Advances in Psychological Science ›› 2023, Vol. 31 ›› Issue (10): 1873-1882.doi: 10.3724/SP.J.1042.2023.01873
• Regular Articles • Previous Articles Next Articles
SONG Fangxing, WANG Jue, BAO Min()
Received:
2023-02-02
Online:
2023-10-15
Published:
2023-07-25
CLC Number:
SONG Fangxing, WANG Jue, BAO Min. From imbalanced visual inputs to imbalanced visual attention: Seeking the neural mechanisms for short-term ocular dominance plasticity[J]. Advances in Psychological Science, 2023, 31(10): 1873-1882.
[1] |
Alsius, A., & Munhall, K. G. (2013). Detection of audiovisual speech correspondences without visual awareness. Psychological Science, 24(4), 423-431.
doi: 10.1177/0956797612457378 pmid: 23462756 |
[2] |
Bai, J., Dong, X., He, S., & Bao, M. (2017). Monocular deprivation of Fourier phase information boosts the deprived eye's dominance during interocular competition but not interocular phase combination. Neuroscience, 352, 122-130. https://doi.org/10.1016/j.neuroscience.2017.03.053
doi: S0306-4522(17)30228-2 URL pmid: 28391010 |
[3] |
Bavelier, D., & Green, C. S. (2019). Enhancing attentional control: Lessons from action video games. Neuron, 104(1), 147-163. https://doi.org/10.1016/j.neuron.2019.09.031
doi: S0896-6273(19)30833-5 URL pmid: 31600511 |
[4] |
Bediou, B., Adams, D. M., Mayer, R. E., Tipton, E., Green, C. S., & Bavelier, D. (2018). Meta-analysis of action video game impact on perceptual, attentional, and cognitive skills. Psychological Bulletin, 144(1), 77-110. https://doi.org/10.1037/bul0000130
doi: 10.1037/bul0000130 URL pmid: 29172564 |
[5] |
Binda, P., Kurzawski, J. W., Lunghi, C., Biagi, L., Tosetti, M., & Morrone, M. C. (2018). Response to short-term deprivation of the human adult visual cortex measured with 7T BOLD. eLife, 7, e40014. https://doi.org/10.7554/eLife.40014
doi: 10.7554/eLife.40014 URL |
[6] |
Blake, R., & Logothetis, N. (2002). Visual competition. Nature Reviews Neuroscience, 3(1), 13-21. https://doi.org/10.1038/nrn701
doi: 10.1038/nrn701 URL pmid: 11823801 |
[7] | Chen, X., Chen, S., Kong, D., Wei, J., Mao, Y., Lin, W., ... Zhou, J. (2020). Action video gaming does not influence short-term ocular dominance plasticity in visually normal adults. eNeuro, 7(3). https://doi.org/10.1523/ENEURO.0006-20.2020 |
[8] | Chen, Y., Gao, Y., He, Z., Sun, Z., Mao, Y., Hess, R. F., ... Zhou, J. (2023). Internal neural states influence the short- term effect of monocular deprivation in human adults. eLife, 12. https://doi.org/10.7554/eLife.83815 |
[9] |
Dale, G., & Shawn Green, C. (2017). The changing face of video games and video gamers: Future directions in the scientific study of video game play and cognitive performance. Journal of Cognitive Enhancement, 1(3), 280-294. https://doi.org/10.1007/s41465-017-0015-6
doi: 10.1007/s41465-017-0015-6 URL |
[10] |
Finn, A. E., Baldwin, A. S., Reynaud, A., & Hess, R. F. (2019). Visual plasticity and exercise revisited: No evidence for a "cycling lane". Journal of Vision, 19(6), 21. https://doi.org/10.1167/19.6.21
doi: 10.1167/19.6.21 URL pmid: 31246227 |
[11] |
Hess, R. F. (1990). The Edridge-Green lecture vision at low light levels: Role of spatial, temporal and contrast filters. Ophthalmic and Physiological Optics, 10(4), 351-359. https://doi.org/https://doi.org/10.1111/j.1475-1313.1990.tb00881.x
