | / | T* (0.47) |
Stull et al., | 61 | 大学生 | 观察操作+操作实物模型 vs 观察操作实物模型 | 化学分子结构式 | CL (0.30), LI (0.23) | R (0.04), T* (0.47) |
Stull et al., | 81 | 大学生 | 观察操作+操作实物模型 vs 观察操作实物模型 | 化学分子结构式 | / | R (0.36), T* (0.66) |
Jee & Anggoro, | 54 | 小学生 | 操作实物模型 vs 无模型 vs 关联支架 vs 无关联支架 | 昼夜更替知识 | / | T* (0.52) |
Zhang, | 97 | 小学生 | 提供答案+操作实物模型 vs 提供答案+操作实物模型vs 无答案+无模型 | 能量知识 | / | T (0.18) |
Casselman et al., | 64 | 大学生 | 操作实物模型 vs 操作虚拟模型 vs 仅文本教学 vs 无教学 | 化学分子结构式 | / | T* (0.68) |
Mierdel & Bogner, | 254 | 中学生 | 制作实物模型 vs 观察实物模型 | DNA知识 | CL | T& (−0.34) |
Novak & Schwan, | 163 | 成年人 | (触摸实物模型: 有 vs 无) × (观看实物模型:有 vs 无) | 畜牧业知识 | LI (0.21) | R* |
Makransky et al., | 82 | 中学生 | (操作实物模型 vs 不操作实物模型) × (观看视频 vs 观看VR) | DNA知识 | LI (0.09) | T* (0.76) |
Zhang & van Reet, | 53 | 小学生 | (操作实物模型 vs 观察操作实物模型) × (提供答案 vs 不提供答案) | 光的知识 | / | T (0.26) |
Zacharias & Olympiou, | 115 | 大学生 | 实物+虚拟 vs 虚拟+实物 vs实物vs虚拟vs 无模型 | 温度知识 | / | T* (1.38) |
Jian, | 79 | 大学生 | (操作实物模型 vs 仅阅读) × (困难材料 vs 简单材料) | 力学知识 | / | T* (0.57) |
研究 | 样本量 | 样本学段 | 实验操纵 | 实验材料 | 主观体验 | 学习效果 |
---|---|---|---|---|---|---|
Barrett et al., | 41 | 大学生 | 操作实物模型 vs 操作虚拟模型 | 化学分子结构式 | CL& (−0.68) | T |
Cuendet et al., | 46 | 中学生 | 操作实物模型 vs 操作虚拟模型 | 工程制图 | / | T |
Finkelstein et al., | 231 | 大学生 | 操作实物模型 vs 操作虚拟模型 | 电路知识 | / | R&, T& |
Katsioloudis et al., | 58 | 大学生 | 操作动态实物模型 vs 操作动态虚拟模型vs 操作静态虚拟模型 | 绘制截面图 | / | T* (0.30) |
Klahr et al., | 56 | 中学生 | 操作实物模型 vs 操作虚拟模型 | 汽车部件及工作原理 | C | T |
Lee & Chen, | 90 | 小学生 | 操作实物模型 vs 操作虚拟模型 | 数学等价问题 | / | T& |
Manches et al., | 65 | 小学生 | 操作实物模型 vs 操作虚拟模型 | 数字分解任务 | / | T (−0.03) |
Melcer et al., | 80 | 大学生 | (操作实物模型 vs 操作虚拟模型) × (合作学习vs单人学习) | 编程知识 | C* (0.32), LI* (0.29) | T (0.01) |
Moyer-Packenham et al., | 350 | 小学生 | 操作实物模型 vs 操作虚拟模型 | 数学等价问题 | / | T |
Glenberg et al., | 53 | 小学生 | 操作实物模型 vs 操作虚拟模型 vs 阅读文本 | 故事阅读理解 | / | R& (−0.45) |
Olympiou & Zacharia, | 70 | 大学生 | 操作实物模型+操作虚拟模型 vs操作实物模型 vs 操作虚拟模型 | 光的知识 | / | T (0.3) |
Preece et al., | 64 | 大学生 | 操作实物模型 vs操作虚拟模型 vs 无模型 | 马蹄解剖结构 | C* | R* |
Pyatt & Sim, | 184 | 中学生 | 操作实物模型 vs 操作虚拟模型 | 水合物和二氧化碳知识 | / | T& (−0.82) |
