Advances in Psychological Science ›› 2022, Vol. 30 ›› Issue (12): 2777-2788.doi: 10.3724/SP.J.1042.2022.02777
• Regular Articles • Previous Articles Next Articles
ZHANG Wen1,2,3, DONG Qiyiru1, GONG Lijuan1, SHANG Qi1, CHENG Chen4,5(), DING Xuechen1,6()
Received:
2021-12-13
Online:
2022-12-15
Published:
2022-09-23
Contact:
CHENG Chen,DING Xuechen
E-mail:ccheng10@bu.edu;dingxuechen_psy@163.com
CLC Number:
ZHANG Wen, DONG Qiyiru, GONG Lijuan, SHANG Qi, CHENG Chen, DING Xuechen. The theoretical accounts and developmental predictors of operational momentum effect[J]. Advances in Psychological Science, 2022, 30(12): 2777-2788.
[1] | 曹碧华, 曾春雲, 廖虹, 李富洪. (2021). 心理长度对二年级儿童数字线估计表征的影响. 心理发展与教育, 37(2), 190-198. |
[2] | 曹贤才, 时冉冉, 牛玉柏. (2016). 近似数量系统敏锐度与数学能力的关系. 心理科学, 39(3), 580-586. |
[3] | 戴隆农, 潘运. (2021). 数字-空间联结的内在机制: 基于工作记忆的视角. 心理科学, 44(4), 793-799. |
[4] | 郭丽月, 严超, 邓赐平. (2018). 数学能力的改善: 针对工作记忆训练的元分析. 心理科学进展, 26(9), 1576-1589. |
[5] | 李红霞, 司继伟, 陈泽建, 张堂正. (2015). 人类的近似数量系统. 心理科学进展, 23(4), 562-570. |
[6] | 梁笑, 康静梅, 王丽娟. (2021). 个体近似数量系统与其数学能力之间的关系: 发展研究的证据. 心理科学进展, 29(5), 827-837. |
[7] | 牛玉柏, 张丽芬, 肖帅, 曹贤才. (2018). 小学生近似数量系统敏锐度的发展趋势及其与数学能力的关系: 抑制控制的中介作用. 心理科学, 41(2), 344-350. |
[8] | 潘运, 戴隆农, 赵竹君, 陈衍, 陈加, 赵守盈. (2019). 正负数混合呈现对负数SNARC效应的影响. 心理科学, 42(5), 1083-1090. |
[9] | 曾婷. (2020). 4-6岁儿童词汇、空间能力、执行功能与数学能力的关系研究 (硕士学位论文). 湖南师范大学. |
[10] |
Au, J., Jaeggi, S. M., & Buschkuehl, M. (2018). Effects of non-symbolic arithmetic training on symbolic arithmetic and the approximate number system. Acta Psychologica, 185, 1-12.
doi: S0001-6918(17)30201-9 pmid: 29407240 |
[11] |
Barth, H., Baron, A., Spelke, E., & Carey, S. (2009). Children’s multiplicative transformations of discrete and continuous quantities. Journal of Experimental Child Psychology, 103(4), 441-454.
doi: 10.1016/j.jecp.2009.01.014 URL |
[12] |
Barth, H., La Mont, K., Lipton, J., Dehaene, S., Kanwisher, N., & Spelke, E. (2006). Non-symbolic arithmetic in adults and young children. Cognition, 98(3), 199-222.
pmid: 15876429 |
[13] |
Barth, H., La Mont, K., Lipton, J., & Spelke, E. S. (2005). Abstract number and arithmetic in preschool children. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 14116-14121.
pmid: 16172388 |
[14] |
Berteletti, I., Lucangeli, D., & Zorzi, M. (2012). Representation of numerical and non-numerical order in children. Cognition, 124(3), 304-313.
doi: 10.1016/j.cognition.2012.05.015 pmid: 22705198 |
[15] |
Bonato, M., D'Ovidio, U., Fias, W., & Zorzi, M. (2021). A momentum effect in temporal arithmetic. Cognition, 206, 104488.
