Advances in Psychological Science ›› 2022, Vol. 30 ›› Issue (9): 2034-2052.doi: 10.3724/SP.J.1042.2022.02034
• Regular Articles • Previous Articles Next Articles
GUO Zhi-Hua, LU Hong-Liang, HUANG Peng, ZHU Xia()
Received:
2021-12-01
Online:
2022-09-15
Published:
2022-07-21
Contact:
ZHU Xia
E-mail:zhuxia@fmmu.edu.cn
CLC Number:
GUO Zhi-Hua, LU Hong-Liang, HUANG Peng, ZHU Xia. Effects of transcranial direct current stimulation on response inhibition in healthy people[J]. Advances in Psychological Science, 2022, 30(9): 2034-2052.
研究 | 被试 | 任务 | 刺激极性 | 电流强度 | 持续时间 | 主要效应 |
---|---|---|---|---|---|---|
Jacobson等( | 22 | SST | A/C/S | 1 mA | 10 min | 阳极刺激使SSRT降低; 阴极刺激对SSRT效果不显著 |
Ditye等( | 22 | SST | A | 1.5 mA | 15 min | 训练使SSRT降低, 阳极刺激结合训练使提升效果更大 |
Cunillera等( | 22 | GNG-SST | A/S | 1.5 mA | 18 min | 阳极刺激使SSRT降低, GoRT增加 |
Dambacher等( | 69 | GNG | A/C/S | 1.5 mA | 21.75 min | 各组Nogo错误率没有显著差异 |
Stramaccia等( | 115 | SST | A/C/S | 1.5 mA | 20 min | 阳极刺激使SSRT降低, 阴极刺激对SSRT效果不显著 |
Cai等( | 22 | SST | A | 1.5 mA | 15 min | 阳极刺激使SSRT降低, GoRT增加 |
Cunillera等( | 23 | GNG-SST | A/S | 1.5 mA | 20 min | 阳极刺激对SSRT影响不显著, GoRT增加 |
Hogeveen等( | 46 | SST | A | 1 mA | 20 min | HD-tDCS结合SST训练使ΔSSRT降低, HD-tDCS结合CRT训练对ΔSSRT没有影响 |
Castro-Meneses等( | 14 | SST | A/S | 1.5 mA | 15 min | 阳极刺激使SSRT降低, GoRT没有显著差异 |
Campanella等( | 31 | GNG | A/S | 2 mA | 20 min | 阳极和假刺激的Nogo错误率没有显著差异 |
Campanella等( | 35 | GNG | A/S | 2 mA | 20 min | 阳极刺激使快速反应的准确率降低幅度变小 |
Leite等( | 16 | GNG | A/S | 1 mA | 30 min | 阳极和假刺激的Nogo正确率没有显著差异 |
Li等( | 26 | SST | A/C/S | 2 mA | 4 min 12 sec | 阳极刺激使SSRT降低, 阴极刺激对SSRT影响不显著 |
Chen等( | 57 | modified SST | A/S | 1.5 mA | 20 min | 阳极刺激使SSRT降低 |
Sandrini等( | 30 | SST | A/S | 1.5 mA | 20 min | 阳极刺激ΔSSRT缩短 |
Thunberg等( | 18 | SST | A/S | 2 mA | 20 min | 阳极和假刺激的SSRT没有显著差异 |
Friehs, Brauner等( | 45 | SST | A/C/S | 0.5 mA | 20 min | 各组SSRT没有显著差异 |
Fujiyama等( | 42 | modified SST | A/S | 1.5 mA | 20 min | 阳极刺激使年轻人SSRT显著降低, 对老年人不显著 |
研究 | 被试 | 任务 | 刺激极性 | 电流强度 | 持续时间 | 主要效应 |
---|---|---|---|---|---|---|
Jacobson等( | 22 | SST | A/C/S | 1 mA | 10 min | 阳极刺激使SSRT降低; 阴极刺激对SSRT效果不显著 |
Ditye等( | 22 | SST | A | 1.5 mA | 15 min | 训练使SSRT降低, 阳极刺激结合训练使提升效果更大 |
Cunillera等( | 22 | GNG-SST | A/S | 1.5 mA | 18 min | 阳极刺激使SSRT降低, GoRT增加 |
Dambacher等( | 69 | GNG | A/C/S | 1.5 mA | 21.75 min | 各组Nogo错误率没有显著差异 |
Stramaccia等( | 115 | SST | A/C/S | 1.5 mA | 20 min | 阳极刺激使SSRT降低, 阴极刺激对SSRT效果不显著 |
Cai等( | 22 | SST | A | 1.5 mA | 15 min | 阳极刺激使SSRT降低, GoRT增加 |
Cunillera等( | 23 | GNG-SST | A/S | 1.5 mA | 20 min | 阳极刺激对SSRT影响不显著, GoRT增加 |
Hogeveen等( | 46 | SST | A | 1 mA | 20 min | HD-tDCS结合SST训练使ΔSSRT降低, HD-tDCS结合CRT训练对ΔSSRT没有影响 |
Castro-Meneses等( | 14 | SST | A/S | 1.5 mA | 15 min | 阳极刺激使SSRT降低, GoRT没有显著差异 |
Campanella等( | 31 | GNG | A/S | 2 mA | 20 min | 阳极和假刺激的Nogo错误率没有显著差异 |
Campanella等( | 35 | GNG | A/S | 2 mA | 20 min | 阳极刺激使快速反应的准确率降低幅度变小 |
Leite等( | 16 | GNG | A/S | 1 mA | 30 min | 阳极和假刺激的Nogo正确率没有显著差异 |
Li等( | 26 | SST | A/C/S | 2 mA | 4 min 12 sec | 阳极刺激使SSRT降低, 阴极刺激对SSRT影响不显著 |
Chen等( | 57 | modified SST | A/S | 1.5 mA | 20 min | 阳极刺激使SSRT降低 |
Sandrini等( | 30 | SST | A/S | 1.5 mA | 20 min | 阳极刺激ΔSSRT缩短 |
Thunberg等( | 18 | SST | A/S | 2 mA | 20 min | 阳极和假刺激的SSRT没有显著差异 |
Friehs, Brauner等( | 45 | SST | A/C/S | 0.5 mA | 20 min | 各组SSRT没有显著差异 |
Fujiyama等( | 42 | modified SST | A/S | 1.5 mA | 20 min | 阳极刺激使年轻人SSRT显著降低, 对老年人不显著 |
研究 | 被试 | 任务 | 刺激极性 | 刺激脑区 | 电流强度 | 持续时间 | 主要效应 |
---|---|---|---|---|---|---|---|
Plewnia等( | 46 | PGNG | A/S | left DLPFC | 1 mA | 20 min | tDCS对COMT基因Met纯合子和Val等位基因携带者Nogo正确率的作用没有差别 |
Lapenta等( | 9 | modified GNG | A/S | right DLPFC | 2 mA | 20 min | 阳极刺激和假刺激的Nogo正确率没有差别 |
Nieratschker等( | 41 | PGNG | C/S | left DLPFC | 1 mA | 20 min | 阴极刺激使COMT基因Val纯合子Nogo正确率降低 |
Stramaccia等( | 115 | SST | A/C/S | right DLPFC | 1.5 mA | 20 min | 阳极刺激和阴极刺激对SSRT的作用与假刺激相比没有显著差异 |
Weidacker等( | 18 | PGNG | A/C/S | right DLPFC | 1.5 mA | 20 min | 冷酷分量表得分越高, 阴极刺激下高难度PGNG的表现更好 |
Mansouri等( | 73 | modified SST | A/S | left DLPFC | 1.5 mA | 10 min | 快节奏音乐下阳极刺激使SSRT降低 |
Nejati等( | 24 | GNG | A/C/S | left DLPFC | 1.5 mA | 20 min | 阳极刺激使Nogo正确率增加 |
王慧慧等( | 34 | SST | A/S | right DLPFC | 1.5 mA | 25 min | 阳极刺激使SSRT降低 |
Friehs和Frings ( | 56 | SST | A/S | right DLPFC | 0.5 mA | 19 min | 阳极刺激使SSRT降低 |
Fehring等( | 73 | SST | A/S | left DLPFC | 1.5 mA | 10 min | 阳极刺激使SSRT降低 |
Friehs和Frings ( | 42 | SST | C/S | right DLPFC | 0.5 mA | 19 min | 阴极刺激使SSRT增加 |
Sedgmond等( | 172 | modified GNG | A/S | right DLPFC | 2 mA | 20 min | 阳极刺激和假刺激结合训练的Nogo正确率没有差别 |
Chen等( | 92 | SST | A/C/S | right DLPFC | 1.5 mA | 25 min | 与假刺激比, 阳极刺激和阴极刺激都使SSRT降低 |
Dousset等( | 127 | GNG | A/S | right DLPFC | 2 mA | 20 min | 阳极刺激结合训练使GoRT下降, Nogo错误率下降 |