Skulmowski et al., | 96 | 大学生 | (操作实物模型 vs 操作虚拟模型) × (显示模式:显示 vs点击显示) | 心脏结构 | CL& (−0.36), LI* (0.51) | R* (0.47), T = (−0.01) |
Stull et al., | 29 | 大学生 | 操作实物模型 vs 操作虚拟模型 | 化学分子结构式 | CL (0.05) | T (−0.05) |
Stull et al., | 31 | 大学生 | 操作实物模型 vs 操作虚拟模型 | 化学分子结构式 | CL (0.08) | T (−0.06) |
Stull & Hegarty, | 105 | 大学生 | 操作实物模型 vs操作虚拟模型 vs 无模型 | 化学分子结构式 | / | T (−0.11) |
Stull & Hegarty, | 104 | 大学生 | 操作实物模型 vs操作虚拟模型 vs 无模型 | 化学分子结构式 | / | T (0.07) |
Suh & Moyer, | 36 | 小学生 | 操作实物模型 vs 操作虚拟模型 | 代数问题 | / | T (0.29) |
Triona & Klahr, | 92 | 小学生 | 操作实物模型 vs 操作虚拟模型 | 力学知识 | C (0.23) | T (0.02) |
Casselman et al., | 64 | 大学生 | 操作实物模型 vs 操作虚拟模型 vs 仅文本教学 vs 无教学 | 化学分子结构式 | / | T* (0.84) |
Wang & Tseng, | 208 | 小学生 | 操作实物模型+操作虚拟模型 vs操作实物模型 vs 操作虚拟模型 | 水的物理状态 | / | T& |
Yuan et al., | 60 | 中学生 | 操作实物模型 vs 操作虚拟模型 | 多米诺骨牌问题 | / | T (0.01) |
Zacharia & Constantinou, | 68 | 大学生 | 操作实物模型 vs 操作虚拟模型 | 温度知识 | / | T (0.03) |
Zacharias & Olympiou, | 115 | 大学生 | 实物+虚拟 vs 虚拟+实物 vs实物vs虚拟vs 无模型 | 温度知识 | / | T (0.01) |
Zacharias et al., | 80 | 小学生 | (操作实物模型 vs 操作虚拟模型) × (错误经验 vs 正确经验) | 平衡知识 | / | T* (1.45) |
研究 | 样本量 | 样本学段 | 实验操纵 | 实验材料 | 主观体验 | 学习效果 |
---|---|---|---|---|---|---|
Barrett et al., | 41 | 大学生 | 操作实物模型 vs 操作虚拟模型 | 化学分子结构式 | CL& (−0.68) | T |
Cuendet et al., | 46 | 中学生 | 操作实物模型 vs 操作虚拟模型 | 工程制图 | / | T |
Finkelstein et al., | 231 | 大学生 | 操作实物模型 vs 操作虚拟模型 | 电路知识 | / | R&, T& |
Katsioloudis et al., | 58 | 大学生 | 操作动态实物模型 vs 操作动态虚拟模型vs 操作静态虚拟模型 | 绘制截面图 | / | T* (0.30) |
Klahr et al., | 56 | 中学生 | 操作实物模型 vs 操作虚拟模型 | 汽车部件及工作原理 | C | T |
Lee & Chen, | 90 | 小学生 | 操作实物模型 vs 操作虚拟模型 | 数学等价问题 | / | T& |
Manches et al., | 65 | 小学生 | 操作实物模型 vs 操作虚拟模型 | 数字分解任务 | / | T (−0.03) |
Melcer et al., | 80 | 大学生 | (操作实物模型 vs 操作虚拟模型) × (合作学习vs单人学习) | 编程知识 | C* (0.32), LI* (0.29) | T (0.01) |
Moyer-Packenham et al., | 350 | 小学生 | 操作实物模型 vs 操作虚拟模型 | 数学等价问题 | / | T |
Glenberg et al., | 53 | 小学生 | 操作实物模型 vs 操作虚拟模型 vs 阅读文本 | 故事阅读理解 | / | R& (−0.45) |
Olympiou & Zacharia, | 70 | 大学生 | 操作实物模型+操作虚拟模型 vs操作实物模型 vs 操作虚拟模型 | 光的知识 | / | T (0.3) |