doi: 10.1016/j.cognition.2020.104488 URL |
[16] |
Cai, D., Zhang, L., Li, Y., Wei, W., & Georgiou, G. K. (2018). The role of approximate number system in different mathematics skills across grades. Frontiers in Psychology, 9, 1733.
doi: 10.3389/fpsyg.2018.01733 pmid: 30279672 |
[17] |
Cantlon, J. F., & Brannon, E. M. (2007). Basic math in monkeys and college students. PLoS Biology, 5(12), e328.
doi: 10.1371/journal.pbio.0050328 pmid: 18092890 |
[18] |
Cassia, V. M., Bulf, H., McCrink, K., & de Hevia, M. D. (2017). Operational momentum during ordering operations for size and number in 4-month-old infants. Journal of Numerical Cognition, 3(2), 270-287.
doi: 10.5964/jnc.v3i2.67 URL |
[19] |
Cassia, V. M., McCrink, K., de Hevia, M. D., Gariboldi, V., & Bulf, H. (2016). Operational momentum and size ordering in preverbal infants. Psychological Research, 80(3), 360-367.
doi: 10.1007/s00426-016-0750-9 pmid: 26898647 |
[20] |
Charras, P., Brod, G., & Lupiáñez, J. (2012). Is 26+26 smaller than 24+28? Estimating the approximate magnitude of repeated versus different numbers. Attention, Perception, & Psychophysics, 74(1), 163-173.
doi: 10.3758/s13414-011-0217-4 URL |
[21] |
Charras, P., Molina, E., & Lupiáñez, J. (2014). Additions are biased by operands: Evidence from repeated versus different operands. Psychological Research, 78(2), 248-265.
doi: 10.1007/s00426-013-0491-y pmid: 23605318 |
[22] |
Chen, Q., & Li, J. (2014). Association between individual differences in non-symbolic number acuity and math performance: A meta-analysis. Acta Psychologica, 148, 163-172.
doi: 10.1016/j.actpsy.2014.01.016 pmid: 24583622 |
[23] |
Cheng, Y. L., & Mix, K. S. (2014). Spatial training improves children’s mathematics ability. Journal of Cognition and Development, 15(1), 2-11.
doi: 10.1080/15248372.2012.725186 URL |
[24] | Chu, F. W., vanMarle, K., & Geary, D. C. (2016). Predicting children’s reading and mathematics achievement from early quantitative knowledge and domain-general cognitive abilities. Frontiers in Psychology, 7, 775. |
[25] |
Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44(1-2), 1-42.
pmid: 1511583 |
[26] |
Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371-396.
doi: 10.1037/0096-3445.122.3.371 URL |
[27] |
Dehaene, S., & Changeux, J. P. (1993). Development of elementary numerical abilities: A neuronal model. Journal of Cognitive Neuroscience, 5(4), 390-407.
doi: 10.1162/jocn.1993.5.4.390 pmid: 23964915 |
[28] |
Didino, D., Pinheiro-Chagas, P., Wood, G., & Knops, A. (2019). Response: Commentary: The developmental trajectory of the operational momentum effect. Frontiers in Psychology, 10, 160.
doi: 10.3389/fpsyg.2019.00160 pmid: 30787896 |
[29] |
Dowker, A. (2008). Individual differences in numerical abilities in preschoolers. Developmental Science, 11(5), 650-654.
doi: 10.1111/j.1467-7687.2008.00713.x pmid: 18801119 |
[30] |
Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., ... Japel, C. (2007). School readiness and later achievement. Developmental Psychology, 43(6), 1428-1446.
doi: 10.1037/0012-1649.43.6.1428 pmid: 18020822 |
[31] |
Dunn, H., Bernstein, N., de Hevia, M. D., Cassia, V. M., Bulf, H., & McCrink, K. (2019). Operational momentum for magnitude ordering in preschool children and adults. Journal of Experimental Child Psychology, 179, 260-275.
doi: S0022-0965(18)30192-9 pmid: 30562633 |
[32] |
Elliott, L., Feigenson, L., Halberda, J., & Libertus, M. E. (2019). Bidirectional, longitudinal associations between math ability and approximate number system precision in childhood. Journal of Cognition and Development, 20(1), 56-74.
