Advances in Psychological Science ›› 2022, Vol. 30 ›› Issue (12): 2746-2763.doi: 10.3724/SP.J.1042.2022.02746
• Regular Articles • Previous Articles Next Articles
YE Liqun, TAN Xin, YAO Kun, DING Yulong()
Received:
2021-09-29
Online:
2022-12-15
Published:
2022-09-23
Contact:
DING Yulong
E-mail:dingyulong@m.scnu.edu.cn
CLC Number:
YE Liqun, TAN Xin, YAO Kun, DING Yulong. Influence of normal aging on early stages of visual attention: Evidence from ERP studies[J]. Advances in Psychological Science, 2022, 30(12): 2746-2763.
[1] |
Allen, H. A., & Payne, H. (2012). Similar behavior, different brain patterns: Age-related changes in neural signatures of ignoring. NeuroImage, 59(4), 4113-4125.
doi: 10.1016/j.neuroimage.2011.10.070 URL |
[2] | Allon, A. S., & Luria, R. (2019). Filtering performance in visual working memory is improved by reducing early spatial attention to the distractors. Psychophysiology, 56(5), 1-15. |
[3] |
Alperin, B. R., Haring, A. E., Zhuravleva, T. Y., Holcomb, P. J., Rentz, D. M., & Daffner, K. R. (2013). The dissociation between early and late selection in older adults. Journal of Cognitive Neuroscience, 25(12), 2189-2206.
doi: 10.1162/jocn_a_00456 pmid: 23915054 |
[4] |
Amenedo, E., Gutiérrez-Domínguez, F. J., Mateos-Ruger, S. M., & Pazo-Álvarez, P. (2014). Stimulus-locked and response-locked ERP correlates of spatial inhibition of return (IOR) in old age. Journal of Psychophysiology, 28(3), 105-123.
doi: 10.1027/0269-8803/a000119 URL |
[5] |
Amenedo, E., Lorenzo-López, L., & Pazo-Álvarez, P. (2012). Response processing during visual search in normal aging: The need for more time to prevent cross talk between spatial attention and manual response selection. Biological Psychology, 91(2), 201-211.
doi: 10.1016/j.biopsycho.2012.06.004 pmid: 22743592 |
[6] |
Baluch, F., & Itti, L. (2011). Mechanisms of top-down attention. Trends in Neurosciences, 34(4), 210-224.
doi: 10.1016/j.tins.2011.02.003 pmid: 21439656 |
[7] |
Cabeza, R., Albert, M., Belleville, S., Craik, F., Duarte, A., Grady, C. L., ... Rajah, M. N. (2018). Maintenance, reserve and compensation: The cognitive neuroscience of healthy ageing. Nature Reviews Neuroscience, 19(11), 701-710.
doi: 10.1038/s41583-018-0068-2 pmid: 30305711 |
[8] | Castel, A. D., Chasteen, A. L., Scialfa, C. T., & Pratt, J. (2003). Adult age differences in the time course of inhibition of return. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 58(5), 256-259. |
[9] |
Curran, T., Hills, A., Patterson, M. B., & Strauss, M. E. (2001). Effects of aging on visuospatial attention: An ERP study. Neuropsychologia, 39(3), 288-301.
pmid: 11163607 |
[10] |
de Fockert, J. W., Ramchurn, A., van Velzen, J., Bergström, Z., & Bunce, D. (2009). Behavioral and ERP evidence of greater distractor processing in old age. Brain Research, 1282, 67-73.
doi: 10.1016/j.brainres.2009.05.060 pmid: 19497314 |
[11] |
Deiber, M. P., Ibañez, V., Missonnier, P., Rodriguez, C., & Giannakopoulos, P. (2013). Age-associated modulations of cerebral oscillatory patterns related to attention control. NeuroImage, 82, 531-546.