Preece et al., | 64 | 大学生 | 操作实物模型 vs操作虚拟模型 vs 无模型 | 马蹄解剖结构 | C* | R* |
Pyatt & Sim, | 184 | 中学生 | 操作实物模型 vs 操作虚拟模型 | 水合物和二氧化碳知识 | / | T& (−0.82) |
Skulmowski et al., | 96 | 大学生 | (操作实物模型 vs 操作虚拟模型) × (显示模式:显示 vs点击显示) | 心脏结构 | CL& (−0.36), LI* (0.51) | R* (0.47), T = (−0.01) |
Stull et al., | 29 | 大学生 | 操作实物模型 vs 操作虚拟模型 | 化学分子结构式 | CL (0.05) | T (−0.05) |
Stull et al., | 31 | 大学生 | 操作实物模型 vs 操作虚拟模型 | 化学分子结构式 | CL (0.08) | T (−0.06) |
Stull & Hegarty, | 105 | 大学生 | 操作实物模型 vs操作虚拟模型 vs 无模型 | 化学分子结构式 | / | T (−0.11) |
Stull & Hegarty, | 104 | 大学生 | 操作实物模型 vs操作虚拟模型 vs 无模型 | 化学分子结构式 | / | T (0.07) |
Suh & Moyer, | 36 | 小学生 | 操作实物模型 vs 操作虚拟模型 | 代数问题 | / | T (0.29) |
Triona & Klahr, | 92 | 小学生 | 操作实物模型 vs 操作虚拟模型 | 力学知识 | C (0.23) | T (0.02) |
Casselman et al., | 64 | 大学生 | 操作实物模型 vs 操作虚拟模型 vs 仅文本教学 vs 无教学 | 化学分子结构式 | / | T* (0.84) |
Wang & Tseng, | 208 | 小学生 | 操作实物模型+操作虚拟模型 vs操作实物模型 vs 操作虚拟模型 | 水的物理状态 | / | T& |
Yuan et al., | 60 | 中学生 | 操作实物模型 vs 操作虚拟模型 | 多米诺骨牌问题 | / | T (0.01) |
Zacharia & Constantinou, | 68 | 大学生 | 操作实物模型 vs 操作虚拟模型 | 温度知识 | / | T (0.03) |
Zacharias & Olympiou, | 115 | 大学生 | 实物+虚拟 vs 虚拟+实物 vs实物vs虚拟vs 无模型 | 温度知识 | / | T (0.01) |
Zacharias et al., | 80 | 小学生 | (操作实物模型 vs 操作虚拟模型) × (错误经验 vs 正确经验) | 平衡知识 | / | T* (1.45) |
[1] |
陈佳雪, 谢和平, 王福兴, 周丽, 李文静. (2018). 诱发的积极情绪会促进多媒体学习吗? 心理科学进展, 26(10), 1818-1830.
doi: 10.3724/SP.J.1042.2018.01818 |
[2] | 教育部. (2019). 教育部关于加强和改进中小学实验教学的意见. 2022-09-01取自 http://www.moe.gov.cn/srcsite/A06/s3321/201911/t20191128_409958.html |
[3] | 教育部. (2020). 教育部关于印发《大中小学劳动教育指导纲要(试行)》的通知. 2022-09-01取自 http://www.moe.gov.cn/srcsite/A26/jcj_kcjcgh/202007/t20200715_472808.html |
[4] | 叶浩生. (2010). 具身认知: 认知心理学的新取向. 心理科学进展, 18(5), 705-710. |
[5] | 叶浩生. (2015). 身体与学习: 具身认知及其对传统教育观的挑战. 教育研究, 36(4), 104-114. |
[6] | 周丽, 王福兴, 谢和平, 陈佳雪, 辛亮, 赵庆柏. (2019). 积极的情绪能否促进多媒体学习? 基于元分析的视角. 心理发展与教育, 35(6), 697-709. |
[7] |
Alpizar, D., Adesope, O. O., & Wong, R. M. (2020). A meta-analysis of signaling principle in multimedia learning environments. Educational Technology Research and Development, 68(5), 2095-2119.