doi: 10.1080/15248372.2018.1551218 |
[33] |
Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307-314.
pmid: 15242690 |
[34] |
Fischer, M. H., Miklashevsky, A., & Shaki, S. (2018). Commentary: The developmental trajectory of the operational momentum effect. Frontiers in Psychology, 9, 2259.
doi: 10.3389/fpsyg.2018.02259 pmid: 30524343 |
[35] |
Freyd, J. J., & Finke, R. A. (1984). Representational momentum. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10(1), 126-132.
doi: 10.1037/0278-7393.10.1.126 URL |
[36] |
Frick, A. (2019). Spatial transformation abilities and their relation to later mathematics performance. Psychological Research, 83(7), 1465-1484.
doi: 10.1007/s00426-018-1008-5 pmid: 29637258 |
[37] |
Gallistel, C. R. (2011). Prelinguistic thought. Language Learning and Development, 7(4), 253-262.
doi: 10.1080/15475441.2011.578548 URL |
[38] |
Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44(1-2), 43-74.
pmid: 1511586 |
[39] |
Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2007). Symbolic arithmetic knowledge without instruction. Nature, 447(7144), 589-591.
doi: 10.1038/nature05850 URL |
[40] |
Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between spatial skill and early number knowledge: The role of the linear number line. Developmental Psychology, 48(5), 1229-1241.
doi: 10.1037/a0027433 pmid: 22390659 |
[41] | Haman, M., & Lipowska, K. (2021). Moving attention along the mental number line in preschool age: Study of the operational momentum in 3- to 5-year-old children's non- symbolic arithmetic. Developmental Science, 24(1), e13007. |
[42] |
Hartmann, M., Mast, F. W., & Fischer, M. H. (2015). Spatial biases during mental arithmetic: Evidence from eye movements on a blank screen. Frontiers in Psychology, 6, 12.
doi: 10.3389/fpsyg.2015.00012 pmid: 25657635 |
[43] |
He, Y., Zhou, X., Shi, D., Song, H., Zhang, H., & Shi, J. (2016). New evidence on causal relationship between approximate number system (ANS) acuity and arithmetic ability in elementary-school students: A longitudinal cross-lagged analysis. Frontiers in Psychology, 7, 1052.
doi: 10.3389/fpsyg.2016.01052 pmid: 27462291 |
[44] | Hegarty, M., & Waller, D. (2005). Individual differences in spatial abilities. In P. Shah, & A. Miake (Eds.). The Cambridge handbook of visuospatial thinking (pp. 121- 169). Cambridge University Press. |
[45] |
Hubbard, T. L. (2014). Forms of momentum across space: Representational, operational, and attentional. Psychonomic Bulletin & Review, 21, 1371-1403.
doi: 10.3758/s13423-014-0624-3 URL |
[46] |
Hubbard, T. L. (2015). The varieties of momentum-like experience. Psychological Bulletin, 141(6), 1081-1119.
doi: 10.1037/bul0000016 pmid: 26237420 |
[47] |
Izard, V., & Dehaene, S. (2008). Calibrating the mental number line. Cognition, 106(3), 1221-1247.
pmid: 17678639 |
[48] |
Jang, S., & Cho, S. (2022). Operational momentum during children’s approximate arithmetic relates to symbolic math skills and space-magnitude association. Journal of Experimental Child Psychology, 213, 105253.
doi: 10.1016/j.jecp.2021.105253 URL |
[49] | Karsenty, R. (2020). Mathematical ability. Encyclopedia of Mathematics Education, 494-497. |
[50] |
Katz, C., & Knops, A. (2014). Operational momentum in multiplication and division? PLoS One, 9(8), e104777.
doi: 10.1371/journal.pone.0104777 URL |
[51] |
Kibbe, M. M., & Feigenson, L. (2015). Young children ‘solve for x’ using the approximate number system. Developmental Science, 18(1), 38-49.