doi: 10.1016/j.neuroimage.2013.06.037 URL |
[12] |
Deiber, M. P., Meziane, H. B., Hasler, R., Rodriguez, C., Toma, S., Ackermann, M., ... Giannakopoulos, P. (2015). Attention and working memory-related EEG markers of subtle cognitive deterioration in healthy elderly individuals. Journal of Alzheimer's Disease, 47(2), 335-349.
doi: 10.3233/JAD-150111 URL |
[13] |
di Russo, F., Berchicci, M., Bianco, V., Mussini, E., Perri, R. L., Pitzalis, S., ... Spinelli, D. (2021). Sustained visuospatial attention enhances lateralized anticipatory ERP activity in sensory areas. Brain Structure and Function, 226(2), 457-470.
doi: 10.1007/s00429-020-02192-6 pmid: 33392666 |
[14] |
di Russo, F., Berchicci, M., Bianco, V., Perri, R. L., Pitzalis, S., & Mussini, E. (2021). Modulation of anticipatory visuospatial attention in sustained and transient tasks. Cortex, 135, 1-9.
doi: 10.1016/j.cortex.2020.11.007 pmid: 33341592 |
[15] |
Ding, Y., Martinez, A., Qu, Z., & Hillyard, S. A. (2014). Earliest stages of visual cortical processing are not modified by attentional load. Human Brain Mapping, 35(7), 3008-3024.
pmid: 25050422 |
[16] |
Doallo, S., Lorenzo-Lopez, L., Vizoso, C., Holguín, S. R., Amenedo, E., Bará, S., & Cadaveira, F. (2005). Modulations of the visual N1 component of event-related potentials by central and peripheral cueing. Clinical Neurophysiology, 116(4), 807-820.
pmid: 15792890 |
[17] |
Eimer, M. (1994). "Sensory gating" as a mechanism for visuospatial orienting: Electrophysiological evidence from trial-by-trial cuing experiments. Perception & Psychophysics, 55(6), 667-675.
doi: 10.3758/BF03211681 URL |
[18] | Eimer, M. (2014). The time course of spatial attention: Insights from event-related brain potentials. In A. C. Nobre & S. Kastner (Eds.), The Oxford Handbook of Attention (1, pp. 289-317). Oxford Academic. |
[19] |
Erel, H., & Levy, D. A. (2016). Orienting of visual attention in aging. Neuroscience and Biobehavioral Reviews, 69, 357-380.
doi: 10.1016/j.neubiorev.2016.08.010 pmid: 27531234 |
[20] |
Feldmann, W. T., & Vogel, E. K. (2018). Neural evidence for the contribution of active suppression during working memory filtering. Cerebral Cortex, 29(2), 529-543.
doi: 10.1093/cercor/bhx336 URL |
[21] |
Foster, J. J., & Awh, E. (2019). The role of alpha oscillations in spatial attention: Limited evidence for a suppression account. Current Opinion in Psychology, 29, 34-40.
doi: S2352-250X(18)30168-4 pmid: 30472541 |
[22] |
Foxe, J. J., & Snyder, A. C. (2011). The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Frontiers in Psychology, 2, 154.
doi: 10.3389/fpsyg.2011.00154 pmid: 21779269 |
[23] | Gaspar, J. M., Christie, G. J., Prime, D. J., Jolicœur, P., & McDonald, J. J. (2016). Inability to suppress salient distractors predicts low visual working memory capacity. Proceedings of the National Academy of Science, 113(13), 3696-3698. |
[24] |
Gazzaley, A., Clapp, W., Kelley, J., McEvoy, K., Knight, R. T., & D' Esposito, M. (2008). Age-related top-down suppression deficit in the early stages of cortical visual memory processing. Proceedings of the National Academy of Sciences, 105(35), 13122-13126.
doi: 10.1073/pnas.0806074105 URL |
[25] |
Geerligs, L., Saliasi, E., Maurits, N. M., & Lorist, M. M. (2012). Compensation through increased functional connectivity: Neural correlates of inhibition in old and young. Journal of Cognitive Neuroscience, 24(10), 2057-2069.