doi: 10.1007/s11423-020-09748-7 |
[8] | Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliff, NJ: Prentice-Hall. |
[9] | Bandura, A. (1997). Self-efficacy: The exercise of control. New York: W. H. Freeman & Co. |
[10] |
Barrett, T. J., Stull, A. T., Hsu, T. M., & Hegarty, M. (2015). Constrained interactivity for relating multiple representations in science: When virtual is better than real. Computers & Education, 81, 69-81.
doi: 10.1016/j.compedu.2014.09.009 URL |
[11] |
Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617-645.
pmid: 17705682 |
[12] |
Carbonneau, K. J., Marley, S. C., & Selig, J. P. (2013). A meta-analysis of the efficacy of teaching mathematics with concrete manipulatives. Journal of Educational Psychology, 105(2), 380-400.
doi: 10.1037/a0031084 URL |
[13] |
Casselman, M. D., Eichler, J. F., & Atit, K. (2021). Advancing multimedia learning for science: Comparing the effect of virtual versus physical models on student learning about stereochemistry. Science Education, 105(6), 1285-1314.
doi: 10.1002/sce.v105.6 URL |
[14] | Cuendet, S., Bumbacher, E., & Dillenbourg, P. (2012). Tangible vs. virtual representations: When tangibles benefit the training of spatial skills. Proceedings of the 7th Nordic Conference on Human-Computer Interaction: Making Sense Through Design (pp. 99-108). ACM. |
[15] |
Dargue, N., Sweller, N., & Jones, M. P. (2019). When our hands help us understand: A meta-analysis into the effects of gesture on comprehension. Psychological Bulletin, 145(8), 765-784.
doi: 10.1037/bul0000202 pmid: 31219263 |
[16] |
de Koning, B. B., & Tabbers, H. K. (2011). Facilitating understanding of movements in dynamic visualizations: An embodied perspective. Educational Psychology Review, 23(4), 501-521.
doi: 10.1007/s10648-011-9173-8 URL |
[17] |
Duijzer, C., van den Heuvel-Panhuizen, M., Veldhuis, M., Doorman, M., & Leseman, P. (2019). Embodied learning environments for graphing motion: A systematic literature review. Educational Psychology Review, 31, 597-629.
doi: 10.1007/s10648-019-09471-7 |
[18] |
Ferreira, J. M. (2021). What if we look at the body? An embodied perspective of collaborative learning. Educational Psychology Review, 33(4), 1455-1473.
doi: 10.1007/s10648-021-09607-8 |
[19] | Finkelstein, N. D., Adams, W. K., Keller, C. J., Kohl, P. B., Perkins, K. K., Podolefsky, N. S., … Lemaster, R. (2005). When learning about the real world is better done virtually: A study of substituting computer simulations for laboratory equipment. Physical Review Special Topics—Physics Education Research, 1(1), 010103. |
[20] | Fiorella, L., & Mayer, R. E. (2015). Learning as a generative activity: eight learning strategies that promote understanding. New York: Cambridge University Press. |
[21] |
Fiorella, L., & Mayer, R. E. (2016). Eight ways to promote generative learning. Educational Psychology Review, 28(4), 717-741.
doi: 10.1007/s10648-015-9348-9 URL |
[22] |
Fiorella, L., & Mayer, R. E. (2018). What works and doesn't work with instructional video. Computers in Human Behavior, 89, 465-470.
doi: 10.1016/j.chb.2018.07.015 URL |
[23] |
Fujimura, N. (2001). Facilitating children's proportional reasoning: A model of reasoning processes and effects of intervention on strategy change. Journal of Educational Psychology, 93(3), 589-603.
doi: 10.1037/0022-0663.93.3.589 URL |
[24] |
Glenberg, A. M., Goldberg, A. B., & Zhu, X. (2011). Improving early reading comprehension using embodied CAI. Instructional Science, 39(1), 27-39.
doi: 10.1007/s11251-009-9096-7 URL |
[25] |
Glenberg, A. M., Gutierrez, T., Levin, J. R., Japuntich, S., & Kaschak, M. P. (2004). Activity and imagined activity can enhance young children’s reading comprehension. Journal of Educational Psychology, 96(3), 424-436.
doi: 10.1037/0022-0663.96.3.424 URL |
[26] |
Jee, B. D., & Anggoro, F. K. (2019). Relational scaffolding enhances children’s understanding of scientific models. Psychological Science, 30(9), 1287-1302.