Friehs, Brauner等( | 45 | SST | A/C/S | right DLPFC | 0.5 mA | 19 min | 各组SSRT没有显著差异 |
Friehs, Dechant等( | 45 | modified SST | A/S | right DLPFC | 0.5 mA | 19 min | 阳极刺激使SSRT降低 |
Wu等( | 56 | GNG+SST | A/C/S | right DLPFC | 1.5 mA | 20 min | 各组Nogo正确率和SSRT没有显著差异 |
研究 | 被试 | 任务 | 刺激极性 | 刺激脑区 | 电流强度 | 持续时间 | 主要效应 |
---|---|---|---|---|---|---|---|
Plewnia等( | 46 | PGNG | A/S | left DLPFC | 1 mA | 20 min | tDCS对COMT基因Met纯合子和Val等位基因携带者Nogo正确率的作用没有差别 |
Lapenta等( | 9 | modified GNG | A/S | right DLPFC | 2 mA | 20 min | 阳极刺激和假刺激的Nogo正确率没有差别 |
Nieratschker等( | 41 | PGNG | C/S | left DLPFC | 1 mA | 20 min | 阴极刺激使COMT基因Val纯合子Nogo正确率降低 |
Stramaccia等( | 115 | SST | A/C/S | right DLPFC | 1.5 mA | 20 min | 阳极刺激和阴极刺激对SSRT的作用与假刺激相比没有显著差异 |
Weidacker等( | 18 | PGNG | A/C/S | right DLPFC | 1.5 mA | 20 min | 冷酷分量表得分越高, 阴极刺激下高难度PGNG的表现更好 |
Mansouri等( | 73 | modified SST | A/S | left DLPFC | 1.5 mA | 10 min | 快节奏音乐下阳极刺激使SSRT降低 |
Nejati等( | 24 | GNG | A/C/S | left DLPFC | 1.5 mA | 20 min | 阳极刺激使Nogo正确率增加 |
王慧慧等( | 34 | SST | A/S | right DLPFC | 1.5 mA | 25 min | 阳极刺激使SSRT降低 |
Friehs和Frings ( | 56 | SST | A/S | right DLPFC | 0.5 mA | 19 min | 阳极刺激使SSRT降低 |
Fehring等( | 73 | SST | A/S | left DLPFC | 1.5 mA | 10 min | 阳极刺激使SSRT降低 |
Friehs和Frings ( | 42 | SST | C/S | right DLPFC | 0.5 mA | 19 min | 阴极刺激使SSRT增加 |
Sedgmond等( | 172 | modified GNG | A/S | right DLPFC | 2 mA | 20 min | 阳极刺激和假刺激结合训练的Nogo正确率没有差别 |
Chen等( | 92 | SST | A/C/S | right DLPFC | 1.5 mA | 25 min | 与假刺激比, 阳极刺激和阴极刺激都使SSRT降低 |
Dousset等( | 127 | GNG | A/S | right DLPFC | 2 mA | 20 min | 阳极刺激结合训练使GoRT下降, Nogo错误率下降 |
Friehs, Brauner等( | 45 | SST | A/C/S | right DLPFC | 0.5 mA | 19 min | 各组SSRT没有显著差异 |
Friehs, Dechant等( | 45 | modified SST | A/S | right DLPFC | 0.5 mA | 19 min | 阳极刺激使SSRT降低 |
Wu等( | 56 | GNG+SST | A/C/S | right DLPFC | 1.5 mA | 20 min | 各组Nogo正确率和SSRT没有显著差异 |
研究 | 被试 | 任务 | 刺激极性 | 电流强度 | 持续时间 | 主要效应 |
---|---|---|---|---|---|---|
Hsu等( | 28 | SST | A/C | 1.5 mA | 10 min | 阳极刺激使Stop试次错误率降低, 但SSRT各组没有差别 |
Kwon和Kwon ( | 40 | SST | A/S | 1 mA | 10 min | 阳极刺激使SSRT降低 |
Kwon和Kwon ( | 40 | SST | A/S | 1 mA | 10 min | 阳极刺激使SSRT降低 |
Liang等( | 18 | SST | A | 1.5 mA | 10 min | 阳极刺激使stop试次错误率和SSRT都降低 |
Yu等( | 8/23 | SST | A/S | 2 mA | 20 min | 阳极刺激使SSRT降低 |
Bender等( | 18 | modified SST | A/C/S | 0.7 mA | 9 min | 阳极刺激和阴极刺激对SSRT的作用与假刺激相比没有显著差异 |
Fujiyama等( | 41 | modified SST | A/S | 1.5 mA | 20 min | 阳极刺激使老年人SSRT显著降低, 对年轻人不显著 |
研究 | 被试 | 任务 | 刺激极性 | 电流强度 | 持续时间 | 主要效应 |
---|---|---|---|---|---|---|
Hsu等( | 28 | SST | A/C | 1.5 mA | 10 min | 阳极刺激使Stop试次错误率降低, 但SSRT各组没有差别 |
Kwon和Kwon ( | 40 | SST | A/S | 1 mA | 10 min | 阳极刺激使SSRT降低 |
Kwon和Kwon ( | 40 | SST | A/S | 1 mA | 10 min | 阳极刺激使SSRT降低 |
Liang等( | 18 | SST | A | 1.5 mA | 10 min | 阳极刺激使stop试次错误率和SSRT都降低 |
Yu等( | 8/23 | SST | A/S | 2 mA | 20 min | 阳极刺激使SSRT降低 |
Bender等( | 18 | modified SST | A/C/S | 0.7 mA | 9 min | 阳极刺激和阴极刺激对SSRT的作用与假刺激相比没有显著差异 |
Fujiyama等( | 41 | modified SST | A/S | 1.5 mA | 20 min | 阳极刺激使老年人SSRT显著降低, 对年轻人不显著 |
[1] | 王慧慧, 罗玉丹, 石冰, 余凤琼, 汪凯. (2018). 经颅直流电刺激对健康大学生反应抑制的影响. 心理学报, 50(6), 647-654. |
[2] |
Alderson, R., Patros, C., Tarle, S., Hudec, K., Kasper, L., & Lea, S. (2017). Working memory and behavioral inhibition in boys with ADHD: An experimental examination of competing models. Child Neuropsychology, 23(3), 255-272.
doi: 10.1080/09297049.2015.1105207 pmid: 26563880 |
[3] |
Alizadehgoradel, J., Nejati, V., Movahed, F. S., Imani, S., Taherifard, M., Mosayebi-Samani, M.,... Salehinejad, M. A. (2020). Repeated stimulation of the dorsolateral- prefrontal cortex improves executive dysfunctions and craving in drug addiction: A randomized, double-blind, parallel-group study. Brain Stimulation, 13(3), 582-593.
doi: S1935-861X(19)30499-1 pmid: 32289681 |
[4] |
Aron, A. R. (2007). The neural basis of inhibition in cognitive control. Neuroscientist, 13(3), 214-228.
doi: 10.1177/1073858407299288 URL |
[5] |
Aron, A. R., Behrens, T. E., Smith, S., Frank, M. J., & Poldrack, R. A. (2007). Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. Journal of Neuroscience, 27(14), 3743-3752.
doi: 10.1523/JNEUROSCI.0519-07.2007 URL |
[6] |
Aron, A. R., Durston, S., Eagle, D. M., Logan, G. D., Stinear, C. M., & Stuphorn, V. (2007). Converging evidence for a fronto-basal-ganglia network for inhibitory control of action and cognition. Journal of Neuroscience, 27(44), 11860-11864.
doi: 10.1523/JNEUROSCI.3644-07.2007 URL |
[7] |
Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6(2), 115-116.
doi: 10.1038/nn1003 URL |
[8] |
Aron, A. R., Herz, D. M., Brown, P., Forstmann, B. U., & Zaghloul, K. (2016). Frontosubthalamic circuits for control of action and cognition. Journal of Neuroscience, 36(45), 11489-11495.