doi: 10.1162/jocn_a_00270 pmid: 22816367 |
[26] |
Geerligs, L., Saliasi, E., Maurits, N. M., Renken, R. J., & Lorist, M. M. (2014). Brain mechanisms underlying the effects of aging on different aspects of selective attention. NeuroImage, 91, 52-62.
doi: 10.1016/j.neuroimage.2014.01.029 pmid: 24473095 |
[27] |
Gould, I. C., Rushworth, M. F., & Nobre, A. C. (2011). Indexing the graded allocation of visuospatial attention using anticipatory alpha oscillations. Journal of Neurophysiology, 105(3), 1318-1326.
doi: 10.1152/jn.00653.2010 pmid: 21228304 |
[28] | Grady, C. L. (2017). Age differences in functional connectivity at rest and during cognitive tasks. In R. Cabeza, L. Nyberg & D. C. Park (Eds.), Cognitive neuroscience of aging: Linking cognitive and cerebral aging (2nd ed., pp. 105-130). New York, the United States of America: Oxford University Press. |
[29] |
Guilbert, A., Clément, S., & Moroni, C. (2019). Aging and orienting of visual attention: Emergence of a rightward attentional bias with aging? Developmental Neuropsychology, 44(3), 310-324.
doi: 10.1080/87565641.2019.1605517 pmid: 31001999 |
[30] |
Haring, A. E., Zhuravleva, T. Y., Alperin, B. R., Rentz, D. M., Holcomb, P. J., & Daffner, K. R. (2013). Age-related differences in enhancement and suppression of neural activity underlying selective attention in matched young and old adults. Brain Research, 1499, 69-79.
doi: 10.1016/j.brainres.2013.01.003 pmid: 23313874 |
[31] |
Heideman, S. G., Rohenkohl, G., Chauvin, J. J., Palmer, C. E., van Ede, F., & Nobre, A. C. (2018). Anticipatory neural dynamics of spatial-temporal orienting of attention in younger and older adults. NeuroImage, 178, 46-56.
doi: S1053-8119(18)30400-2 pmid: 29733953 |
[32] |
Hillyard, S. A., & Münte, T. F. (1984). Selective attention to color and location: An analysis with event-related brain potentials. Perception & Psychophysics, 36(2), 185-198.
doi: 10.3758/BF03202679 URL |
[33] |
Hong, X., Sun, J., Bengson, J. J., Mangun, G. R, & Tong, S. (2015). Normal aging selectively diminishes alpha lateralization in visual spatial attention. NeuroImage, 106, 353-363.
doi: 10.1016/j.neuroimage.2014.11.019 pmid: 25463457 |
[34] |
Hopfinger, J. B., & Mangun, G. R. (1998). Reflexive attention modulates processing of visual stimuli in human extrastriate cortex. Psychological Science, 9(6), 441-447.
pmid: 26321798 |
[35] | Hopfinger, J. B., & Mangun, G. R. (2001). Tracking the influence of reflexive attention on sensory and cognitive processing. Cognitive, Affective, & Behavioral Neuroscience, 1(1), 56-65. |
[36] |
Kenemans, J. L., Smulders, F. T. Y., & Kok, A. (1995). Selective processing of two-dimensional visual stimuli in young and old subjects: Electrophysiological analysis. Psychophysiology, 32(2), 108-120.
pmid: 7630975 |
[37] |
Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16(12), 606-617.
doi: 10.1016/j.tics.2012.10.007 URL |
[38] |
Lavie, N. (2005). Distracted and confused? Selective attention under load. Trends in Cognitive Sciences, 9(2), 75-82.
doi: 10.1016/j.tics.2004.12.004 URL |
[39] |
Learmonth, G., Benwell, C. S. Y., Thut, G., & Harvey, M. (2017). Age-related reduction of hemispheric lateralization for spatial attention: An EEG study. NeuroImage, 153, 139-151.