doi: 10.1177/0956797619864601 URL |
[27] |
Jian, Y.-C. (2022). Influence of science text reading difficulty and hands-on manipulation on science learning: An eye-tracking study. Journal of Research in Science Teaching, 59(3), 358-382.
doi: 10.1002/tea.v59.3 URL |
[28] |
Johnson-Glenberg, M. C., Birchfield, D. A., Tolentino, L., & Koziupa, T. (2014). Collaborative embodied learning in mixed reality motion-capture environments: Two science studies. Journal of Educational Psychology, 106(1), 86-104.
doi: 10.1037/a0034008 URL |
[29] |
Kaminski, J. A., & Sloutsky, V. M. (2013). Extraneous perceptual information interferes with children's acquisition of mathematical knowledge. Journal of Educational Psychology, 105(2), 351-363.
doi: 10.1037/a0031040 URL |
[30] | Katsioloudis, D. P., Dickerson, D. D., Jovanovic, D. V., & Jones, M. (2015). Evaluation of static vs. dynamic visualizations for engineering technology students and implications on spatial visualization ability: A quasi-experimental study. Engineering Design Graphics Journal, 79(1), 14-28. |
[31] |
Klahr, D., Triona, L. M., & Williams, C. (2007). Hands on what? The relative effectiveness of physical versus virtual materials in an engineering design project by middle school children. Journal of Research in Science Teaching, 44(1), 183-203.
doi: 10.1002/(ISSN)1098-2736 URL |
[32] |
Kontra, C., Lyons, D. J., Fischer, S. M., & Beilock, S. L. (2015). Physical experience enhances science learning. Psychological Science, 26(6), 737-749.
doi: 10.1177/0956797615569355 pmid: 25911125 |
[33] |
Krieglstein, F., Beege, M., Rey, G. D., Ginns, P., Krell, M., & Schneider, S. (2022). A systematic meta-analysis of the reliability and validity of subjective cognitive load questionnaires in experimental multimedia learning research. Educational Psychology Review, 34(4), 2485-2541.
doi: 10.1007/s10648-022-09683-4 |
[34] | Laakso, A. (2011). Embodiment and development in cognitive science. Cognition, Brain, Behavior, 15, 409-425. |
[35] | Lee, C. Y., & Chen, M. J. (2015). Effects of worked examples using manipulatives on fifth graders’ learning performance and attitude toward mathematics. Journal of Educational Technology & Society, 18(1), 264-275. |
[36] |
Leppink, J., Paas, F., van der Vleuten, C. P., van Gog, T., & van Merriënboer, J. J. (2013). Development of an instrument for measuring different types of cognitive load. Behavior Research Methods, 45(4), 1058-1072.
doi: 10.3758/s13428-013-0334-1 pmid: 23572251 |
[37] |
Makransky, G., Andreasen, N. K., Baceviciute, S., & Mayer, R. E. (2021). Immersive virtual reality increases liking but not learning with a science simulation and generative learning strategies promote learning in immersive virtual reality. Journal of Educational Psychology, 113(4), 719-735.
doi: 10.1037/edu0000473 URL |
[38] |
Manches, A., O’Malley, C., & Benford, S. (2010). The role of physical representations in solving number problems: A comparison of young children’s use of physical and virtual materials. Computers & Education, 54(3), 622-640.
doi: 10.1016/j.compedu.2009.09.023 URL |
[39] |
Marley, S. C., & Carbonneau, K. J. (2014a). Theoretical perspectives and empirical evidence relevant to classroom instruction with manipulatives. Educational Psychology Review, 26(1), 1-7.
doi: 10.1007/s10648-014-9257-3 URL |
[40] |
Marley, S. C., & Carbonneau, K. J. (2014b). Future directions for theory and research with instructional manipulatives: Commentary on the special issue papers. Educational Psychology Review, 26(1), 91-100.
doi: 10.1007/s10648-014-9259-1 URL |
[41] |
Marley, S. C., Levin, J. R., & Glenberg, A. M. (2007). Improving native American children’s listening comprehension through concrete representations. Contemporary Educational Psychology, 32(3), 537-550.
