Advances in Psychological Science ›› 2022, Vol. 30 ›› Issue (12): 2764-2776.doi: 10.3724/SP.J.1042.2022.02764
• Regular Articles • Previous Articles Next Articles
Received:
2022-01-26
Online:
2022-12-15
Published:
2022-09-23
Contact:
BI Hongyan
E-mail:bihy@psych.ac.cn
CLC Number:
WANG Runzhou, BI Hongyan. A possible mechanism for the audiovisual temporal integration deficits in developmental dyslexia: Impaired ability in audiovisual temporal recalibration[J]. Advances in Psychological Science, 2022, 30(12): 2764-2776.
[1] | 李涛涛, 胡金生, 王琦, 李骋诗, 李松泽, 何建青,... 刘淑清. (2018). 孤独症谱系障碍者的视听时间整合. 心理科学进展, 26(6), 1031-1040. |
[2] | 武慧多. (2020). 发展性阅读障碍儿童视听时间敏感性及其对阅读能力的影响 (博士学位论文). 华东师范大学, 上海. |
[3] | 袁祥勇, 黄希庭. (2011). 多感觉整合的时间再校准. 心理科学进展, 19(5), 692-700. |
[4] | 袁祥勇, 黄希庭, 毕翠华, 袁宏. (2012). 视听时间再校准: 适应空间与适应客体的联合及独立作用. 心理学报, 44(2), 143-153. |
[5] |
Adhikari, B. M., Goshorn, E. S., Lamichhane, B., & Dhamala, M. (2013). Temporal-order judgment of audiovisual events involves network activity between parietal and prefrontal cortices. Brain Connectivity, 3(5), 536-545.
doi: 10.1089/brain.2013.0163 pmid: 23988147 |
[6] |
Anthony, J. L., & Lonigan, C. J. (2004). The nature of phonological awareness: Converging evidence from four studies of preschool and early grade school children. Journal of Educational Psychology, 96(1), 43-55.
doi: 10.1037/0022-0663.96.1.43 URL |
[7] |
Arrighi, R., Alais, D., & Burr, D. (2006). Perceptual synchrony of audiovisual streams for natural and artificial motion sequences. Journal of Vision, 6(3), 260-268.
pmid: 16643094 |
[8] |
Binder, M. (2015). Neural correlates of audiovisual temporal processing-comparison of temporal order and simultaneity judgments. Neuroscience, 300, 432-447.
doi: 10.1016/j.neuroscience.2015.05.011 pmid: 25982561 |
[9] |
Blau, V., Reithler, J., van Atteveldt, N., Seitz, J., Gerretsen, P., Goebel, R., & Blomert, L. (2010). Deviant processing of letters and speech sounds as proximate cause of reading failure: A functional magnetic resonance imaging study of dyslexic children. Brain, 133(3), 868-879.
doi: 10.1093/brain/awp308 URL |
[10] |
Blau, V., van Atteveldt, N., Ekkebus, M., Goebel, R., & Blomert, L. (2009). Reduced neural integration of letters and speech sounds links phonological and reading deficits in adult dyslexia. Current Biology, 19(6), 503-508.
doi: 10.1016/j.cub.2009.01.065 pmid: 19285401 |
[11] |
Casini, L., Pech-Georgel, C., & Ziegler, J. C. (2018). It’s about time: Revisiting temporal processing deficits in dyslexia. Developmental Science, 21(2), e12530. https://doi.org/10.1111/desc.12530
doi: 10.1111/desc.12530 URL |
[12] | De Niear, M. A., Noel, J.-P., & Wallace, M. T. (2017). The impact of feedback on the different time courses of multisensory temporal recalibration. Neural Plasticity, 2017, 3478742. https://doi.org/10.1155/2017/3478742 |
[13] |
Dhamala, M., Assisi, C. G., Jirsa, V. K., Steinberg, F. L., & Kelso, J. S. (2007). Multisensory integration for timing engages different brain networks. NeuroImage, 34(2), 764-773.
pmid: 17098445 |
[14] |
Ehri, L. C. (2005). Learning to read words: Theory, findings, and issues. Scientific Studies of Reading, 9(2), 167-188.
doi: 10.1207/s1532799xssr0902_4 URL |
[15] |
Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415(6870), 429-433.
doi: 10.1038/415429a URL |
[16] |
Ernst, M. O., & Bülthoff, H. H. (2004). Merging the senses into a robust percept. Trends in Cognitive Sciences, 8(4), 162-169.