doi: 10.1523/JNEUROSCI.2348-16.2016 URL |
[9] |
Aron, A. R., & Poldrack, R. A. (2006). Cortical and subcortical contributions to stop signal response inhibition: Role of the subthalamic nucleus. Journal of Neuroscience, 26(9), 2424-2433.
doi: 10.1523/JNEUROSCI.4682-05.2006 URL |
[10] |
Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2014). Inhibition and the right inferior frontal cortex: One decade on. Trends in Cognitive Sciences, 18(4), 177-185.
doi: 10.1016/j.tics.2013.12.003 URL |
[11] |
Bender, A., Filmer, H., & Dux, P. (2017). Transcranial direct current stimulation of superior medial frontal cortex disrupts response selection during proactive response inhibition. Neuroimage, 158, 455-465.
doi: 10.1016/j.neuroimage.2016.10.035 URL |
[12] |
Benikos, N., Johnstone, S. J., & Roodenrys, S. J. (2013). Short-term training in the Go/Nogo task: Behavioural and neural changes depend on task demands. International Journal of Psychophysiology, 87(3), 301-312.
doi: 10.1016/j.ijpsycho.2012.12.001 URL |
[13] |
Biggs, A. T., Cain, M. S., & Mitroff, S. R. (2015). Cognitive training can reduce civilian casualties in a simulated shooting environment. Psychological Science, 26(8), 1164-1176.
doi: 10.1177/0956797615579274 pmid: 26170262 |
[14] |
Bikson, M., Grossman, P., Thomas, C., Zannou, A., Jiang, J., Adnan, T.,... Woods, A. (2016). Safety of transcranial direct current stimulation: Evidence based update 2016. Brain Stimulation, 9(5), 641-661.
doi: S1935-861X(16)30140-1 pmid: 27372845 |
[15] |
Borgomaneri, S., Serio, G., & Battaglia, S. (2020). Please, don't do it! Fifteen years of progress of non-invasive brain stimulation in action inhibition. Cortex, 132, 404-422.
doi: 10.1016/j.cortex.2020.09.002 pmid: 33045520 |
[16] |
Boroda, E., Krueger, A. M., Bansal, P., Schumacher, M. J., Roy, A. V., Boys, C. J.,... Wozniak, J. R. (2020). A randomized controlled trial of transcranial direct-current stimulation and cognitive training in children with fetal alcohol spectrum disorder. Brain Stimulation, 13(4), 1059-1068.
doi: S1935-861X(20)30094-2 pmid: 32360392 |
[17] | Bortoletto, M., Rodella, C., Salvador, R., Miranda, P. C., & Miniussi, C. (2016). Reduced current spread by concentric electrodes in transcranial electrical stimulation (tES). Brain Stimulation, 9(4), 527-530. |
[18] |
Braga, M., Barbiani, D., Emadi Andani, M., Villa-Sanchez, B., Tinazzi, M., & Fiorio, M. (2021). The role of expectation and beliefs on the effects of non-invasive brain stimulation. Brain Sciences, 11(11), 1526.
doi: 10.3390/brainsci11111526 URL |
[19] |
Brunelin, J., Mondino, M., Bation, R., Palm, U., Saoud, M., & Poulet, E. (2018). Transcranial direct current Stimulation for obsessive-compulsive disorder: A systematic review. Brain Sciences, 8(2), 37.
doi: 10.3390/brainsci8020037 URL |
[20] |
Cai, Y., Li, S. Y., Liu, J., Li, D. W., Feng, Z. F., Wang, Q.,... Xue, G. (2016). The role of the frontal and parietal cortex in proactive and reactive inhibitory control: A transcranial direct current stimulation study. Journal of Cognitive Neuroscience, 28(1), 177-186.
doi: 10.1162/jocn_a_00888 URL |
[21] |
Campanella, S., Schroder, E., Monnart, A., Vanderhasselt, M., Duprat, R., Rabijns, M.,... Baeken, C. (2017). Transcranial direct current stimulation over the right frontal inferior cortex decreases neural activity needed to achieve inhibition: A double-blind ERP study in a male population. Clinical EEG and Neuroscience, 48(3), 176-188.
doi: 10.1177/1550059416645977 pmid: 27170671 |
[22] |
Campanella, S., Schroder, E., Vanderhasselt, M.-A., Baeken, C., Kornreich, C., Verbanck, P., & Burle, B. (2018). Short-term impact of tDCS over the right inferior frontal cortex on impulsive responses in a Go/No-go task. Clinical EEG and Neuroscience, 49(6), 398-406.
doi: 10.1177/1550059418777404 pmid: 29788768 |
[23] |
Castro-Meneses, L., Johnson, B., & Sowman, P. (2016). Vocal response inhibition is enhanced by anodal tDCS over the right prefrontal cortex. Experimental Brain Research, 234(1), 185-195.
doi: 10.1007/s00221-015-4452-0 pmid: 26419662 |
[24] |
Chamberlain, S., Blackwell, A., Fineberg, N., Robbins, T., & Sahakian, B. (2005). The neuropsychology of obsessive compulsive disorder: The importance of failures in cognitive and behavioural inhibition as candidate endophenotypic markers. Neuroscience and Biobehavioral Reviews, 29(3), 399-419.
pmid: 15820546 |
[25] | Chambers, C., Bellgrove, M., Stokes, M., Henderson, T., Garavan, H., Robertson, I.,... Mattingley, J. (2006). Executive "brake failure" following deactivation of human frontal lobe. Journal of Cognitive Neuroscience, 18(3), 444-455. |
[26] |
Chan, M. M. Y., Yau, S. S. Y., & Han, Y. M. Y. (2021). The neurobiology of prefrontal transcranial direct current stimulation (tDCS) in promoting brain plasticity: A systematic review and meta-analyses of human and rodent studies. Neuroscience and Biobehavioral Reviews, 125, 392-416.
doi: 10.1016/j.neubiorev.2021.02.035 URL |
[27] |
Chen, S., Jackson, T., Dong, D., Zhang, X., & Chen, H. (2019). Exploring effects of single-session anodal tDCS over the inferior frontal gyrus on responses to food cues and food cravings among highly disinhibited restrained eaters: A preliminary study. Neuroscience Letters, 706, 211-216.
doi: 10.1016/j.neulet.2019.05.035 URL |
[28] |
Chen, T., Wang, H., Wang, X., Zhu, C., Zhang, L., Wang, K., & Yu, F. (2021). Transcranial direct current stimulation of the right dorsolateral prefrontal cortex improves response inhibition. International Journal of Psychophysiology, 162, 34-39.
doi: 10.1016/j.ijpsycho.2021.01.014 URL |
[29] |
Clark, L., Blackwell, A. D., Aron, A. R., Turner, D. C., Dowson, J., Robbins, T. W., & Sahakian, B. J. (2007). Association between response inhibition and working memory in adult ADHD: A link to right frontal cortex pathology? Biological Psychiatry, 61(12), 1395-1401.
doi: 10.1016/j.biopsych.2006.07.020 pmid: 17046725 |
[30] |
Coffman, B. A., Clark, V. P., & Parasuraman, R. (2014). Battery powered thought: Enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. Neuroimage, 85, 895-908.
doi: 10.1016/j.neuroimage.2013.07.083 URL |
[31] |
Coxon, J. P., Goble, D. J., Leunissen, I., van Impe, A., Wenderoth, N., & Swinnen, S. P. (2016). Functional brain activation associated with inhibitory control deficits in older adults. Cerebral Cortex, 26(1), 12-22.
doi: 10.1093/cercor/bhu165 URL |
[32] |
Cunillera, T., Brignani, D., Cucurell, D., Fuentemilla, L., & Miniussi, C. (2016). The right inferior frontal cortex in response inhibition: A tDCS-ERP co-registration study. Neuroimage, 140, 66-75.
doi: 10.1016/j.neuroimage.2015.11.044 pmid: 26619787 |
[33] |
Cunillera, T., Fuentemilla, L., Brignani, D., Cucurell, D., & Miniussi, C. (2014). A simultaneous modulation of reactive and proactive inhibition processes by anodal tDCS on the right inferior frontal cortex. PLoS One, 9(11), e113537.
doi: 10.1371/journal.pone.0113537 URL |
[34] |
Dagan, M., Herman, T., Harrison, R., Zhou, J., Giladi, N., Ruffini, G.,... Hausdorff, J. M. (2018). Multitarget transcranial direct current stimulation for freezing of gait in Parkinson's disease. Movement Disorders, 33(4), 642-646.