doi: S1053-8119(17)30259-8 pmid: 28343987 |
[40] |
Leenders, M. P., Lozano-Soldevilla, D., Roberts, M. J., Jensen, O., & de Weerd, P. (2018). Diminished alpha lateralization during working memory but not during attentional cueing in older adults. Cerebral Cortex, 28(1), 21-32.
doi: 10.1093/cercor/bhw345 URL |
[41] | Li, T., Wang, L., Huang, W., Zhen, Y., Zhong, C., Qu, Z., & Ding, Y. (2020). Onset time of inhibition of return is a promising index for assessing cognitive functions in older adults. The Journals of Gerontology: Series B, 75(4), 753-761. |
[42] |
Lorenzo-López, L., Amenedo, E., & Cadaveira, F. (2008). Feature processing during visual search in normal aging: Electrophysiological evidence. Neurobiology of Aging, 29(7), 1101-1110.
pmid: 17346855 |
[43] |
Lorenzo-López, L., Doallo, S., Vizoso, C., Amenedo, E., Holguín, S. R., & Cadaveira, F. (2002). Covert orienting of visuospatial attention in the early stages of aging. Neuroreport, 13(11), 1459-1462.
pmid: 12167773 |
[44] |
Luck, S. J., Hillyard, S. A., Mouloua, M., Woldorff, M. G., Clark, V. P., & Hawkins, H. L. (1994). Effects of spatial cuing on luminance detectability: Psychophysical and electrophysiological evidence for early selection. Journal of Experimental Psychology: Human Perception and Performance, 20(4), 887-904.
doi: 10.1037/0096-1523.20.4.887 URL |
[45] | Luck, S. J., & Kappenman, E. S. (2012). ERP components and selective attention. In S. J. Luck & E. S. Kappenman (Eds.), The Oxford handbook of event-related potential components (pp. 295-327). New York, the United States of America: Oxford University Press. |
[46] |
Madden, D. J. (2007). Aging and visual attention. Current Directions in Psychological Science, 16(2), 70-74.
doi: 10.1111/j.1467-8721.2007.00478.x pmid: 18080001 |
[47] | Madden, D. J., & Monge, Z. A. (2019). Visual attention with cognitive aging. Oxford Research Encyclopedia of Psychology. (pp. 1-40). Oxford University Press. |
[48] |
Madden, D. J., Spaniol, J., Bucur, B., & Whiting, W. L. (2007). Age-related increase in top-down activation of visual features. Quarterly Journal of Experimental Psychology, 60(5), 644-651.
doi: 10.1080/17470210601154347 URL |
[49] |
Mangun, G. R., & Hillyard, S. A. (1987). The spatial allocation of visual attention as indexed by event-related brain potentials. Human Factors, 29(2), 195-211.
pmid: 3610184 |
[50] |
Mangun, G. R., & Hillyard, S. A. (1988). Spatial gradients of visual attention: Behavioral and electrophysiological evidence. Electroencephalography and Clinical Neurophysiology, 70(5), 417-428.
pmid: 2460315 |
[51] |
Mangun, G. R., & Hillyard, S. A. (1991). Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual-spatial priming. Journal of Experimental Psychology: Human Perception and Performance, 17(4), 1057-1074.
doi: 10.1037/0096-1523.17.4.1057 URL |
[52] |
Martín-Arévalo, E., Chica, A. B., & Lupiáñez, J. (2015). No single electrophysiological marker for facilitation and inhibition of return: A review. Behavioural Brain Research, 300, 1-10.
doi: 10.1016/j.bbr.2015.11.030 URL |
[53] |
Mathuranath, P. S., Nestor, P. J., Berrios, G. E., Rakowicz, W., & Hodges, J. R. (2000). A brief cognitive test battery to differentiate Alzheimer's disease and frontotemporal dementia. Neurology, 55(11), 1613-1620.
pmid: 11113213 |
[54] |
Mcdonald, J. J., Ward, L. M., & Kiehl, K. A. (1999). An event-related brain potential study of inhibition of return. Perception & Psychophysics, 61(7), 1411-1423.