doi: 10.1016/j.cedpsych.2007.03.003 URL |
[42] |
Marley, S. C., Levin, J. R., & Glenberg, A. M. (2010). What cognitive benefits does an activity-based reading strategy afford young native American readers? The Journal of Experimental Education, 78(3), 395-417.
doi: 10.1080/00220970903548061 URL |
[43] |
Marley, S. C., & Szabo, Z. (2010). Improving children's listening comprehension with a manipulation strategy. The Journal of Educational Research, 103(4), 227-238.
doi: 10.1080/00220670903383036 URL |
[44] |
Marley, S. C., Szabo, Z., Levin, J. R., & Glenberg, A. M. (2011). Investigation of an activity-based text-processing strategy in mixed-age child dyads. The Journal of Experimental Education, 79(3), 340-360.
doi: 10.1080/00220973.2010.483697 URL |
[45] | Mayer, R. E. (2014). The Cambridge handbook of multimedia learning (2nd ed.). New York: Cambridge University Press. |
[46] | Mayer, R. E. (2020). Multimedia learning (3rd ed.). New York: Cambridge University Press. |
[47] | Melcer, E. F., Hollis, V., & Isbister, K. (2017). Tangibles vs. mouse in educational programming games:Influences on enjoyment and self-beliefs. In G. Mark & S. Fussel (Eds.), Proceedings of the 2017 CHI conference extended abstracts on human factors in computing systems (pp. 1901-1908). New York: ACM. |
[48] |
Mierdel, J., & Bogner, F. X. (2021). Investigations of modelers and model viewers in an out-of-school gene technology laboratory. Research in Science Education, 51(2), 801-822.
doi: 10.1007/s11165-019-09871-3 |
[49] | Moyer-Packenham, P., Baker, J., Westenskow, A., Anderson, K., Shumway, J., Rodzon, K., & Jordan, K. (2013). A study comparing virtual manipulatives with other instructional treatments in third- and fourth-grade classrooms. Journal of Educational Computing Research, 193(2), 25-39. |
[50] |
Novak, M., & Schwan, S. (2021). Does touching real objects affect learning? Educational Psychology Review, 33(2), 637-665.
doi: 10.1007/s10648-020-09551-z |
[51] |
Olympiou, G., & Zacharia, Z. C. (2012). Blending physical and virtual manipulatives: An effort to improve students’ conceptual understanding through science laboratory experimentation. Science Education, 96(1), 21-47.
doi: 10.1002/sce.v96.1 URL |
[52] |
Padalkar, S., & Hegarty, M. (2015). Models as feedback: Developing representational competence in chemistry. Journal of Educational Psychology, 107(2), 451-467.
doi: 10.1037/a0037516 URL |
[53] | Piaget, J. (1952). The origins of intelligence in children. New York: International Universities Press. |
[54] |
Preece, D., Williams, S. B., Lam, R., & Weller, R. (2013). “Let’s get physical”: Advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy. Anatomical Sciences Education, 6(4), 216-224.
doi: 10.1002/ase.v6.4 URL |
[55] |
Pyatt, K., & Sims, R. (2012). Virtual and physical experimentation in inquiry-based science labs: Attitudes, performance and access. Journal of Science Education and Technology, 21(1), 133-147.
doi: 10.1007/s10956-011-9291-6 URL |
[56] |
Rau, M. A. (2020). Comparing multiple theories about learning with physical and virtual representations: Conflicting or complementary effects? Educational Psychology Review, 32(2), 297-325.
doi: 10.1007/s10648-020-09517-1 |
[57] |
Ruddle, R., & Jones, D. M. (2001). Manual and virtual rotation of three-dimensional object. Journal of Experimental Psychology: Applied, 7(4), 286-296.
doi: 10.1037/1076-898X.7.4.286 URL |
[58] |
Scheiter, K., Brucker, B., & Ainsworth, S. (2020). “Now move like that fish”: Can enactment help learners come to understand dynamic motion presented in photographs and videos? Computers & Education, 155, 103934.
doi: 10.1016/j.compedu.2020.103934 URL |
[59] |
Siegel, L. S. (1994). Working memory and reading: A life-span perspective. International Journal of Behavioral Development, 17(1), 109-124.