doi: 10.1002/mds.27300 URL |
[35] |
Dambacher, F., Sack, A., Lobbestael, J., Arntz, A., Brugman, S., & Schuhmann, T. (2014). A network approach to response inhibition: Dissociating functional connectivity of neural components involved in action restraint and action cancellation. The European Journal of Neuroscience, 39(5), 821-831.
doi: 10.1111/ejn.12425 URL |
[36] |
Dambacher, F., Schuhmann, T., Lobbestael, J., Arntz, A., Brugman, S., & Sack, A. (2015). No effects of bilateral tDCS over inferior frontal gyrus on response inhibition and aggression. PLoS One, 10(7), e0132170.
doi: 10.1371/journal.pone.0132170 URL |
[37] |
Datta, A., Bansal, V., Diaz, J., Patel, J., Reato, D., & Bikson, M. (2009). Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation, 2(4), 201-207.e1.
doi: 10.1016/j.brs.2009.03.005 URL |
[38] |
Davis, S. E., & Smith, G. A. (2019). Transcranial direct current stimulation use in warfighting: Benefits, risks, and future prospects. Frontiers in Human Neuroscience, 13, 114.
doi: 10.3389/fnhum.2019.00114 URL |
[39] |
de Boer, N. S., Schluter, R. S., Daams, J. G., van der Werf, Y. D., Goudriaan, A. E., & van Holst, R. J. (2021). The effect of non-invasive brain stimulation on executive functioning in healthy controls: A systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 125, 122-147.
doi: 10.1016/j.neubiorev.2021.01.013 URL |
[40] |
de Wit, S., de Vries, F., van der Werf, Y., Cath, D., Heslenfeld, D., Veltman, E.,... van den Heuvel, O. (2012). Presupplementary motor area hyperactivity during response inhibition: A candidate endophenotype of obsessive-compulsive disorder. American Journal of Psychiatry, 169(10), 1100-1108.
doi: 10.1176/appi.ajp.2012.12010073 URL |
[41] |
Di Rosa, E., Brigadoi, S., Cutini, S., Tarantino, V., Dell'Acqua, R., Mapelli, D.,... Vallesi, A. (2019). Reward motivation and neurostimulation interact to improve working memory performance in healthy older adults: A simultaneous tDCS-fNIRS study. Neuroimage, 202, 116062.
doi: 10.1016/j.neuroimage.2019.116062 URL |
[42] |
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135-168.
doi: 10.1146/annurev-psych-113011-143750 pmid: 23020641 |
[43] |
Ditye, T., Jacobson, L., Walsh, V., & Lavidor, M. (2012). Modulating behavioral inhibition by tDCS combined with cognitive training. Experimental Brain Research, 219(3), 363-368.
doi: 10.1007/s00221-012-3098-4 URL |
[44] |
Dousset, C., Ingels, A., Schroder, E., Angioletti, L., Balconi, M., Kornreich, C., & Campanella, S. (2021). Transcranial direct current stimulation combined with cognitive training induces response inhibition facilitation through distinct neural responses according to the stimulation site: A follow-up event-related potentials study. Clinical EEG and Neuroscience, 52(3), 181-192.
doi: 10.1177/1550059420958967 URL |
[45] |
Duann, J. R., Ide, J. S., Luo, X., & Li, C. S. (2009). Functional connectivity delineates distinct roles of the inferior frontal cortex and presupplementary motor area in stop signal inhibition. Journal of Neuroscience, 29(32), 10171-10179.
doi: 10.1523/JNEUROSCI.1300-09.2009 URL |
[46] |
Dubreuil-Vall, L., Chau, P., Ruffini, G., Widge, A. S., & Camprodon, J. A. (2019). tDCS to the left DLPFC modulates cognitive and physiological correlates of executive function in a state-dependent manner. Brain Stimulation, 12(6), 1456-1463.
doi: S1935-861X(19)30231-1 pmid: 31221553 |
[47] | Dumel, G., Bourassa, M. E., Desjardins, M., Voarino, N., Charlebois-Plante, C., Doyon, J., & de Beaumont, L. (2016). Multisession anodal tDCS protocol improves motor system function in an aging population. Neural Plasticity, 2016, 5961362. |
[48] |
Erika-Florence, M., Leech, R., & Hampshire, A. (2014). A functional network perspective on response inhibition and attentional control. Nature Communications, 5, 4073.
doi: 10.1038/ncomms5073 pmid: 24905116 |
[49] |
Fehring, D. J., Illipparampil, R., Acevedo, N., Jaberzadeh, S., Fitzgerald, P. B., & Mansouri, F. A. (2019). Interaction of task-related learning and transcranial direct current stimulation of the prefrontal cortex in modulating executive functions. Neuropsychologia, 131, 148-159.
doi: S0028-3932(19)30118-6 pmid: 31100345 |
[50] |
Filmer, H. L., Dux, P. E., & Mattingley, J. B. (2014). Applications of transcranial direct current stimulation for understanding brain function. Trends in Neurosciences, 37(12), 742-753.
doi: 10.1016/j.tins.2014.08.003 URL |
[51] |
Floden, D., & Stuss, D. (2006). Inhibitory control is slowed in patients with right superior medial frontal damage. Journal of Cognitive Neuroscience, 18(11), 1843-1849.
doi: 10.1162/jocn.2006.18.11.1843 URL |
[52] |
Friehs, M. A., Brauner, L., & Frings, C. (2021). Dual-tDCS over the right prefrontal cortex does not modulate stop-signal task performance. Experimental Brain Research, 239(3), 811-820.
doi: 10.1007/s00221-020-05995-5 URL |
[53] |
Friehs, M. A., Dechant, M., Vedress, S., Frings, C., & Mandryk, R. L. (2021). Shocking advantage! Improving digital game performance using non-invasive brain stimulation. International Journal of Human-Computer Studies, 148, 102582.
doi: 10.1016/j.ijhcs.2020.102582 URL |
[54] |
Friehs, M. A., & Frings, C. (2018). Pimping inhibition: Anodal tDCS enhances stop-signal reaction time. Journal of Experimental Psychology: Human Perception and Performance, 44(12), 1933-1945.
doi: 10.1037/xhp0000579 URL |
[55] | Friehs, M. A., & Frings, C. (2019). Cathodal tDCS increases stop-signal reaction time. Cognitive Affective & Behavioral Neuroscience, 19(5), 1129-1142. |
[56] |
Friehs, M. A., Frings, C., & Hartwigsen, G. (2021). Effects of single-session transcranial direct current stimulation on reactive response inhibition. Neuroscience and Biobehavioral Reviews, 128, 749-765.
doi: 10.1016/j.neubiorev.2021.07.013 URL |
[57] |
Fritsch, B., Reis, J., Martinowich, K., Schambra, H. M., Ji, Y. Y., Cohen, L. G., & Lu, B. (2010). Direct current stimulation promotes BDNF-dependent synaptic plasticity: Potential implications for motor learning. Neuron, 66(2), 198-204.
doi: 10.1016/j.neuron.2010.03.035 pmid: 20434997 |
[58] |
Fujiyama, H., Tan, J., Puri, R., & Hinder, M. R. (2021). Influence of tDCS over right inferior frontal gyrus and pre-supplementary motor area on perceptual decision- making and response inhibition: A healthy ageing perspective. Neurobiology of Aging, 109, 11-21.
doi: 10.1016/j.neurobiolaging.2021.09.014 pmid: 34634749 |
[59] |
Gbadeyan, O., McMahon, K., Steinhauser, M., & Meinzer, M. (2016). Stimulation of dorsolateral prefrontal cortex enhances adaptive cognitive control: A high-definition transcranial direct current stimulation study. Journal of Neuroscience, 36(50), 12530-12536.
doi: 10.1523/JNEUROSCI.2450-16.2016 URL |
[60] |
Gbadeyan, O., Steinhauser, M., McMahon, K., & Meinzer, M. (2016). Safety, tolerability, blinding efficacy and behavioural effects of a novel MRI-compatible, high-definition tDCS set-up. Brain Stimulation, 9(4), 545-552.
doi: 10.1016/j.brs.2016.03.018 URL |
[61] |
Gowda, S. M., Narayanaswamy, J. C., Hazari, N., Bose, A., Chhabra, H., Balachander, S.,... Reddy, Y. C. J. (2019). Efficacy of pre-supplementary motor area transcranial direct current stimulation for treatment resistant obsessive compulsive disorder: A randomized, double blinded, sham controlled trial. Brain Stimulation, 12(4), 922-929.