URL pmid: 2263368 |
[12] |
Huang, C.-B., Zhou, J., Zhou, Y., & Lu, Z.-L. (2010). Contrast and phase combination in binocular vision. PLoS One, 5(12), e15075. https://doi.org/10.1371/journal.pone.0015075
doi: 10.1371/journal.pone.0015075 URL |
[13] |
Katyal, S., Engel, S. A., He, B., & He, S. (2016). Neurons that detect interocular conflict during binocular rivalry revealed with EEG. Journal of Vision, 16(3), 18. https://doi.org/10.1167/16.3.18
doi: 10.1167/16.3.18 URL pmid: 26891825 |
[14] |
Katyal, S., Vergeer, M., He, S., He, B., & Engel, S. A. (2018). Conflict-sensitive neurons gate interocular suppression in human visual cortex. Scientific Reports, 8(1), 1239. https://doi.org/10.1038/s41598-018-19809-w
doi: 10.1038/s41598-018-19809-w URL pmid: 29352155 |
[15] |
Keck, T., Toyoizumi, T., Chen, L., Doiron, B., Feldman, D. E., Fox, K., ... van Rossum, M. C. (2017). Integrating Hebbian and homeostatic plasticity: The current state of the field and future research directions. Philosophical Transactions of the Royal Society B-Biological Sciences, 372(1715), 20160413. https://doi.org/10.1098/rstb.2016.0158
doi: 10.1098/rstb.2016.0413 URL |
[16] |
Kurzawski, J. W., Lunghi, C., Biagi, L., Tosetti, M., Morrone, M. C., & Binda, P. (2022). Short-term plasticity in the human visual thalamus. eLife, 11, e74565. https://doi.org/10.7554/eLife.74565
doi: 10.7554/eLife.74565 URL |
[17] |
Lunghi, C., Berchicci, M., Morrone, M. C., & Di Russo, F. (2015). Short-term monocular deprivation alters early components of visual evoked potentials. The Journal of Physiology, 593(19), 4361-4372. https://doi.org/10.1113/JP270950
doi: 10.1113/JP270950 URL pmid: 26119530 |
[18] | Lunghi, C., Burr, D. C., & Morrone, C. (2011). Brief periods of monocular deprivation disrupt ocular balance in human adult visual cortex. Current Biology, 21(14), R538-R539. https://doi.org/10.1016/j.cub.2011.06.004 |
[19] |
Lunghi, C., Emir, U. E., Morrone, M. C., & Bridge, H. (2015). Short-term monocular deprivation alters GABA in the adult human visual cortex. Current Biology, 25(11), 1496-1501. https://doi.org/10.1016/j.cub.2015.04.021
doi: 10.1016/j.cub.2015.04.021 URL pmid: 26004760 |
[20] |
Lunghi, C., Morrone, M. C., & Alais, D. (2014). Auditory and tactile signals combine to influence vision during binocular rivalry. Journal of Neuroscience, 34(3), 784-792. https://doi.org/10.1523/JNEUROSCI.2732-13.2014
doi: 10.1523/JNEUROSCI.2732-13.2014 URL pmid: 24431437 |
[21] |
Lyu, L., He, S., Jiang, Y., Engel, S. A., & Bao, M. (2020). Natural-scene-based steady-state visual evoked potentials reveal effects of short-term monocular deprivation. Neuroscience, 435, 10-21. https://doi.org/10.1016/j.neuroscience.2020.03.039
doi: S0306-4522(20)30198-6 URL pmid: 32229234 |
[22] |
Maffei, A., Nelson, S. B., & Turrigiano, G. G. (2004). Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation. Nature Neuroscience, 7(12), 1353-1359. https://doi.org/10.1038/nn1351
URL pmid: 15543139 |
[23] |
Menicucci, D., Lunghi, C., Zaccaro, A., Morrone, M. C., & Gemignani, A. (2022). Mutual interaction between visual homeostatic plasticity and sleep in adult humans. eLife, 11, e70633. https://doi.org/10.7554/eLife.70633