doi: 10.3758/BF03206190 URL |
[55] |
Muiños, M., Palmero, F., & Ballesteros, S. (2016). Peripheral vision, perceptual asymmetries and visuospatial attention in young, young-old and oldest-old adults. Experimental Gerontology, 75, 30-36.
doi: 10.1016/j.exger.2015.12.006 pmid: 26702735 |
[56] |
Nagamatsu, L. S., Carolan, P., Liu-Ambrose, T. Y. L., & Handy, T. C. (2011). Age-related changes in the attentional control of visual cortex: A selective problem in the left visual hemifield. Neuropsychologia, 49(7), 1670-1678.
doi: 10.1016/j.neuropsychologia.2011.02.040 pmid: 21356222 |
[57] |
Nagamatsu, L. S., Liu-Ambrose, T. Y. L., Carolan, P., & Handy, T. C. (2009). Are impairments in visual-spatial attention a critical factor for increased falls risk in seniors? An event-related potential study. Neuropsychologia, 47(13), 2749-2755.
doi: 10.1016/j.neuropsychologia.2009.05.022 pmid: 19501605 |
[58] |
Noonan, M. P., Adamian, N., Pike, A., Printzlau, F., Crittenden, B. M., & Stokes, M. G. (2016). Distinct mechanisms for distractor suppression and target facilitation. Journal of Neuroscience, 36(6), 1797-1807.
doi: 10.1523/JNEUROSCI.2133-15.2016 pmid: 26865606 |
[59] |
Oberauer, K. (2019). Working memory and attention—A conceptual analysis and review. Journal of Cognition, 2(1), 36.
doi: 10.5334/joc.58 pmid: 31517246 |
[60] |
Olk, B., & Kingstone, A. (2014). Attention and ageing: Measuring effects of involuntary and voluntary orienting in isolation and in combination. British Journal of Psychology, 106(2), 235-252.
doi: 10.1111/bjop.12082 URL |
[61] |
Rasoulzadeh, V., Sahan, M. I., van Dijck, J. P., Abrahamse, E., Marzecova, A., Verguts, T., & Fias, W. (2021). Spatial attention in serial order working memory: An EEG study. Cerebral Cortex, 31(5), 2482-2493.
doi: 10.1093/cercor/bhaa368 URL |
[62] |
Sander, M. C., Werkle-Bergner, M., & Lindenberger, U. (2012). Amplitude modulations and inter-trial phase stability of alpha-oscillations differentially reflect working memory constraints across the lifespan. NeuroImage, 59(1), 646-654.
doi: 10.1016/j.neuroimage.2011.06.092 pmid: 21763439 |
[63] |
Satel, J., Hilchey, M. D., Wang, Z., Story, R., & Klein, R. M. (2013). The effects of ignored versus foveated cues upon inhibition of return: An event-related potential study. Attention, Perception, & Psychophysics, 75(1), 29-40.
doi: 10.3758/s13414-012-0381-1 URL |
[64] |
Schmitz, T. W., Cheng, F. H., & de Rosa, E. (2010). Failing to ignore: Paradoxical neural effects of perceptual load on early attentional selection in normal aging. Journal of Neuroscience, 30(44), 14750-14758.
doi: 10.1523/JNEUROSCI.2687-10.2010 pmid: 21048134 |
[65] |
Schmitz, R., & Peigneux, P. (2011). Age-related changes in visual pseudoneglect. Brain and Cognition, 76(3), 382-389.
doi: 10.1016/j.bandc.2011.04.002 pmid: 21536360 |
[66] |
Sciberras-Lim, E. T., & Lambert, A. J. (2017). Attentional orienting and dorsal visual stream decline: Review of behavioral and EEG Studies. Frontiers in Aging Neuroscience, 9, 246.