doi: 10.1111/desc.12177 URL |
[52] |
Klein, E., Huber, S., Nuerk, H. C., & Moeller, K. (2014). Operational momentum affects eye fixation behaviour. Quarterly Journal of Experimental Psychology, 67(8), 1614-1625.
doi: 10.1080/17470218.2014.902976 URL |
[53] |
Knops, A., Dehaene, S., Berteletti, I., & Zorzi, M. (2014). Can approximate mental calculation account for operational momentum in addition and subtraction? Quarterly Journal of Experimental Psychology, 67(8), 1541-1556.
doi: 10.1080/17470218.2014.890234 URL |
[54] |
Knops, A., Thirion, B., Hubbard, E. M., Michel, V., & Dehaene, S. (2009). Recruitment of an area involved in eye movements during mental arithmetic. Science, 324(5934), 1583-1585.
doi: 10.1126/science.1171599 pmid: 19423779 |
[55] |
Knops, A., Viarouge, A., & Dehaene, S. (2009). Dynamic representations underlying symbolic and nonsymbolic calculation: Evidence from the operational momentum effect. Attention, Perception, & Psychophysics, 71(4), 803-821.
doi: 10.3758/APP.71.4.803 URL |
[56] |
Knops, A., Zitzmann, S., & McCrink, K. (2013). Examining the presence and determinants of operational momentum in childhood. Frontiers in Psychology, 4, 325.
doi: 10.3389/fpsyg.2013.00325 pmid: 23772216 |
[57] |
Koshy, V., Ernest, P., & Casey, R. (2009). Mathematically gifted and talented learners: Theory and practice. International Journal of Mathematical Education in Science and Technology, 40(2), 213-228.
doi: 10.1080/00207390802566907 URL |
[58] |
Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schönmann, C., Plangger, F., ... von Aster, M. (2011). Mental number line training in children with developmental dyscalculia. NeuroImage, 57(3), 782-795.
doi: 10.1016/j.neuroimage.2011.01.070 pmid: 21295145 |
[59] |
Kucian, K., Plangger, F., O'Gorman, R., & von Aster, M. (2013). Operational momentum effect in children with and without developmental dyscalculia. Frontiers in Psychology, 4, 847.
doi: 10.3389/fpsyg.2013.00847 pmid: 24273526 |
[60] | Lindemann, O., & Tira, M. D. (2015). Operational momentum in numerosity production judgments of multi-digit number problems. Zeitschrift fu Psychologie / Journal of Psychology, 219(1), 50-57. |
[61] |
Lindskog, M., Poom, L., & Winman, A. (2021). Attentional bias induced by stimulus control (ABC) impairs measures of the approximate number system. Attention, Perception, & Psychophysics, 83(4), 1684-1698.
doi: 10.3758/s13414-020-02229-2 URL |
[62] |
Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56(6), 1479-1498.
pmid: 4075870 |
[63] |
Liu, D., Cai, D., Verguts, T., & Chen, Q. (2017). The time course of spatial attention shifts in elementary arithmetic. Scientific Reports, 7(1), 921.
doi: 10.1038/s41598-017-01037-3 pmid: 28424467 |
[64] |
Masson, N., Letesson, C., & Pesenti, M. (2018). Time course of overt attentional shifts in mental arithmetic: Evidence from gaze metrics. Quarterly Journal of Experimental Psychology, 71(4), 1009-1019.
doi: 10.1080/17470218.2017.1318931 URL |
[65] |
Masson, N., & Pesenti, M. (2016). Interference of lateralized distractors on arithmetic problem solving: A functional role for attention shifts in mental calculation. Psychological Research, 80(4), 640-651.
doi: 10.1007/s00426-015-0668-7 pmid: 25991551 |
[66] |
McCrink, K., Dehaene, S., & Dehaene-Lambertz, G. (2007). Moving along the number line: Operational momentum in nonsymbolic arithmetic. Perception & Psychophysics, 69(8), 1324-1333.
doi: 10.3758/BF03192949 URL |
[67] |
McCrink, K., & Hubbard, T. (2017). Dividing attention increases operational momentum. Journal of Numerical Cognition, 3(2), 230-245.