doi: 10.1016/j.brs.2019.02.005 URL |
[62] |
Guo, H., Zhang, Z., Da, S., Sheng, X., & Zhang, X. (2018). High-definition transcranial direct current stimulation (HD-tDCS) of left dorsolateral prefrontal cortex affects performance in balloon analogue risk task (BART). Brain and Behavior, 8(2), e00884.
doi: 10.1002/brb3.884 URL |
[63] |
Hannah, R., & Aron, A. R. (2021). Towards real-world generalizability of a circuit for action-stopping. Nature Reviews Neuroscience, 22(9), 538-552.
doi: 10.1038/s41583-021-00485-1 pmid: 34326532 |
[64] |
Hardee, J. E., Weiland, B. J., Nichols, T. E., Welsh, R. C., Soules, M. E., Steinberg, D. B.,... Heitzeg, M. M. (2014). Development of impulse control circuitry in children of alcoholics. Biological Psychiatry, 76(9), 708-716.
doi: 10.1016/j.biopsych.2014.03.005 URL |
[65] | He, Q., Chen, M., Chen, C., Xue, G., Feng, T., & Bechara, A. (2016). Anodal stimulation of the left DLPFC increases IGT scores and decreases delay discounting rate in healthy males. Frontiers in Psychology, 7, 1421. |
[66] |
Hill, A. T., Rogasch, N. C., Fitzgerald, P. B., & Hoy, K. E. (2018). Effects of single versus dual-site high-definition transcranial direct current stimulation (HD-tDCS) on cortical reactivity and working memory performance in healthy subjects. Brain Stimulation, 11(5), 1033-1043.
doi: 10.1016/j.brs.2018.06.005 URL |
[67] |
Hogeveen, J., Grafman, J., Aboseria, M., David, A., Bikson, M., & Hauner, K. K. (2016). Effects of high-definition and conventional tDCS on response inhibition. Brain Stimulation, 9(5), 720-729.
doi: S1935-861X(16)30091-2 pmid: 27198577 |
[68] | Hsieh, S., & Lin, Y.-C. (2017). Stopping ability in younger and older adults: Behavioral and event-related potential. Cognitive Affective & Behavioral Neuroscience, 17(2), 348-363. |
[69] |
Hsu, T. Y., Tseng, L. Y., Yu, J. X., Kuo, W. J., Hung, D. L., Tzeng, O. J.,... Juan, C. H. (2011). Modulating inhibitory control with direct current stimulation of the superior medial frontal cortex. Neuroimage, 56(4), 2249-2257.
doi: 10.1016/j.neuroimage.2011.03.059 URL |
[70] |
Hughes, M., Fulham, W., Johnston, P., & Michie, P. (2012). Stop-signal response inhibition in schizophrenia: Behavioural, event-related potential and functional neuroimaging data. Biological Psychology, 89(1), 220-231.
doi: 10.1016/j.biopsycho.2011.10.013 URL |
[71] |
Hwang, J., Kim, S., Park, C., Bang, S., & Kim, S. (2010). Acute high-frequency rTMS of the left dorsolateral prefrontal cortex and attentional control in healthy young men. Brain Research, 1329, 152-158.
doi: 10.1016/j.brainres.2010.03.013 pmid: 20226772 |
[72] |
Jacobson, L., Javitt, D. C., & Lavidor, M. (2011). Activation of inhibition: Diminishing impulsive behavior by direct current stimulation over the inferior frontal gyrus. Journal of Cognitive Neuroscience, 23(11), 3380-3387.
doi: 10.1162/jocn_a_00020 pmid: 21452949 |
[73] |
Jahfari, S., Waldorp, L., van den Wildenberg, W., Scholte, H., Ridderinkhof, K., & Forstmann, B. (2011). Effective connectivity reveals important roles for both the hyperdirect (fronto-subthalamic) and the indirect (fronto-striatal-pallidal) fronto-basal ganglia pathways during response inhibition. Journal of Neuroscience, 31(18), 6891-6899.
doi: 10.1523/JNEUROSCI.5253-10.2011 pmid: 21543619 |
[74] |
Juan, C. H., & Muggleton, N. G. (2012). Brain stimulation and inhibitory control. Brain Stimulation, 5(2), 63-69.
doi: 10.1016/j.brs.2012.03.012 URL |
[75] |
Ke, Y., Wang, N., Du, J., Kong, L., Liu, S., Xu, M.,... Ming, D. (2019). The effects of transcranial direct current stimulation (tDCS) on working memory training in healthy young adults. Frontiers in Human Neuroscience, 13, 19.
doi: 10.3389/fnhum.2019.00019 URL |
[76] | Kerr-German, A., Namuth, A., Santosa, H., Buss, A. T., & White, S. (2022). To snack or not to snack: Using fNIRS to link inhibitory control to functional connectivity in the toddler brain. Developmental Science, e13229. |
[77] |
Kessler, S., Turkeltaub, P., Benson, J., & Hamilton, R. (2012). Differences in the experience of active and sham transcranial direct current stimulation. Brain Stimulation, 5(2), 155-162.
doi: 10.1016/j.brs.2011.02.007 pmid: 22037128 |
[78] |
Khaleghi, A., Jahromi, G. P., Zarafshan, H., Mostafavi, S. A., & Mohammadi, M. R. (2020). Effects of transcranial direct current stimulation of prefrontal cortex on risk-taking behavior. Psychiatry and Clinical Neurosciences, 74(9), 455-465.
doi: 10.1111/pcn.13025 URL |
[79] |
Kohl, S., Hannah, R., Rocchi, L., Nord, C. L., Rothwell, J., & Voon, V. (2019). Cortical paired associative stimulation influences response inhibition: Cortico-cortical and cortico-subcortical networks. Biological Psychiatry, 85(4), 355-363.
doi: 10.1016/j.biopsych.2018.03.009 URL |
[80] |
Kringelbach, M., & Rolls, E. (2004). The functional neuroanatomy of the human orbitofrontal cortex: Evidence from neuroimaging and neuropsychology. Progress in Neurobiology, 72(5), 341-372.
pmid: 15157726 |
[81] |
Krishnan, C., Santos, L., Peterson, M., & Ehinger, M. (2015). Safety of noninvasive brain stimulation in children and adolescents. Brain Stimulation, 8(1), 76-87.
doi: 10.1016/j.brs.2014.10.012 URL |
[82] |
Kumar, S., Zomorrodi, R., Ghazala, Z., Goodman, M. S., Blumberger, D. M., Cheam, A.,... Rajji, T. K. (2017). Extent of dorsolateral prefrontal cortex plasticity and its association with working memory in patients with alzheimer disease. JAMA Psychiatry, 74(12), 1266-1274.
doi: 10.1001/jamapsychiatry.2017.3292 URL |
[83] |
Kuo, H.-I., Bikson, M., Datta, A., Minhas, P., Paulus, W., Kuo, M.-F., & Nitsche, M. A. (2013). Comparing cortical plasticity induced by conventional and high-definition 4 x 1 ring tDCS: A neurophysiological study. Brain Stimulation, 6(4), 644-648.
doi: 10.1016/j.brs.2012.09.010 URL |
[84] | Kwon, Y. H., & Kwon, J. W. (2013a). Is transcranial direct current stimulation a potential method for improving response inhibition? Neural Regeneration Research, 8(11), 1048-1054. |
[85] |
Kwon, Y. H., & Kwon, J. W. (2013b). Response inhibition induced in the stop-signal task by transcranial direct current stimulation of the pre-supplementary motor area and primary sensoriomotor cortex. Journal of Physical Therapy Science, 25(9), 1083-1086.
doi: 10.1589/jpts.25.1083 URL |
[86] |
Lapenta, O., Sierve, K., de Macedo, E., Fregni, F., & Boggio, P. (2014). Transcranial direct current stimulation modulates ERP-indexed inhibitory control and reduces food consumption. Appetite, 83, 42-48.
doi: 10.1016/j.appet.2014.08.005 pmid: 25128836 |
[87] |
Leite, J., Goncalves, O. F., Pereira, P., Khadka, N., Bikson, M., Fregni, F., & Carvalho, S. (2018). The differential effects of unihemispheric and bihemispheric tDCS over the inferior frontal gyrus on proactive control. Neuroscience Research, 130, 39-46.