doi: 10.1177/016502549401700107 URL |
[60] |
Skulmowski, A., Pradel, S., Kühnert, T., Brunnett, G., & Rey, G. D. (2016). Embodied learning using a tangible user interface: The effects of haptic perception and selective pointing on a spatial learning task. Computers & Education, 92-93, 64-75.
doi: 10.1016/j.compedu.2015.10.011 URL |
[61] | Skulmowski, A., & Rey, G. D. (2018). Embodied learning: Introducing a taxonomy based on bodily engagement and task integration. Cognitive Research: Principles and Implications, 3(1), 6. |
[62] |
Stieff, M., Scopelitis, S., Lira, M. E., & Desutter, D. (2016). Improving representational competence with concrete models. Science Education, 100(2), 344-363.
doi: 10.1002/sce.2016.100.issue-2 URL |
[63] |
Stull, A. T., Barrett, T., & Hegarty, M. (2013). Usability of concrete and virtual models in chemistry instruction. Computers in Human Behavior, 29(6), 2546-2556.
doi: 10.1016/j.chb.2013.06.012 URL |
[64] |
Stull, A. T., Gainer, M. J., & Hegarty, M. (2018). Learning by enacting: The role of embodiment in chemistry education. Learning and Instruction, 55, 80-92.
doi: 10.1016/j.learninstruc.2017.09.008 URL |
[65] |
Stull, A. T., & Hegarty, M. (2016). Model manipulation and learning: Fostering representational competence with virtual and concrete models. Journal of Educational Psychology, 108(4), 509-527.
doi: 10.1037/edu0000077 URL |
[66] |
Stull, A. T., Hegarty, M., Dixon, B., & Stieff, M. (2012). Representational translation with concrete models in organic chemistry. Cognition and Instruction, 30(4), 404-434.
doi: 10.1080/07370008.2012.719956 URL |
[67] | Suh, J., & Moyer, P. S. (2007). Developing students’ representational fluency using virtual and physical algebra balances. Journal of Computers in Mathematics and Science Teaching, 26(2), 155-173. |
[68] | Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. New York: Springer. |
[69] |
Triona, L. M., & Klahr, D. (2003). Point and click or grab and heft: comparing the influence of physical and virtual instructional materials on elementary school students’ ability to design experiments. Cognition and Instruction, 21(2), 149-173.
doi: 10.1207/S1532690XCI2102_02 URL |
[70] |
Wang, T. L., & Tseng, Y. K. (2018). The comparative effectiveness of physical, virtual, and virtual-physical manipulatives on third-grade students’ science achievement and conceptual understanding of evaporation and condensation. International Journal of Science and Mathematics Education, 16(2), 203-219.
doi: 10.1007/s10763-016-9774-2 URL |
[71] |
Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625-636.
doi: 10.3758/BF03196322 URL |
[72] |
Wilson, K. E., Martinez, M., Mills, C., D'Mello, S., Smilek, D., & Risko, E. F. (2018). Instructor presence effect: Liking does not always lead to learning. Computers & Education, 122, 205-220.
doi: 10.1016/j.compedu.2018.03.011 URL |
[73] |
Wittrock, M. C. (1989). Generative processes of comprehension. Educational Psychologist, 24(4), 345-376.
doi: 10.1207/s15326985ep2404_2 URL |
[74] |
Yuan, Y., Lee, C. Y., & Wang, C. H. (2010). A comparison study of polyominoes explorations in a physical and virtual manipulative environment. Journal of Computer Assisted Learning, 26(4), 307-316.
doi: 10.1111/jca.2010.26.issue-4 URL |
[75] |
Zacharia, Z. C., & Constantinou, C. P. (2008). Comparing the influence of physical and virtual manipulatives in the context of the physics by inquiry curriculum: the case of undergraduate students’ conceptual understanding of heat and temperature. American Journal of Physics, 76(4), 425-430.
doi: 10.1119/1.2885059 URL |
[76] |
Zacharia, Z. C., Loizou, E., & Papaevripidou, M. (2012). Is physicality an important aspect of learning through science experimentation among kindergarten students? Early Childhood Research Quarterly, 27(3), 447-457.
doi: 10.1016/j.ecresq.2012.02.004 URL |
[77] |
Zacharia, Z. C., & Olympiou, G. (2011). Physical versus virtual manipulative experimentation in physics learning. Learning and Instruction, 21(3), 317-331.