doi: 10.5964/jnc.v3i2.34 URL |
[68] |
McCrink, K., & Wynn, K. (2004). Large-number addition and subtraction by 9-month-old infants. Psychological Science, 15(11), 776-781.
pmid: 15482450 |
[69] |
McCrink, K., & Wynn, K. (2009). Operational momentum in large-number addition and subtraction by 9-month-olds. Journal of Experimental Child Psychology, 103(4), 400-408.
doi: 10.1016/j.jecp.2009.01.013 pmid: 19285683 |
[70] |
McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence, 37(1), 1-10.
doi: 10.1016/j.intell.2008.08.004 URL |
[71] | Mix, K. S., & Cheng, Y. L. (2012). The relation between space and math: Developmental and educational implications. In J. B. Benson (Ed.). Advances in child development and behavior (pp. 197-243). Elsevier Academic Press. |
[72] |
Mix, K. S., Levine, S. C., Cheng, Y. L., Young, C., Hambrick, D. Z., Ping, R., & Konstantopoulos, S. (2016). Separate but correlated: The latent structure of space and mathematics across development. Journal of Experimental Psychology: General, 145(9), 1206-1227.
doi: 10.1037/xge0000182 URL |
[73] |
Navarro, M. G., Braham, E. J., & Libertus, M. E. (2018). Intergenerational associations of the approximate number system in toddlers and their parents. British Journal of Developmental Psychology, 36(4), 521-539.
doi: 10.1111/bjdp.12234 pmid: 29377230 |
[74] |
Nieder, A., & Miller, E. K. (2003). Coding of cognitive magnitude: Compressed scaling of numerical information in the primate prefrontal cortex. Neuron, 37(1), 149-157.
pmid: 12526780 |
[75] | Nuerk, H. C., Moeller, K., Klein, E., Willmes, K., & Fischer, M. H. (2011). Extending the mental number line: A review of multi-digit number processing. Zeitschrift fu Psychologie / Journal of Psychology, 219(1), 3-22. |
[76] |
Odic, D., & Starr, A. (2018). An introduction to the approximate number system. Child Development Perspectives, 12(4), 223-229.
doi: 10.1111/cdep.12288 pmid: 30534193 |
[77] |
Park, J., Bermudez, V., Roberts, R. C., & Brannon, E. M. (2016). Non-symbolic approximate arithmetic training improves math performance in preschoolers. Journal of Experimental Child Psychology, 152, 278-293.
doi: S0022-0965(16)30087-X pmid: 27596808 |
[78] |
Park, J., & Brannon, E. M. (2013). Training the approximate number system improves math proficiency. Psychological Science, 24(10), 2013-2019.
doi: 10.1177/0956797613482944 pmid: 23921769 |
[79] |
Park, J., & Brannon, E. M. (2014). Improving arithmetic performance with number sense training: An investigation of underlying mechanism. Cognition, 133(1), 188-200.
doi: 10.1016/j.cognition.2014.06.011 pmid: 25044247 |
[80] |
Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., ... Zorzi, M. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116(1), 33-41.
doi: 10.1016/j.cognition.2010.03.012 pmid: 20381023 |
[81] |
Pinhas, M., & Fischer, M. H. (2008). Mental movements without magnitude? A study of spatial biases in symbolic arithmetic. Cognition, 109(3), 408-415.
doi: 10.1016/j.cognition.2008.09.003 pmid: 18976986 |
[82] |
Pinhas, M., Shaki, S., & Fischer, M. H. (2014). Heed the signs: Operation signs have spatial associations. Quarterly Journal of Experimental Psychology, 67(8), 1527-1540.
doi: 10.1080/17470218.2014.892516 URL |
[83] |
Pinhas, M., Shaki, S., & Fischer, M. H. (2015). Addition goes where the big numbers are: Evidence for a reversed operational momentum effect. Psychonomic Bulletin & Review, 22(4), 993-1000.