pmid: 15050512 |
[17] |
Francisco, A. A., Groen, M. A., Jesse, A., & McQueen, J. M. (2017). Beyond the usual cognitive suspects: The importance of speechreading and audiovisual temporal sensitivity in reading ability. Learning and Individual Differences, 54, 60-72.
doi: 10.1016/j.lindif.2017.01.003 URL |
[18] |
Francisco, A. A., Jesse, A., Groen, M. A., & McQueen, J. M. (2017). A general audiovisual temporal processing deficit in adult readers with dyslexia. Journal of Speech, Language, and Hearing Research, 60(1), 144-158.
doi: 10.1044/2016_JSLHR-H-15-0375 URL |
[19] | Francisco, A. A., Jesse, A., Groen, M., & McQueen, J. M. (2014, September). Audiovisual temporal sensitivity in typical and dyslexic adult readers. In Interspeech 2014: 15th Annual Conference of the International Speech Communication Association (pp. 2575-2579), Singapore. |
[20] |
Froyen, D., van Atteveldt, N., Bonte, M., & Blomert, L. (2008). Cross-modal enhancement of the MMN to speech-sounds indicates early and automatic integration of letters and speech-sounds. Neuroscience Letters, 430(1), 23-28.
pmid: 18023979 |
[21] |
Froyen, D., Willems, G., & Blomert, L. (2011). Evidence for a specific cross-modal association deficit in dyslexia: An electrophysiological study of letter-speech sound processing. Developmental Science, 14(4), 635-648.
doi: 10.1111/j.1467-7687.2010.01007.x pmid: 21676085 |
[22] |
Fujisaki, W., Shimojo, S., Kashino, M., & Nishida, S. Y. (2004). Recalibration of audiovisual simultaneity. Nature Neuroscience, 7(7), 773-778.
pmid: 15195098 |
[23] | Gori, M., Ober, K. M., Tinelli, F., & Coubard, O. A. (2020). Temporal representation impairment in developmental dyslexia for unisensory and multisensory stimuli. Developmental Science, 23(5), e12977. https://doi.org/10.1111/desc.12977 |
[24] |
Hairston, W. D., Burdette, J. H., Flowers, D. L., Wood, F. B., & Wallace, M. T. (2005). Altered temporal profile of visual-auditory multisensory interactions in dyslexia. Experimental Brain Research, 166(3-4), 474-480.
doi: 10.1007/s00221-005-2387-6 pmid: 16028030 |
[25] |
Harvey, C., van der Burg, E., & Alais, D. (2014). Rapid temporal recalibration occurs crossmodally without stimulus specificity but is absent unimodally. Brain Research, 1585, 120-130.
doi: 10.1016/j.brainres.2014.08.028 pmid: 25148705 |
[26] |
Hood, M., & Conlon, E. (2004). Visual and auditory temporal processing and early reading development. Dyslexia, 10(3), 234-252.
pmid: 15341200 |
[27] |
Jaffe-Dax, S., Kimel, E., & Ahissar, M. (2018). Shorter cortical adaptation in dyslexia is broadly distributed in the superior temporal lobe and includes the primary auditory cortex. eLife, 7, e30018. https://doi.org/10.7554/eLife.30018.001
doi: 10.7554/eLife.30018 URL |
[28] |
Keetels, M., Bonte, M., & Vroomen, J. (2018). A selective deficit in phonetic recalibration by text in developmental dyslexia. Frontiers in Psychology, 9, 710. https://doi.org/10.3389/fpsyg.2018.00710
doi: 10.3389/fpsyg.2018.00710 URL pmid: 29867675 |
[29] |
Keetels, M., & Vroomen, J. (2007). No effect of auditory-visual spatial disparity on temporal recalibration. Experimental Brain Research, 182(4), 559-565.
pmid: 17598092 |
[30] |
Kotz, S. A., & Schwartze, M. (2010). Cortical speech processing unplugged: A timely subcortico-cortical framework. Trends in Cognitive Sciences, 14(9), 392-399.
doi: 10.1016/j.tics.2010.06.005 pmid: 20655802 |
[31] |
Laasonen, M., Service, E., & Virsu, V. (2002). Crossmodal temporal order and processing acuity in developmentally dyslexic young adults. Brain and Language, 80(3), 340-354.