doi: 10.1016/j.learninstruc.2010.03.001 URL |
[78] |
Zhang, I. Y., Tucker, M. C., & Stigler, J. W. (2022). Watching a hands-on activity improves students’ understanding of randomness. Computers & Education, 186, 104545.
doi: 10.1016/j.compedu.2022.104545 URL |
[79] |
Zhang, L. (2019). “Hands-on” plus “inquiry”? Effects of withholding answers coupled with physical manipulations on students' learning of energy-related science concepts. Learning and Instruction, 60, 199-205.
doi: 10.1016/j.learninstruc.2018.01.001 |
[80] |
Zhang, L., & van Reet, J. (2022). How is “knowledge” constructed during science activities? detaching instructional effects of “playing” and “telling” to optimize integration of scientific investigations. Research in Science Education, 52, 1435-1449.
doi: 10.1007/s11165-021-09990-w |
[1] | KANG Dan, WEN Min, ZHANG Yingjie. The relationship between fine motor skills and mathematical ability in children: A meta-analysis [J]. Advances in Psychological Science, 2023, 31(8): 1443-1459. |
[2] | CHENG Meixia, KUANG Ziyi, LENG Xiaoxue, ZHANG Yang, WANG Fuxing. Can learning by non-interactive teaching promote learning? [J]. Advances in Psychological Science, 2023, 31(5): 769-782. |
[3] | YANG Jiumin, ZHANG Yi, YANG Ronghua, PI Zhongling. A meta-analysis of the effects of imagination strategy on multimedia learning [J]. Advances in Psychological Science, 2023, 31(12): 2263-2274. |
[4] | LIN Jiao-Min, LI Ai-Mei, ZHOU Ya-Ran, HE Jun-Hong, ZHOU Lei. The prospect of gaze manipulation technology in decision-making research: Altering decision-making [J]. Advances in Psychological Science, 2022, 30(8): 1794-1803. |
[5] | WEI Xuhua, WANG Guangwei, CHEN Yi. Manipulation checks in the managerial psychology experiment in China: Current status, problems, and suggestions [J]. Advances in Psychological Science, 2022, 30(6): 1367-1376. |
[6] | YANG Xue, ZHU Xu. Impact and application of affective touch on mental health [J]. Advances in Psychological Science, 2022, 30(12): 2789-2798. |
[7] | JIN Yuwei, SUN Xiao, SONG Yaowu. Embodied memory and its intrinsic mechanism [J]. Advances in Psychological Science, 2022, 30(11): 2497-2506. |
[8] | WANG Zhen. Children’s gender stereotype threat and its interventions [J]. Advances in Psychological Science, 2021, 29(2): 276-285. |
[9] | BAI Yating, HE Wenguang. The embodied cognition effect of the second language: Automatic activation or native language mediation? [J]. Advances in Psychological Science, 2021, 29(11): 1970-1978. |
[10] | YU Wenhua, LU Zhongyi. A new perspective on the cognitive function of gestures: The “spatializing” gesture hypothesis [J]. Advances in Psychological Science, 2020, 28(3): 426-433. |
[11] | XIONG Suhong, SUN Hongjie, LU Ji, YAO Qi, ZHANG Quancheng. Eating behavior from the perspective of embodied cognition: Based on the mental simulation approach [J]. Advances in Psychological Science, 2020, 28(3): 486-496. |
[12] | DUAN Jinyun, SUN Hanbin, SUN Yinsi. Intentional concealment of personal information: Secrecy and its consequences and coping [J]. Advances in Psychological Science, 2020, 28(12): 2114-2124. |
[13] | LI Ying, ZHANG Can, WANG Yue. The effect of moral emotions on the metaphorical mapping of morality and its neural mechanism [J]. Advances in Psychological Science, 2019, 27(7): 1224-1231. |
[14] | CHEN Lin, TIAN Xiaoming, DUAN Jinyun. The cognitive mechanism of advice taking [J]. Advances in Psychological Science, 2019, 27(1): 149-159. |
[15] | PAN Wenjing, WEN Fangfang, ZUO Bin. Aging stereotype threat and it’s manipulations in psychological research [J]. Advances in Psychological Science, 2018, 26(9): 1670-1679. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||