doi: 10.1016/j.neures.2017.08.005 URL |
[88] | Li, B., Nguyen, T. P., Ma, C., & Dan, Y. (2020). Inhibition of impulsive action by projection-defined prefrontal pyramidal neurons. Proceedings of the National Academy of Sciences of the United States of America, 117(29), 17278-17287. |
[89] |
Li, L. M., Violante, I. R., Leech, R., Hampshire, A., Opitz, A., McArthur, D.,... Sharp, D. J. (2019). Cognitive enhancement with salience network electrical stimulation is influenced by network structural connectivity. Neuroimage, 185, 425-433.
doi: 10.1016/j.neuroimage.2018.10.069 URL |
[90] |
Liang, W. K., Lo, M. T., Yang, A. C., Peng, C. K., Cheng, S. K., Tseng, P., & Juan, C. H. (2014). Revealing the brain's adaptability and the transcranial direct current stimulation facilitating effect in inhibitory control by multiscale entropy. Neuroimage, 90, 218-234.
doi: 10.1016/j.neuroimage.2013.12.048 URL |
[91] |
Lofredi, R., Auernig, G., Irmen, F., Nieweler, J., Neumann, W., Horn, A.,... Kühn, A. (2021). Subthalamic stimulation impairs stopping of ongoing movements. Brain, 144(1), 44-52.
doi: 10.1093/brain/awaa341 URL |
[92] |
Lu, H., Gong, Y., Huang, P., Zhang, Y., Guo, Z., Zhu, X., & You, X. (2020). Effect of repeated anodal HD-tDCS on executive functions: Evidence from a pilot and single- blinded fNIRS study. Frontiers in Human Neuroscience, 14, 583730.
doi: 10.3389/fnhum.2020.583730 URL |
[93] |
Lu, H., Liu, Q., Guo, Z., Zhou, G., Zhang, Y., Zhu, X., & Wu, S. (2020). Modulation of repeated anodal HD-tDCS on attention in healthy young adults. Frontiers in Psychology, 11, 564447.
doi: 10.3389/fpsyg.2020.564447 URL |
[94] |
Mahmood, O., Goldenberg, D., Thayer, R., Migliorini, R., Simmons, A., & Tapert, S. (2013). Adolescents' fMRI activation to a response inhibition task predicts future substance use. Addictive Behaviors, 38(1), 1435-1441.
doi: 10.1016/j.addbeh.2012.07.012 pmid: 23006248 |
[95] |
Mansouri, F., Acevedo, N., Illipparampil, R., Fehring, D., Fitzgerald, P., & Jaberzadeh, S. (2017). Interactive effects of music and prefrontal cortex stimulation in modulating response inhibition. Scientific Reports, 7(1), 18096.
doi: 10.1038/s41598-017-18119-x URL |
[96] |
Manuel, A., Grivel, J., Bernasconi, F., Murray, M., & Spierer, L. (2010). Brain dynamics underlying training-induced improvement in suppressing inappropriate action. Journal of Neuroscience, 30(41), 13670-13678.
doi: 10.1523/JNEUROSCI.2064-10.2010 URL |
[97] |
Martin, A. K., Kessler, K., Cooke, S., Huang, J., & Meinzer, M. (2020). The right temporoparietal junction is causally associated with embodied perspective-taking. Journal of Neuroscience, 40(15), 3089-3095.
doi: 10.1523/JNEUROSCI.2637-19.2020 URL |
[98] | Mayer, J. T., Chopard, G., Nicolier, M., Gabriel, D., Masse, C., Giustiniani, J.,... Bennabi, D. (2020). Can transcranial direct current stimulation (tDCS) improve impulsivity in healthy and psychiatric adult populations? A systematic review. Progress in Neuro-psychopharmacology & Biological Psychiatry, 98, 109814. |
[99] |
Meinzer, M., Jahnigen, S., Copland, D. A., Darkow, R., Grittner, U., Avirame, K.,... Floel, A. (2014). Transcranial direct current stimulation over multiple days improves learning and maintenance of a novel vocabulary. Cortex, 50, 137-147.
doi: 10.1016/j.cortex.2013.07.013 pmid: 23988131 |
[100] |
Nejati, V., Rasanan, A. H. H., Rad, J. A., Alavi, M. M., Haghi, S., & Nitsche, M. A. (2021). Transcranial direct current stimulation (tDCS) alters the pattern of information processing in children with ADHD: Evidence from drift diffusion modeling. Neurophysiologie Clinique, 52(1), 17-27.
doi: 10.1016/j.neucli.2021.11.005 URL |
[101] |
Nejati, V., Salehinejad, M., & Nitsche, M. (2018). Interaction of the left dorsolateral prefrontal cortex (l-DLPFC) and right orbitofrontal cortex (OFC) in hot and cold executive functions: Evidence from transcranial direct current stimulation (tDCS). Neuroscience, 369, 109-123.
doi: S0306-4522(17)30779-0 pmid: 29113929 |
[102] | Neubert, F., Mars, R., Buch, E., Olivier, E., & Rushworth, M. (2010). Cortical and subcortical interactions during action reprogramming and their related white matter pathways. Proceedings of the National Academy of Sciences of the United States of America, 107(30), 13240-13245. |
[103] |
Nieratschker, V., Kiefer, C., Giel, K., Kruger, R., & Plewnia, C. (2015). The COMT Val/Met polymorphism modulates effects of tDCS on response inhibition. Brain Stimulation, 8(2), 283-288.
doi: 10.1016/j.brs.2014.11.009 pmid: 25496958 |
[104] |
Nikolin, S., Loo, C. K., Bai, S., Dokos, S., & Martin, D. M. (2015). Focalised stimulation using high definition transcranial direct current stimulation (HD-tDCS) to investigate declarative verbal learning and memory functioning. Neuroimage, 117, 11-19.
doi: 10.1016/j.neuroimage.2015.05.019 pmid: 25987365 |
[105] |
Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A.,... Pascual-Leone, A. (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 1(3), 206-223.
doi: 10.1016/j.brs.2008.06.004 URL |
[106] |
Nitsche, M., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899-1901.
pmid: 11723286 |
[107] | Nitsche, M. A. & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527 Pt 3, 633-639. |
[108] |
Nowak, D. A., Hoffmann, U., Connemann, B. J., & Schonfeldt-Lecuona, C. (2006). Epileptic seizure following 1 Hz repetitive transcranial magnetic stimulation. Clinical Neurophysiology, 117(7), 1631-1633.
doi: 10.1016/j.clinph.2006.03.017 URL |
[109] | O'Connell, N. E., Wand, B. M., Marston, L., Spencer, S, & Desouza, L. H. (2014). Non-invasive brain stimulation techniques for chronic pain. Cochrane Database of Systematic Reviews, 3(3), CD008208. |
[110] | Obeso, I., Robles, N., Marrón, E., & Redolar-Ripoll, D. (2013). Dissociating the role of the pre-SMA in response inhibition and switching: A combined online and offline TMS approach. Frontiers in Human Neuroscience, 7, 150. |
[111] | Oosterlaan, J., Logan, G., & Sergeant, J. (1998). Response inhibition in AD/HD, CD, comorbid AD/HD + CD, anxious, and control children: A meta-analysis of studies with the stop task. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 39(3), 411-425. |
[112] |
Ordaz, S. J., Foran, W., Velanova, K., & Luna, B. (2013). Longitudinal growth curves of brain function underlying inhibitory control through adolescence. Journal of Neuroscience, 33(46), 18109-18124.
doi: 10.1523/JNEUROSCI.1741-13.2013 URL |
[113] |
Osada, T., Ogawa, A., Suda, A., Nakajima, K., Tanaka, M., Oka, S.,... Konishi, S. (2021). Parallel cognitive processing streams in human prefrontal cortex: Parsing areal-level brain network for response inhibition. Cell Reports, 36(12), 109732-109732.
doi: 10.1016/j.celrep.2021.109732 URL |
[114] |
Paneri, B., Adair, D., Thomas, C., Khadka, N., Patel, V., Tyler, W. J.,... Bikson, M. (2016). Tolerability of repeated application of transcranial electrical stimulation with limited outputs to healthy subjects. Brain Stimulation, 9(5), 740-754.
doi: 10.1016/j.brs.2016.05.008 URL |
[115] |
Pisoni, A., Mattavelli, G., Papagno, C., Rosanova, M., Casali, A. G., & Romero Lauro, L. J. (2018). Cognitive enhancement induced by anodal tDCS drives circuit- specific cortical plasticity. Cerebral Cortex, 28(4), 1132-1140.