doi: 10.3758/s13423-014-0786-z URL |
[84] |
Pinheiro-Chagas, P., Didino, D., Haase, V. G., Wood, G., & Knops, A. (2018). The developmental trajectory of the operational momentum effect. Frontiers in Psychology, 9, 1062.
doi: 10.3389/fpsyg.2018.01062 pmid: 30065673 |
[85] |
Qu, C., Szkudlarek, E., & Brannon, E. M. (2021). Approximate multiplication in young children prior to multiplication instruction. Journal of Experimental Child Psychology, 207, 105116.
doi: 10.1016/j.jecp.2021.105116 URL |
[86] |
Rittle-Johnson, B., Fyfe, E. R., Hofer, K. G., & Farran, D. C. (2017). Early math trajectories: Low-income children's mathematics knowledge from ages 4 to 11. Child Development, 88(5), 1727-1742.
doi: 10.1111/cdev.12662 pmid: 27921305 |
[87] |
Shaki, S., & Fischer, M. H. (2017). Competing biases in mental arithmetic: When division is more and multiplication is less. Frontiers in Human Neuroscience, 11, 37.
doi: 10.3389/fnhum.2017.00037 pmid: 28203152 |
[88] | Shaki, S., Pinhas, M., & Fischer, M. H. (2018). Heuristics and biases in mental arithmetic: Revisiting and reversing operational momentum. Thinking & Reasoning, 24(2), 138-156. |
[89] |
Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science, 14(3), 237-250.
pmid: 12741747 |
[90] |
Spelke, E. S. (2017). Core knowledge, language, and number. Language Learning and Development, 13(2), 147-170.
doi: 10.1080/15475441.2016.1263572 URL |
[91] |
Szkudlarek, E., & Brannon, E. M. (2017). Does the approximate number system serve as a foundation for symbolic mathematics? Language Learning and Development, 13(2), 171-190.
doi: 10.1080/15475441.2016.1263573 pmid: 28344520 |
[92] |
Szkudlarek, E., & Brannon, E. M. (2018). Approximate arithmetic training improves informal math performance in low achieving preschoolers. Frontiers in Psychology, 9, 606.
doi: 10.3389/fpsyg.2018.00606 pmid: 29867624 |
[93] |
Szkudlarek, E., & Brannon, E. M. (2021). First and second graders successfully reason about ratios with both dot arrays and Arabic numerals. Child Development, 92(3), 1011-1027.
doi: 10.1111/cdev.13470 pmid: 33609044 |
[94] |
Szkudlarek, E., Park, J., & Brannon, E. M. (2021). Failure to replicate the benefit of approximate arithmetic training for symbolic arithmetic fluency in adults. Cognition, 207, 104521.
doi: 10.1016/j.cognition.2020.104521 URL |
[95] |
Tam, Y. P., Wong, T. T. Y., & Chan, W. W. L. (2019). The relation between spatial skills and mathematical abilities: The mediating role of mental number line representation. Contemporary Educational Psychology, 56, 14-24.
doi: 10.1016/j.cedpsych.2018.10.007 URL |
[96] |
Thompson, J. M., Nuerk, H. C., Moeller, K., & Kadosh, R. C. (2013). The link between mental rotation ability and basic numerical representations. Acta Psychologica, 144(2), 324-331.
doi: 10.1016/j.actpsy.2013.05.009 pmid: 23933002 |
[97] |
Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352-402.
doi: 10.1037/a0028446 pmid: 22663761 |
[98] |
van Marle, K., Chu, F. W., Li, Y., & Geary, D. C. (2014). Acuity of the approximate number system and preschoolers' quantitative development. Developmental Science, 17(4), 492-505.
doi: 10.1111/desc.12143 pmid: 24498980 |
[99] |
Vilkomir, T., & O’Donoghue, J. (2009). Using components of mathematical ability for initial development and identification of mathematically promising students. International Journal of Mathematical Education in Science and Technology, 40(2), 183-199.