pmid: 11896646 |
[32] | Lewkowicz, D. J. (1992). The development of temporally-based intersensory perception in human infants. In F. Macar, V. Pouthas & W. J. Friedman (Eds.), Time, Action, and Cognition: Towards Bridging the Gap (Vol. 66, pp.33-43). Springer, Dordrecht. |
[33] | Lewkowicz, D. J. (1994). Development of intersensory perception in human infants. In D. J. Lewkowicz & R. Lickliter (Eds.), The Development of Intersensory Perception: Comparative Perspectives (pp. 165-203). Psychology Press. |
[34] |
Lewkowicz, D. J. (1996). Perception of auditory-visual temporal synchrony in human infants. Journal of Experimental Psychology: Human Perception and Performance, 22(5), 1094-1106.
doi: 10.1037/0096-1523.22.5.1094 URL |
[35] |
Liu, S., Wang, L.-C., & Liu, D. (2019). Auditory, visual, and cross-modal temporal processing skills among Chinese children with developmental dyslexia. Journal of Learning Disabilities, 52(6), 431-441.
doi: 10.1177/0022219419863766 pmid: 31313628 |
[36] |
Meredith, M. A., Nemitz, J. W., & Stein, B. E. (1987). Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors. Journal of Neuroscience, 7(10), 3215-3229.
pmid: 3668625 |
[37] |
Mittag, M., Thesleff, P., Laasonen, M., & Kujala, T. (2013). The neurophysiological basis of the integration of written and heard syllables in dyslexic adults. Clinical Neurophysiology, 124(2), 315-326.
doi: 10.1016/j.clinph.2012.08.003 pmid: 22939780 |
[38] |
Mossbridge, J., Zweig, J., Grabowecky, M., & Suzuki, S. (2017). An association between auditory-visual synchrony processing and reading comprehension: Behavioral and electrophysiological evidence. Journal of Cognitive Neuroscience, 29(3), 435-447.
doi: 10.1162/jocn_a_01052 pmid: 28129060 |
[39] |
Navarra, J., Hartcher-O’Brien, J., Piazza, E., & Spence, C. (2009). Adaptation to audiovisual asynchrony modulates the speeded detection of sound. Proceedings of the National Academy of Sciences, 106(23), 9169-9173.
doi: 10.1073/pnas.0810486106 URL |
[40] |
Navarra, J., Soto-Faraco, S., & Spence, C. (2007). Adaptation to audiotactile asynchrony. Neuroscience Letters, 413(1), 72-76.
pmid: 17161530 |
[41] |
Navarra, J., Vatakis, A., Zampini, M., Soto-Faraco, S., Humphreys, W., & Spence, C. (2005). Exposure to asynchronous audiovisual speech extends the temporal window for audiovisual integration. Cognitive Brain Research, 25(2), 499-507.
pmid: 16137867 |
[42] |
Noel, J.-P., De Niear, M. A., Stevenson, R., Alais, D., & Wallace, M. T. (2017). Atypical rapid audio-visual temporal recalibration in autism spectrum disorders. Autism Research, 10(1), 121-129.
doi: 10.1002/aur.1633 URL |
[43] |
Noel, J.-P., De Niear, M. A., van der Burg, E., & Wallace, M. T. (2016). Audiovisual simultaneity judgment and rapid recalibration throughout the lifespan. PloS One, 11(8), e0161698. https://doi.org/10.1371/journal.pone.0161698
doi: 10.1371/journal.pone.0161698 URL |
[44] |
Noesselt, T., Rieger, J. W., Schoenfeld, M. A., Kanowski, M., Hinrichs, H., Heinze, H.-J., & Driver, J. (2007). Audiovisual temporal correspondence modulates human multisensory superior temporal sulcus plus primary sensory cortices. Journal of Neuroscience, 27(42), 11431-11441.
doi: 10.1523/JNEUROSCI.2252-07.2007 pmid: 17942738 |
[45] |
O’Connor, I. M., & Klein, P. D. (2004). Exploration of strategies for facilitating the reading comprehension of high-functioning students with autism spectrum disorders. Journal of Autism and Developmental Disorders, 34(2), 115-127.