doi: 10.7554/eLife.70633 URL |
[24] |
Min, S. H., Baldwin, A. S., & Hess, R. F. (2019). Ocular dominance plasticity: A binocular combination task finds no cumulative effect with repeated patching. Vision Research, 161, 36-42. https://doi.org/10.1016/j.visres.2019.05.007
doi: S0042-6989(19)30122-1 URL pmid: 31194984 |
[25] |
Min, S. H., Baldwin, A. S., Reynaud, A., & Hess, R. F. (2018). The shift in ocular dominance from short-term monocular deprivation exhibits no dependence on duration of deprivation. Scientific Reports, 8(1), 17083. https://doi.org/10.1038/s41598-018-35084-1
doi: 10.1038/s41598-018-35084-1 URL pmid: 30459412 |
[26] |
Neisser, U., & Becklen, R. (1975). Selective looking: Attending to visually specified events. Cognitive Psychology, 7(4), 480-494. https://doi.org/10.1016/0010-0285(75)90019-5
doi: 10.1016/0010-0285(75)90019-5 URL |
[27] |
Nguyen, B. N., Malavita, M., Carter, O. L., & McKendrick, A. M. (2021). Neuroplasticity in older adults revealed by temporary occlusion of one eye. Cortex, 143, 1-11. https://doi.org/10.1016/j.cortex.2021.07.004
doi: 10.1016/j.cortex.2021.07.004 URL pmid: 34365199 |
[28] |
Norcia, A. M., Appelbaum, L. G., Ales, J. M., Cottereau, B. R., & Rossion, B. (2015). The steady-state visual evoked potential in vision research: A review. Journal of Vision, 15(6), 4. https://doi.org/10.1167/15.6.4
doi: 10.1167/15.6.4 URL pmid: 26024451 |
[29] |
Porac, C., & Coren, S. (1976). The dominant eye. Psychological Bulletin, 83(5), 880-897. https://doi.org/10.1037/0033-2909.83.5.880
URL pmid: 794902 |
[30] |
Purpura, K., Kaplan, E., & Shapley, R. M. (1988). Background light and the contrast gain of primate P and M retinal ganglion cells. Proceedings of the National Academy of Sciences of the United States of America, 85(12), 4534-4537. https://doi.org/10.1073/pnas.85.12.4534
URL pmid: 3380804 |
[31] |
Ramamurthy, M., & Blaser, E. (2021). The ups and downs of sensory eye balance: Monocular deprivation has a biphasic effect on interocular dominance. Vision Research, 183, 53-60. https://doi.org/10.1016/j.visres.2021.01.010
doi: 10.1016/j.visres.2021.01.010 URL pmid: 33684826 |
[32] |
Said, C. P., & Heeger, D. J. (2013). A model of binocular rivalry and cross-orientation suppression. PLoS Computational Biology, 9(3), e1002991. https://doi.org/10.1371/journal.pcbi.1002991
doi: 10.1371/journal.pcbi.1002991 URL |
[33] |
Shapley, R., & Victor, J. D. (1979). The contrast gain control of the cat retina. Vision Research, 19(4), 431-434. https://doi.org/10.1016/0042-6989(79)90109-3
URL pmid: 473613 |
[34] |
Sheynin, Y., Chamoun, M., Baldwin, A. S., Rosa-Neto, P., Hess, R. F., & Vaucher, E. (2019). Cholinergic potentiation alters perceptual eye dominance plasticity induced by a few hours of monocular patching in adults. Frontiers in Neuroscience, 13, 22. https://doi.org/10.3389/fnins.2019.00022
doi: 10.3389/fnins.2019.00022 URL pmid: 30766471 |
[35] |
Song, F., Lyu, L., Zhao, J., & Bao, M. (2022). The role of eye-specific attention in ocular dominance plasticity. Cerebral Cortex. 33(4), 983-996. https://doi.org/10.1093/cercor/bhac116