doi: 10.3389/fnagi.2017.00246 pmid: 28798685 |
[67] | Serences, J. T., & Kastner, S. (2014). A multi-level account of selective attention. In A. C. Nobre & S. Kastner (Eds.), The Oxford handbook of attention (pp. 76-104). New York, the United States of America: Oxford University Press. |
[68] |
Talsma, D., Kok, A., & Ridderinkhof, K. R. (2006). Selective attention to spatial and non-spatial visual stimuli is affected differentially by age: Effects on event-related brain potentials and performance data. International Journal of Psychophysiology, 62(2), 249-261.
pmid: 16806547 |
[69] |
Tian, Y., Klein, R. M., Satel, J., Xu, P., & Yao, D. (2011). Electrophysiological explorations of the cause and effect of inhibition of return in a cue-target paradigm. Brain Topography, 24(2), 164-182.
doi: 10.1007/s10548-011-0172-3 pmid: 21365310 |
[70] | Tunnermann, J., Petersen, A., & Scharlau, I. (2015). Does attention speed up processing? Decreases and increases of processing rates in visual prior entry. Journal of Vision, 15(3), 1-27. |
[71] |
Vaden, R. J., Hutcheson, N. L., McCollum, L. A., Kentros, J., & Visscher, K. M. (2012). Older adults, unlike younger adults, do not modulate alpha power to suppress irrelevant information. NeuroImage, 63(3), 1127-1133.
doi: 10.1016/j.neuroimage.2012.07.050 pmid: 22885248 |
[72] |
van der Waal, M., Farquhar, J., Fasotti, L., & Desain, P. (2017). Preserved and attenuated electrophysiological correlates of visual spatial attention in elderly subjects. Behavioural Brain Research, 317, 415-423.
doi: S0166-4328(16)30703-3 pmid: 27678287 |
[73] |
van Moorselaar, D., & Slagter, H. A. (2019). Learning what is irrelevant or relevant: Expectations facilitate distractor inhibition and target facilitation through distinct neural mechanisms. Journal of Neuroscience, 39(35), 6953-6967.
doi: 10.1523/JNEUROSCI.0593-19.2019 pmid: 31270162 |
[74] |
Wang, Y., Fu, S., Greenwood, P., Luo, Y., & Parasuraman, R. (2012). Perceptual load, voluntary attention, and aging: An event-related potential study. International Journal of Psychophysiology, 84(1), 17-25.
doi: 10.1016/j.ijpsycho.2012.01.002 pmid: 22248536 |
[75] |
Wascher, E., & Tipper, S. P. (2004). Revealing effects of noninformative spatial cues: An EEG study of inhibition of return. Psychophysiology, 41(5), 716-728.
pmid: 15318878 |
[76] |
Worden, M. S., Foxe, J. J., Wang, N., & Simpson, G. V. (2000). Anticipatory biasing of visuospatial attention indexed by retinotopically specific α-bank electroencephalography increases over occipital cortex. Journal of Neuroscience, 20(6), 1-6.
doi: 10.1523/JNEUROSCI.20-01-00001.2000 URL |
[77] |
Yamaguchi, S., Tsuchiya, H., & Kobayashi, S. (1995). Electrophysiologic correlates of visuo-spatial attention shift. Electroencephalography and clinical Neurophysiology, 94(6), 450-461.
pmid: 7607099 |
[78] |
Zanto, T. P., Hennigan, K., Östberg, M., Clapp, W. C., & Gazzaley, A. (2010). Predictive knowledge of stimulus relevance does not influence top-down suppression of irrelevant information in older adults. Cortex, 46(4), 564-574.
doi: 10.1016/j.cortex.2009.08.003 pmid: 19744649 |
[79] |
Zanto, T. P., Toy, B., & Gazzaley, A. (2010). Delays in neural processing during working memory encoding in normal aging. Neuropsychologia, 48(1), 13-25.