pmid: 15162931 |
[46] |
Ozernov-Palchik, O., Beach, S. D., Brown, M., Centanni, T. M., Gaab, N., Kuperberg, G., Perrachione, T. K., & Gabrieli, J. D. E. (2022). Speech-specific perceptual adaptation deficits in children and adults with dyslexia. Journal of Experimental Psychology: General, 151(7), 1556-1572. https://doi.org/10.1037/xge0001145
doi: 10.1037/xge0001145 URL |
[47] |
Pammer, K., & Vidyasagar, T. R. (2005). Integration of the visual and auditory networks in dyslexia: A theoretical perspective. Journal of Research in Reading, 28(3), 320-331.
doi: 10.1111/j.1467-9817.2005.00272.x URL |
[48] |
Park, H., & Kayser, C. (2019). Shared neural underpinnings of multisensory integration and trial-by-trial perceptual recalibration in humans. eLife, 8, e47001. https://doi.org/10.7554/eLife.47001.001
doi: 10.7554/eLife.47001 URL |
[49] | Patti, P. J., & Lupinetti, L. (1993). Brief report: Implications of hyperlexia in an autistic savant. Journal of Autism and Developmental Disorders, 23(2), 397-405. |
[50] |
Pellicano, E., & Burr, D. (2012). When the world becomes ‘too real’: A Bayesian explanation of autistic perception. Trends in Cognitive Sciences, 16(10), 504-510.
doi: 10.1016/j.tics.2012.08.009 URL |
[51] |
Perrachione, T. K., Del Tufo, S. N., Winter, R., Murtagh, J., Cyr, A., Chang, P., ... Gabrieli, J. D. (2016). Dysfunction of rapid neural adaptation in dyslexia. Neuron, 92(6), 1383-1397.
doi: S0896-6273(16)30858-3 pmid: 28009278 |
[52] |
Peter, B., McCollum, H., Daliri, A., & Panagiotides, H. (2019). Auditory gating in adults with dyslexia: An ERP account of diminished rapid neural adaptation. Clinical Neurophysiology, 130(11), 2182-2192.
doi: S1388-2457(19)31183-6 pmid: 31451333 |
[53] |
Powers, A. R., Hevey, M. A., & Wallace, M. T. (2012). Neural correlates of multisensory perceptual learning. Journal of Neuroscience, 32(18), 6263-6274.
doi: 10.1523/JNEUROSCI.6138-11.2012 pmid: 22553032 |
[54] |
Powers, A. R., Hillock, A. R., & Wallace, M. T. (2009). Perceptual training narrows the temporal window of multisensory binding. Journal of Neuroscience, 29(39), 12265-12274.
doi: 10.1523/JNEUROSCI.3501-09.2009 pmid: 19793985 |
[55] |
Rüsseler, J., Ye, Z., Gerth, I., Szycik, G. R., & Münte, T. F. (2018). Audio-visual speech perception in adult readers with dyslexia: An fMRI study. Brain Imaging and Behavior, 12(2), 357-368.
doi: 10.1007/s11682-017-9694-y pmid: 28290075 |
[56] |
Sato, Y., & Aihara, K. (2011). A Bayesian model of sensory adaptation. PloS One, 6(4), e19377. https://doi.org/10.1371/journal.pone.0019377
doi: 10.1371/journal.pone.0019377 URL |
[57] |
Simon, D. M., Nidiffer, A. R., & Wallace, M. T. (2018). Single trial plasticity in evidence accumulation underlies rapid recalibration to asynchronous audiovisual speech. Scientific Reports, 8(1), 12499. https://doi.org/10.1038/s41598-018-30414-9
doi: 10.1038/s41598-018-30414-9 URL pmid: 30131578 |
[58] |
Simon, D. M., Noel, J.-P., & Wallace, M. T. (2017). Event related potentials index rapid recalibration to audiovisual temporal asynchrony. Frontiers in Integrative Neuroscience, 11, 8. https://doi.org/10.3389/fnint.2017.00008
doi: 10.3389/fnint.2017.00008 URL pmid: 28381993 |
[59] |
Stevenson, R. A., Fister, J. K., Barnett, Z. P., Nidiffer, A. R., & Wallace, M. T. (2012). Interactions between the spatial and temporal stimulus factors that influence multisensory integration in human performance. Experimental Brain Research, 219(1), 121-137.
doi: 10.1007/s00221-012-3072-1 pmid: 22447249 |
[60] |
Stevenson, R. A., Segers, M., Ferber, S., Barense, M. D., Camarata, S., & Wallace, M. T. (2016). Keeping time in the brain: Autism spectrum disorder and audiovisual temporal processing. Autism Research, 9(7), 720-738.