doi: 10.1093/cercor/bhac116 URL |
[36] |
Tong, F., Meng, M., & Blake, R. (2006). Neural bases of binocular rivalry. Trends in Cognitive Sciences, 10(11), 502-511. https://doi.org/10.1016/j.tics.2006.09.003
URL pmid: 16997612 |
[37] |
Turrigiano, G. (2011). Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annual Review of Neuroscience, 34, 89-103. https://doi.org/10.1146/annurev-neuro-060909-153238
doi: 10.1146/annurev-neuro-060909-153238 URL pmid: 21438687 |
[38] |
Turrigiano, G. G. (1999). Homeostatic plasticity in neuronal networks: The more things change, the more they stay the same. Trends in Neurosciences, 22(5), 221-227. https://doi.org/10.1016/s0166-2236(98)01341-1
doi: 10.1016/s0166-2236(98)01341-1 URL pmid: 10322495 |
[39] |
Turrigiano, G. G., & Nelson, S. B. (2004). Homeostatic plasticity in the developing nervous system. Nature Reviews Neuroscience, 5(2), 97-107. https://doi.org/10.1038/nrn1327
doi: 10.1038/nrn1327 URL pmid: 14735113 |
[40] |
Vidal, M., & Barres, V. (2014). Hearing (rivaling) lips and seeing voices: How audiovisual interactions modulate perceptual stabilization in binocular rivalry. Frontiers in Human Neuroscience, 8, 677. https://doi.org/10.3389/fnhum.2014.00677
doi: 10.3389/fnhum.2014.00677 URL pmid: 25237302 |
[41] |
Wang, M., McGraw, P., & Ledgeway, T. (2021). Attentional eye selection modulates sensory eye dominance. Vision Research, 188, 10-25. https://doi.org/10.1016/j.visres.2021.06.006
doi: 10.1016/j.visres.2021.06.006 URL pmid: 34280813 |
[42] |
Wang, Y., Yao, Z., He, Z., Zhou, J., & Hess, R. F. (2017). The cortical mechanisms underlying ocular dominance plasticity in adults are not orientationally selective. Neuroscience, 367, 121-126. https://doi.org/10.1016/j.neuroscience.2017.10.030
doi: S0306-4522(17)30758-3 URL pmid: 29111362 |
[43] |
Wiesel, T. N., & Hubel, D. H. (1963). Single-cell responses in striate cortex of kittens deprived of vision in one eye. Journal of Neurophysiology, 26(6), 1003-1017. https://doi.org/10.1152/jn.1963.26.6.1003
doi: 10.1152/jn.1963.26.6.1003 URL |
[44] |
Wong, N. H. L., & Chang, D. H. F. (2018). Attentional advantages in video-game experts are not related to perceptual tendencies. Scientific Reports, 8(1), 5528. https://doi.org/10.1038/s41598-018-23819-z
doi: 10.1038/s41598-018-23819-z URL pmid: 29615743 |
[45] |
Yao, Z., He, Z., Wang, Y., Lu, F., Qu, J., Zhou, J., & Hess, R. F. (2017). Absolute not relative interocular luminance modulates sensory eye dominance plasticity in adults. Neuroscience, 367, 127-133. https://doi.org/10.1016/j.neuroscience.2017.10.029
doi: S0306-4522(17)30757-1 URL pmid: 29111363 |
[46] |
Zhou, J., Baker, D. H., Simard, M., Saint-Amour, D., & Hess, R. F. (2015). Short-term monocular patching boosts the patched eye's response in visual cortex. Restorative Neurology and Neuroscience, 33(3), 381-387. https://doi.org/10.3233/RNN-140472
doi: 10.3233/RNN-140472 URL pmid: 26410580 |
[47] | Zhou, J., Clavagnier, S., & Hess, R. F. (2013). Short-term monocular deprivation strengthens the patched eye's contribution to binocular combination. Journal of Vision, 13(5), 12. https://doi.org/10.1167/13.5.12 |
[48] |