doi: 10.1080/00207390802276200 URL |
[100] | Wang, J., Halberda, J., & Feigenson, L. (2021). Emergence of the link between the approximate number system and symbolic math ability. Child Development, 92(2), e186-e200. |
[101] |
Wang, J. J., Libertus, M. E., & Feigenson, L. (2018). Hysteresis-induced changes in preverbal infants’ approximate number precision. Cognitive Development, 47, 107-116.
doi: 10.1016/j.cogdev.2018.05.002 URL |
[102] |
Wang, J. J., Odic, D., Halberda, J., & Feigenson, L. (2016). Changing the precision of preschoolers’ approximate number system representations changes their symbolic math performance. Journal of Experimental Child Psychology, 147, 82-99.
doi: 10.1016/j.jecp.2016.03.002 URL |
[103] |
Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358(6389), 749-750.
doi: 10.1038/358749a0 URL |
[104] |
Xie, F., Zhang, L., Chen, X., & Xin, Z. (2020). Is spatial ability related to mathematical ability: A meta-analysis. Educational Psychology Review, 32, 113-155.
doi: 10.1007/s10648-019-09496-y URL |
[105] |
Zhang, X., Räsänen, P., Koponen, T., Aunola, K., Lerkkanen, M. K., & Nurmi, J. E. (2017). Knowing, applying, and reasoning about arithmetic: Roles of domain-general and numerical skills in multiple domains of arithmetic learning. Developmental Psychology, 53(12), 2304-2318.
doi: 10.1037/dev0000432 pmid: 29083215 |
[106] |
Zhu, R., Luo, Y., You, X., & Wang, Z. (2018). Spatial bias induced by simple addition and subtraction: From eye movement evidence. Perception, 47(2), 143-157.
doi: 10.1177/0301006617738718 pmid: 29132267 |
[107] |
Zhu, R., You, X., Gan, S., & Wang, J. (2019). Spatial attention shifts in addition and subtraction arithmetic: Evidence of eye movement. Perception, 48(9), 835-849.
doi: 10.1177/0301006619865156 pmid: 31324133 |
[1] | WU Xiuying, LI Feifei, LIU Baogen. The contribution of dictionary interactivity on young children’s electronic picture book reading [J]. Advances in Psychological Science, 2023, 31(5): 759-768. |
[2] | CHENG Meixia, KUANG Ziyi, LENG Xiaoxue, ZHANG Yang, WANG Fuxing. Can learning by non-interactive teaching promote learning? [J]. Advances in Psychological Science, 2023, 31(5): 769-782. |
[3] | WU Jiahui, FU Hailun, ZHANG Yuhuan. A meta-analysis of the relationship between perceived social support and student academic achievement: The mediating role of student engagement [J]. Advances in Psychological Science, 2023, 31(4): 552-569. |
[4] | KUANG Ziyi, CHENG Meixia, LI Wenjing, WANG Fuxing, HU Xiangen. Can Instructors' eye gaze promote video learning? [J]. Advances in Psychological Science, 2022, 30(10): 2291-2302. |
[5] | WANG Yanqing, GONG Shaoying, JIANG Tiantian, Wu Yanan. Can affective pedagogical agent facilitate multimedia learning? [J]. Advances in Psychological Science, 2022, 30(7): 1524-1535. |
[6] | CHENG Xiaojun, LIU Meihuan, PAN Yafeng, LI Hong. The teaching and learning brains: Interpersonal neuroscience in educational research [J]. Advances in Psychological Science, 2021, 29(11): 1993-2001. |
[7] | LI Ying, ZHANG Can, WANG Yue. The effect of moral emotions on the metaphorical mapping of morality and its neural mechanism [J]. Advances in Psychological Science, 2019, 27(7): 1224-1231. |
[8] | ZHAO Fengqing, YU Guoliang. Everyday academic resilience: Active adaption to everyday academic pressures [J]. Advances in Psychological Science, 2018, 26(6): 1054-1062. |
[9] | KUANG Ziyi, ZHANG Yang, WANG Fuxing, YANG Xiaomeng, HU Xiangen. Can the presence of human teacher promote video learning? [J]. Advances in Psychological Science, 2021, 29(12): 2184-2194. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||