doi: 10.1002/aur.1566 pmid: 26402725 |
[61] |
Stevenson, R. A., & Wallace, M. T. (2013). Multisensory temporal integration: Task and stimulus dependencies. Experimental Brain Research, 227(2), 249-261.
doi: 10.1007/s00221-013-3507-3 pmid: 23604624 |
[62] |
Theves, S., Chan, J. S., Naumer, M. J., & Kaiser, J. (2020). Improving audio-visual temporal perception through training enhances beta-band activity. NeuroImage, 206, 116312. https://doi.org/10.1016/j.neuroimage.2019.116312
doi: 10.1016/j.neuroimage.2019.116312 URL |
[63] |
Turi, M., Karaminis, T., Pellicano, E., & Burr, D. (2016). No rapid audiovisual recalibration in adults on the autism spectrum. Scientific Reports, 6, 21756. https://doi.org/10.1038/srep21756
doi: 10.1038/srep21756 URL pmid: 26899367 |
[64] |
Ullas, S., Hausfeld, L., Cutler, A., Eisner, F., & Formisano, E. (2020). Neural correlates of phonetic adaptation as induced by lexical and audiovisual context. Journal of Cognitive Neuroscience, 32(11), 2145-2158.
doi: 10.1162/jocn_a_01608 URL |
[65] |
van der Burg, E., Alais, D., & Cass, J. (2013). Rapid recalibration to audiovisual asynchrony. Journal of Neuroscience, 33(37), 14633-14637.
doi: 10.1523/JNEUROSCI.1182-13.2013 pmid: 24027264 |
[66] |
van der Burg, E., Alais, D., & Cass, J. (2015). Audiovisual temporal recalibration occurs independently at two different time scales. Scientific Reports, 5, 14526. https://doi.org/10.1038/srep14526
doi: 10.1038/srep14526 URL pmid: 26455577 |
[67] |
van der Burg, E., & Goodbourn, P. T. (2015). Rapid, generalized adaptation to asynchronous audiovisual speech. Proceedings of the Royal Society B: Biological Sciences, 282(1804), 20143083. https://doi.org/10.1098/rspb.2014.3083
doi: 10.1098/rspb.2014.3083 URL |
[68] |
van Wassenhove, V., Grant, K. W., & Poeppel, D. (2007). Temporal window of integration in auditory-visual speech perception. Neuropsychologia, 45(3), 598-607.
doi: 10.1016/j.neuropsychologia.2006.01.001 pmid: 16530232 |
[69] |
Vidyasagar, T. R., & Pammer, K. (2010). Dyslexia: A deficit in visuo-spatial attention, not in phonological processing. Trends in Cognitive Sciences, 14(2), 57-63.
doi: 10.1016/j.tics.2009.12.003 pmid: 20080053 |
[70] |
Virsu, V., Lahti-Nuuttila, P., & Laasonen, M. (2003). Crossmodal temporal processing acuity impairment aggravates with age in developmental dyslexia. Neuroscience Letters, 336(3), 151-154.
pmid: 12505615 |
[71] |
Vroomen, J., & Keetels, M. (2010). Perception of intersensory synchrony: A tutorial review. Attention, Perception, and Psychophysics, 72(4), 871-884.
doi: 10.3758/APP.72.4.871 URL |
[72] |
Wallace, M. T., & Stevenson, R. A. (2014). The construct of the multisensory temporal binding window and its dysregulation in developmental disabilities. Neuropsychologia, 64, 105-123.
doi: 10.1016/j.neuropsychologia.2014.08.005 pmid: 25128432 |
[73] |
Woynaroski, T. G., Kwakye, L. D., Foss-Feig, J. H., Stevenson, R. A., Stone, W. L., & Wallace, M. T. (2013). Multisensory speech perception in children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 43(12), 2891-2902.
doi: 10.1007/s10803-013-1836-5 pmid: 23624833 |
[74] |
Yu, L., Stein, B. E., & Rowland, B. A. (2009). Adult plasticity in multisensory neurons: Short-term experience-dependent changes in the superior colliculus. Journal of Neuroscience, 29(50), 15910-15922.