doi: 10.1093/cercor/bhx021 URL |
[116] |
Plewnia, C., Zwissler, B., Längst, I., Maurer, B., Giel, K., & Krüger, R. (2013). Effects of transcranial direct current stimulation (tDCS) on executive functions: Influence of COMT Val/Met polymorphism. Cortex, 49(7), 1801-1807.
doi: 10.1016/j.cortex.2012.11.002 URL |
[117] |
Rae, C., Hughes, L., Anderson, M., & Rowe, J. (2015). The prefrontal cortex achieves inhibitory control by facilitating subcortical motor pathway connectivity. Journal of Neuroscience, 35(2), 786-794.
doi: 10.1523/JNEUROSCI.3093-13.2015 URL |
[118] |
Rodrigo, A. H., di Domenico, S. I., Ayaz, H., Gulrajani, S., Lam, J., & Ruocco, A. C. (2014). Differentiating functions of the lateral and medial prefrontal cortex in motor response inhibition. Neuroimage, 85, 423-431.
doi: 10.1016/j.neuroimage.2013.01.059 URL |
[119] |
Rossi, S., Antal, A., Bestmann, S., Bikson, M., Brewer, C., Brockmoller, J.,... Hallett, M. (2021). Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert guidelines. Clinical Neurophysiology, 132(1), 269-306.
doi: 10.1016/j.clinph.2020.10.003 URL |
[120] |
Sampaio-Junior, B., Tortella, G., Borrione, L., Moffa, A. H., Machado-Vieira, R., Cretaz, E.,... Brunoni, A. R. (2018). Efficacy and safety of transcranial direct current stimulation as an add-on treatment for bipolar depression: A randomized clinical trial. JAMA Psychiatry, 75(2), 158-166.
doi: 10.1001/jamapsychiatry.2017.4040 pmid: 29282470 |
[121] |
Sandrini, M., Xu, B., Volochayev, R., Awosika, O., Wang, W., Butman, J., & Cohen, L. (2020). Transcranial direct current stimulation facilitates response inhibition through dynamic modulation of the fronto-basal ganglia network. Brain Stimulation, 13(1), 96-104.
doi: S1935-861X(19)30348-1 pmid: 31422052 |
[122] |
Schachar, R., Crosbie, J., Barr, C., Ornstein, T., Kennedy, J., Malone, M.,... Pathare, T. (2005). Inhibition of motor responses in siblings concordant and discordant for attention deficit hyperactivity disorder. American Journal of Psychiatry, 162(6), 1076-1082.
pmid: 15930055 |
[123] |
Schroeder, P., Schwippel, T., Wolz, I., & Svaldi, J. (2020). Meta-analysis of the effects of transcranial direct current stimulation on inhibitory control. Brain Stimulation, 13(5), 1159-1167.
doi: S1935-861X(20)30105-4 pmid: 32442624 |
[124] | Sedgmond, J., Lawrence, N. S., Verbruggen, F., Morrison, S., Chambers, C. D., & Adams, R. C. (2019). Prefrontal brain stimulation during food-related inhibition training: Effects on food craving, food consumption and inhibitory control. Royal Society Open Science, 6(1), 15. |
[125] |
Sharp, D. J., Bonnelle, V., de Boissezon, X., Beckmann, C. F., James, S. G., Patel, M. C., & Mehta, M. A. (2010). Distinct frontal systems for response inhibition, attentional capture, and error processing. Proceedings of the National Academy of Sciences of the United States of America, 107(13), 6106-6111.
doi: 10.1073/pnas.1000175107 pmid: 20220100 |
[126] |
Shen, B., Yin, Y., Wang, J., Zhou, X., McClure, S. M., & Li, J. (2016). High-definition tDCS alters impulsivity in a baseline-dependent manner. Neuroimage, 143, 343-352.
doi: S1053-8119(16)30466-9 pmid: 27608604 |
[127] |
Stagg, C., Best, J., Stephenson, M., O'Shea, J., Wylezinska, M., Kincses, Z.,... Johansen-Berg, H. (2009). Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. Journal of Neuroscience, 29(16), 5202-5206.
doi: 10.1523/JNEUROSCI.4432-08.2009 URL |
[128] |
Stagg, C. J., & Nitsche, M. A. (2011). Physiological basis of transcranial direct current stimulation. Neuroscientist, 17(1), 37-53.
doi: 10.1177/1073858410386614 URL |
[129] |
Steele, V., Fink, B., Maurer, J., Arbabshirani, M., Wilber, C., Jaffe, A.,... Kiehl, K. (2014). Brain potentials measured during a Go/NoGo task predict completion of substance abuse treatment. Biological Psychiatry, 76(1), 75-83.
doi: 10.1016/j.biopsych.2013.09.030 URL |
[130] |
Stramaccia, D. F., Penolazzi, B., Sartori, G., Braga, M., Mondini, S., & Galfano, G. (2015). Assessing the effects of tDCS over a delayed response inhibition task by targeting the right inferior frontal gyrus and right dorsolateral prefrontal cortex. Experimental Brain Research, 233(8), 2283-2290.
doi: 10.1007/s00221-015-4297-6 pmid: 25925996 |
[131] |
Sun, J. B., Tian, Q. Q., Yang, X. J., Deng, H., Li, N., Meng, L. X.,... Qin, W. (2021). Synergistic effects of simultaneous transcranial direct current stimulation (tDCS) and transcutaneous auricular vagus nerve stimulation (taVNS) on the brain responses. Brain Stimulation, 14(2), 417-419.
doi: 10.1016/j.brs.2021.02.010 URL |
[132] |
Swann, N. C., Cai, W., Conner, C. R., Pieters, T. A., Claffey, M. P., George, J. S.,... Tandon, N. (2012). Roles for the pre-supplementary motor area and the right inferior frontal gyrus in stopping action: Electrophysiological responses and functional and structural connectivity. Neuroimage, 59(3), 2860-2870.
doi: 10.1016/j.neuroimage.2011.09.049 URL |
[133] |
Tan, J., Iyer, K. K., Tang, A. D., Jamil, A., Martins, R. N., Sohrabi, H. R.,... Fujiyama, H. (2019). Modulating functional connectivity with non-invasive brain stimulation for the investigation and alleviation of age-associated declines in response inhibition: A narrative review. Neuroimage, 185, 490-512.
doi: 10.1016/j.neuroimage.2018.10.044 URL |
[134] |
Thakkar, K. N., Schall, J. D., Boucher, L., Logan, G. D., & Park, S. (2011). Response inhibition and response monitoring in a saccadic countermanding task in schizophrenia. Biological Psychiatry, 69(1), 55-62.
doi: 10.1016/j.biopsych.2010.08.016 URL |
[135] |
Thunberg, C., Messel, M. S., Raud, L., & Huster, R. J. (2020). tDCS over the inferior frontal gyri and visual cortices did not improve response inhibition. Scientific Reports, 10(1), 7749.
doi: 10.1038/s41598-020-62921-z URL |
[136] |
Turski, C. A., Kessler-Jones, A., Chow, C., Hermann, B., Hsu, D., Jones, J.,... Ikonomidou, C. (2017). Extended multiple-field high-definition transcranial direct current stimulation (HD-tDCS) is well tolerated and safe in healthy adults. Restorative Neurology and Neuroscience, 35(6), 631-642.
doi: 10.3233/RNN-170757 URL |
[137] |
Valiengo, L., Goerigk, S., Gordon, P. C., Padberg, F., Serpa, M. H., Koebe, S.,... Brunoni, A. R. (2020). Efficacy and safety of transcranial direct current stimulation for treating negative symptoms in schizophrenia: A randomized clinical trial. JAMA Psychiatry, 77(2), 121-129.
doi: 10.1001/jamapsychiatry.2019.3199 pmid: 31617873 |
[138] |
van Rooij, D., Hoekstra, P. J., Mennes, M., von Rhein, D., Thissen, A. J., Heslenfeld, D.,... Hartman, C. A. (2015). Distinguishing adolescents with ADHD from their unaffected siblings and healthy comparison subjects by neural activation patterns during response inhibition. American Journal of Psychiatry, 172(7), 674-683.
doi: 10.1176/appi.ajp.2014.13121635 pmid: 25615565 |
[139] |
Verbruggen, F., Aron, A. R., Band, G. P. H., Beste, C., Bissett, P. G., Brockett, A. T.,... Boehler, C. N. (2019). A consensus guide to capturing the ability to inhibit actions and impulsive behaviors in the stop-signal task. eLife, 8, e46323.
doi: 10.7554/eLife.46323 URL |
[140] |
Verbruggen, F., & Logan, G. D. (2008). Response inhibition in the stop-signal paradigm. Trends in Cognitive Sciences, 12(11), 418-424.