doi: 10.1016/j.neuropsychologia.2009.08.003 pmid: 19666036 |
[80] | Zanto, T. P., & Gazzaley, A. (2014). Attention and ageing. In A. C. Nobre & S. Kastner (Eds.), The Oxford handbook of attention (pp. 927-971). New York, the United States of America: Oxford University Press. |
[81] | Zanto, T. P., & Gazzaley, A. (2017). Selective attention and inhibitory control in the aging brain. In R. Cabeza, L. Nyberg, & D. C. Park (Eds.), Cognitive neuroscience of aging: Linking cognitive and cerebral aging (pp. 207-234). New York, the United States of America: Oxford University Press. |
[82] |
Zhuravleva, T. Y., Alperin, B. R., Haring, A. E., Rentz, D. M., Holcomb, P. J., & Daffner, K. R. (2014). Age-related decline in bottom-up processing and selective attention in the very old. Journal of Clinical Neurophysiology, 31(3), 261-271.
doi: 10.1097/WNP.0000000000000056 pmid: 24887611 |
[1] | LIU Wenhua, WEN Xiujuan, CHEN Ling, YANG Rui, HU Yiru. Reward-anticipation and outcome-evaluation ERPs and its application in psychiatric disorders [J]. Advances in Psychological Science, 2023, 31(5): 783-799. |
[2] | KOU Dongxiao, WANG Xiaoyu. The influence of power on interpersonal sensitivity [J]. Advances in Psychological Science, 2023, 31(1): 108-115. |
[3] | DAI Xiaoyan, HU Yi, ZHANG Ya. Interpersonal synchrony: A new perspective to elucidate the essence of working alliance in psychological counseling [J]. Advances in Psychological Science, 2022, 30(9): 2078-2087. |
[4] | CHEN Xiao, XIE Bin, PENG Jian, NIE Qi. The antecedents and consequences of workplace loneliness: A regulatory focus theory perspective [J]. Advances in Psychological Science, 2022, 30(7): 1463-1481. |
[5] | JIANG Jiali, LI Liyan, LI Ziying, LEI Xiuya, MENG Zelong. Predictors of continuation and cessation of non-suicidal self-injury in adolescents [J]. Advances in Psychological Science, 2022, 30(7): 1536-1545. |
[6] | MA Xinyue, CUI Liying. Mechanisms and models of interpersonal synchrony in promoting cooperation [J]. Advances in Psychological Science, 2022, 30(6): 1317-1326. |
[7] | ZHANG Linlin, WEI Kunlin, LI Jing. Interpersonal motor synchronization in children [J]. Advances in Psychological Science, 2022, 30(3): 623-634. |
[8] | YANG Yi, LI Dong, CUI Qian, JIANG Zhongqing. Affective function of touch and the neurophysiological mechanism [J]. Advances in Psychological Science, 2022, 30(2): 324-332. |
[9] | LI Song, LIU Junjun, BAO Xiuqin, CHEN Xu. The impacts of interpersonal gratitude on relationship maintenance [J]. Advances in Psychological Science, 2022, 30(11): 2586-2594. |
[10] | WU Menghui, XIE Jiushu, DENG Zhu. The debate between inhibition and attribution of egocentric bias in visual perspective taking [J]. Advances in Psychological Science, 2022, 30(1): 179-187. |
[11] | ZHANG Hui-hua. Team emotional intelligence: A social network perspective [J]. Advances in Psychological Science, 2021, 29(8): 1381-1395. |
[12] | TANG Yipeng, REN Zhiyu, PU Xiaoping, HAN Wei. The effect of interpersonal authenticity on coworker interactions within work team [J]. Advances in Psychological Science, 2021, 29(4): 597-609. |
[13] | ZHAO Hong-ming, DONG Yan-ping. Interpreter advantages in switching ability [J]. Advances in Psychological Science, 2021, 29(4): 625-634. |
[14] | CHENG Xiaojun, LIU Meihuan, PAN Yafeng, LI Hong. The teaching and learning brains: Interpersonal neuroscience in educational research [J]. Advances in Psychological Science, 2021, 29(11): 1993-2001. |
[15] | XIE Ying, LIU Yutong, CHEN Mingliang, LIANG Andi. The cognitive psychological process of brand consumption journey: The perspective of neuromarketing [J]. Advances in Psychological Science, 2021, 29(11): 2024-2042. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||