doi: 10.1523/JNEUROSCI.4041-09.2009 pmid: 20016107 |
[75] |
Zaidel, A., Goin-Kochel, R. P., & Angelaki, D. E. (2015). Self-motion perception in autism is compromised by visual noise but integrated optimally across multiple senses. Proceedings of the National Academy of Sciences, 112(20), 6461-6466.
doi: 10.1073/pnas.1506582112 URL |
[76] |
Zhou, H.-Y., Cheung, E. F., & Chan, R. C. (2020). Audiovisual temporal integration: Cognitive processing, neural mechanisms, developmental trajectory and potential interventions. Neuropsychologia, 140, 107396. https://doi.org/10.1016/j.neuropsychologia.2020.107396
doi: 10.1016/j.neuropsychologia.2020.107396 URL |
[77] |
Zhou, H.-Y., Shi, L.-J., Yang, H.-X., Cheung, E. F., & Chan, R. C. (2020). Audiovisual temporal integration and rapid temporal recalibration in adolescents and adults: Age-related changes and its correlation with autistic traits. Autism Research, 13(4), 615-626.
doi: 10.1002/aur.2249 URL |
[1] | CUI Nan, WANG Jiuju, ZHAO Jing. Effectiveness and underlying mechanism of the intervention for children with comorbidity between attention deficit hyperactivity disorder and developmental dyslexia [J]. Advances in Psychological Science, 2023, 31(4): 622-630. |
[2] | LI Hehui, HUANG Huiya, DONG Lin, LUO Yuejia, TAO Wuhai. Developmental dyslexia and cerebellar abnormalities: Multiple roles of the cerebellum and causal relationships between the two [J]. Advances in Psychological Science, 2022, 30(2): 343-353. |
[3] | WANG Runzhou, BI Hongyan. Auditory temporal processing deficits in developmental dyslexia [J]. Advances in Psychological Science, 2021, 29(7): 1231-1238. |
[4] | REN Xiaoyu, ZHAO Jing, BI Hongyan. Effects of action video games on reading skills of individuals with developmental dyslexia and its internal mechanisms [J]. Advances in Psychological Science, 2021, 29(6): 1000-1009. |
[5] | WEI Tongqi, CAO Hui, BI Hong-Yan, YANG Yang. Writing deficits in developmental dyslexia and its neural mechanisms [J]. Advances in Psychological Science, 2020, 28(1): 75-84. |
[6] | JI Yuzhu, BI Hongyan. The noise exclusion deficit in developmental dyslexia [J]. Advances in Psychological Science, 2019, 27(2): 201-208. |
[7] | ZHAO Jing. Skills of visual attention span in developmental dyslexia [J]. Advances in Psychological Science, 2019, 27(1): 20-26. |
[8] | LI Taotao, HU Jinsheng, WANG Qi, LI Chengshi, LI Songze, HE Jianqing, LI Chenyang, LIU Shuqing. Audiovisual temporal integration in autism spectrum disorders [J]. Advances in Psychological Science, 2018, 26(6): 1031-1040. |
[9] | HUANG Chen, ZHAO Jing. Visual-spatial attention processing in developmental dyslexia [J]. Advances in Psychological Science, 2018, 26(1): 72-80. |
[10] | FENG Xiaoxia; LI Le; DING Guosheng. Abnormal inter-regional brain connectivity in developmental dyslexia [J]. Advances in Psychological Science, 2016, 24(12): 1864-1872. |
[11] | XIA Zhichao;HONG Tian;ZHANG Linjun;SHU Hua. Application of Auditory Brainstem Response (ABR) in Speech Perception Research [J]. Advances in Psychological Science, 2014, 22(1): 14-26. |
[12] | SU Meng-Meng;ZHANG Yu-Ping;SHI Bing-Jie;SHU Hua. The Genetic Association Analysis on Developmental Dyslexia [J]. Advances in Psychological Science, 2012, 20(8): 1259-1267. |
[13] | Wang Zhengke;Sun Leyong;Jian Jie;Meng Xiangzhi . The Treatment Programs for English Developmental Dyslexia [J]. , 2007, 15(5): 802-809. |
[14] | Wang Yanbi;Yu Lin. The Review and Prospect of Chinese Developmental Dyslexia Study in the Recent Decade [J]. , 2007, 15(4): 596-604. |
[15] | Liu Wenli ;Liu Xiangping. Reading Development-Related Cognitive Skills: A Comparison Between Chinese And English [J]. , 2006, 14(5): 665-674. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||