Zhou, J., Reynaud, A., & Hess, R. F. (2014). Real-time modulation of perceptual eye dominance in humans. Proceedings of the Royal Society B-Biological Sciences, 281(1795), 20141717. https://doi.org/10.1098/rspb.2014.1717
doi: 10.1098/rspb.2014.1717 URL |
[1] | LIU Yiming, LUO Haocheng, FU Shimin. Is visual consciousness dichotomous or continuous? The integrated perspective based on attentional blink [J]. Advances in Psychological Science, 2024, 32(2): 264-275. |
[2] | SUN Meng, LIU Zejun, JIA Xi, SHANG Chenyang, ZHANG Qin. Emotional T2 attenuates attentional blink: A window to understanding the preferential processing of emotion [J]. Advances in Psychological Science, 2024, 32(1): 58-74. |
[3] | Tianyu Zhang, Yongchun Cai. The Effect of Pre-saccadic Attention on Contrast Appearance [J]. Advances in Psychological Science, 2023, 31(suppl.): 15-15. |
[4] | Ruoying Zheng, Guomei Zhou. The Cheerleader Effect in Multiple Social Groups [J]. Advances in Psychological Science, 2023, 31(suppl.): 47-47. |
[5] | Binglong Li, Jiehui Qian. Attention Reorientation in 3D Space: Depth-based Statistical Learning Modulates Attention Capture [J]. Advances in Psychological Science, 2023, 31(suppl.): 48-48. |
[6] | Suqi Huang, Yiping Ge, Li Wang, Yi Jiang. Biological Motion Cues Modulate Visual Working Memory [J]. Advances in Psychological Science, 2023, 31(suppl.): 85-85. |
[7] | Yongyue Wang, Zhe Qu. The Influence of Dynamic Attention in Working Memory on Feature Binding [J]. Advances in Psychological Science, 2023, 31(suppl.): 91-91. |
[8] | Mengxuan Sun, Qi Zhang. Simultaneous or Switching? Electrophysiological Measures of the Mechanism During Multiple Object Searching in Real-world Scenes [J]. Advances in Psychological Science, 2023, 31(suppl.): 92-92. |
[9] | Yang Geqing, Jiang Yi, Wang Ying. Preferential Attentional Orienting to Animals Links with Autistic Traits [J]. Advances in Psychological Science, 2023, 31(suppl.): 97-97. |
[10] | Fang Yang, Jinyu Tian, Peijun Yuan, Chunyan Liu, Xinyuan Zhang, Li Yang, Yi Jiang. Unconscious, but not Conscious, Gaze-triggered Social Attention Reflects the Autistic Traits in Adults and Children [J]. Advances in Psychological Science, 2023, 31(suppl.): 98-98. |
[11] | Shirong Wu, Zhe Qu. The Occurrence of Attentional White Bear Is Not Influenced by the Probe Task [J]. Advances in Psychological Science, 2023, 31(suppl.): 99-99. |
[12] | Ziwei Chen, Mengxin Wen, Di Fu, Xun Liu. Exploring the Effect of Averted Gaze Faces and Face-like Objects on Attentional Shifts in Adolescents with Autism-Like Traits [J]. Advances in Psychological Science, 2023, 31(suppl.): 101-101. |
[13] | Yang YANG, Zhengbo CHEN, Yongchun CAI. Metaplasticity in Short-Term Monocular Deprivation [J]. Advances in Psychological Science, 2023, 31(suppl.): 111-111. |
[14] | Lei Jiang, Dang Ding, Wei Mao, Xianyuan Yang, Fangfang Yan, Chang-Bing Huang. On Circadian Rhythm and Visual Perceptual Learning [J]. Advances in Psychological Science, 2023, 31(suppl.): 115-115. |
[15] | Liying Zou, Chenyan Zhou, Jiawei Zhou, Seung Hyun Min. Ocular Dominance Plasticity does not Exhibit Perceptual Deterioration [J]. Advances in Psychological Science, 2023, 31(suppl.): 116-116. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||