doi: 10.1016/j.tics.2008.07.005 pmid: 18799345 |
[141] |
Verbruggen, F., & Logan, G. D. (2009). Models of response inhibition in the stop-signal and stop-change paradigms. Neuroscience and Biobehavioral Reviews, 33(5), 647-661.
doi: 10.1016/j.neubiorev.2008.08.014 pmid: 18822313 |
[142] |
Villamar, M. F., Wivatvongvana, P., Patumanond, J., Bikson, M., Truong, D. Q., Datta, A., & Fregni, F. (2013). Focal modulation of the primary motor cortex in fibromyalgia using 4x1-ring high-definition transcranial direct current stimulation (HD-tDCS): Immediate and delayed analgesic effects of cathodal and anodal stimulation. Journal of Pain, 14(4), 371-383.
doi: 10.1016/j.jpain.2012.12.007 URL |
[143] |
Weidacker, K., Weidemann, C. T., Boy, F., & Johnston, S. J. (2016). Cathodal tDCS improves task performance in participants high in coldheartedness. Clinical Neurophysiology, 127(9), 3102-3109.
doi: S1388-2457(16)30330-3 pmid: 27472546 |
[144] |
Weidler, C., Habel, U., Wallheinke, P., Wagels, L., Hofhansel, L., Ling, S.,... Clemens, B. (2020). Consequences of prefrontal tDCS on inhibitory control and reactive aggression. Social Cognitive and Affective Neuroscience, 17(1), 120-130.
doi: 10.1093/scan/nsaa158 pmid: 33227131 |
[145] |
Wessel, J. R. (2018). Surprise: A more realistic framework for studying action stopping? Trends in Cognitive Sciences, 22(9), 741-744.
doi: S1364-6613(18)30145-1 pmid: 30122169 |
[146] |
Wessel, M. J., Park, C. H., Beanato, E., Cuttaz, E. A., Timmermann, J. E., Schulz, R.,... Hummel, F. C. (2021). Multifocal stimulation of the cerebro-cerebellar loop during the acquisition of a novel motor skill. Scientific Reports, 11(1), 1756.
doi: 10.1038/s41598-021-81154-2 URL |
[147] |
Woods, A. J., Antal, A., Bikson, M., Boggio, P. S., Brunoni, A. R., Celnik, P.,... Nitsche, M. A. (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clinical Neurophysiology, 127(2), 1031-1048.
doi: S1388-2457(15)01088-3 pmid: 26652115 |
[148] |
Wu, D., Zhou, Y., Xu, P., Liu, N., Sun, K., & Xiao, W. (2021). Initial performance modulates the effects of cathodal transcranial direct current stimulation (tDCS) over the right dorsolateral prefrontal cortex on inhibitory control. Brain Research, 1774, 147722.
doi: 10.1016/j.brainres.2021.147722 URL |
[149] |
Xu, P., Wu, D., Chen, Y., Wang, Z., & Xiao, W. (2020). The effect of response inhibition training on risky decision- making task performance. Frontiers in Psychology, 11, 1806.
doi: 10.3389/fpsyg.2020.01806 URL |
[150] |
Yavari, F., Jamil, A., Samani, M. M., Vidor, L. P., & Nitsche, M. A. (2018). Basic and functional effects of transcranial electrical stimulation (tES)-an introduction. Neuroscience and Biobehavioral Reviews, 85, 81-92.
doi: 10.1016/j.neubiorev.2017.06.015 URL |
[151] |
Yu, J., Tseng, P., Hung, D. L., Wu, S. W., & Juan, C. H. (2015). Brain stimulation improves cognitive control by modulating medial-frontal activity and preSMA-vmPFC functional connectivity. Human Brain Mapping, 36(10), 4004-4015.
doi: 10.1002/hbm.22893 URL |
[152] |
Zandbelt, B., Bloemendaal, M., Hoogendam, J., Kahn, R., & Vink, M. (2013). Transcranial magnetic stimulation and functional MRI reveal cortical and subcortical interactions during stop-signal response inhibition. Journal of Cognitive Neuroscience, 25(2), 157-174.
doi: 10.1162/jocn_a_00309 pmid: 23066733 |
[153] |
Zandbelt, B., van Buuren, M., Kahn, R., & Vink, M. (2011). Reduced proactive inhibition in schizophrenia is related to corticostriatal dysfunction and poor working memory. Biological Psychiatry, 70(12), 1151-1158.
doi: 10.1016/j.biopsych.2011.07.028 pmid: 21903198 |
[154] |
Zewdie, E., Ciechanski, P., Kuo, H. C., Giuffre, A., Kahl, C., King, R.,... Kirton, A. (2020). Safety and tolerability of transcranial magnetic and direct current stimulation in children: Prospective single center evidence from 3.5 million stimulations. Brain Stimulation, 13(3), 565-575.
doi: S1935-861X(19)30496-6 pmid: 32289678 |
[155] |
Zhou, X., Planalp, E. M., Heinrich, L., Pletcher, C., DiPiero, M., Alexander, A. L.,... Dean III, D. C. (2021). Inhibitory control in children 4-10 years of age: Evidence from functional near-infrared spectroscopy task-based observations. Frontiers in Human Neuroscience, 15, 798358.
doi: 10.3389/fnhum.2021.798358 URL |
[1] | LIU Bo, CHENG Xiangjuan, YUE Heng, BAO Hugejiletu. The role of inhibition function in pain [J]. Advances in Psychological Science, 2022, 30(6): 1253-1261. |
[2] | Shengnan Zhu, Lihong Chen. LSF-related facilitation of threat detection induced by anodal transcranial direct current stimulation of right TPJ [J]. Advances in Psychological Science, 2019, 27(suppl.): 40-40. |
[3] | Guanpeng Chen, Ziyun Zhu, Fang Fang. Offline transcranial direct current stimulation (tDCS) can improve the ability to perceive crowded targets [J]. Advances in Psychological Science, 2019, 27(suppl.): 154-154. |
[4] | SU Bobo, ZHENG Meihong. Effects of substance-related cues on response inhibition in addicts [J]. Advances in Psychological Science, 2019, 27(11): 1863-1874. |
[5] | ZHOU Jing, XUAN Bin. Effects of transcranial direct current stimulation (tDCS) on the frontal lobe region on inhibitory control [J]. Advances in Psychological Science, 2018, 26(11): 1976-1991. |
[6] | YAN Ding; WANG Ting; WANG Chengyao; JIAO Can. The influence of drinking on response inhibition and its neural mechanisms [J]. Advances in Psychological Science, 2017, 25(4): 586-598. |
[7] | LI Xuejiao; ZOU Zhiling. The application of transcranial direct current stimulation (tDCS) in the treatment of substance dependence [J]. Advances in Psychological Science, 2016, 24(9): 1398-1408. |
[8] | ZHAO Xin; LIU Xiaoting; ZAN Xiangyi; ZHOU Aibao. Response Inhibition in Smokers [J]. Advances in Psychological Science, 2015, 23(6): 1031-1040. |
[9] | ZHANG Dashan; SHI Huiying; LIU Wei; QIU Jiang; FAN Fenghui. The Application of Transcranial Direct Current Stimulation (tDCS) in the Treatment of Depression [J]. Advances in Psychological Science, 2015, 23(10): 1789-1798. |
[10] | ZHAO Xin; CHEN Ling; ZHANG Peng. The Training of Inhibition Control: Content, Effect and Mechanism [J]. Advances in Psychological Science, 2015, 23(1): 51-60. |
[11] | LUO Yi;FENG Chunliang;GU Ruolei;WU Tingting;LUO Yuejia. The Fairness Norm in Social Decision-making: Behavioral and Neuroscience Studies [J]. Advances in Psychological Science, 2013, 21(2): 300-308. |
[12] | ZHANG Yang;PENG Chunhua;SUN Yang;ZHANG Ming. Cognitive Mechanism of Visual Inhibition of Return [J]. Advances in Psychological Science, 2013, 21(11): 1913-1926. |
[13] | WANG Yan; CAI Hou-De. Mental Processing Models and Neural Mechanisms for Response Inhibition [J]. , 2010, 18(2): 220-229. |
[14] | Chen Yuying;Sui Guangyuan;Zhai Bin. Voluntary Control of Saccadic Eye Movements: Experimental Paradigm, Nerve Mechanisms and Application [J]. , 2008, 16(1): 154-162. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||