Advances in Psychological Science ›› 2022, Vol. 30 ›› Issue (10): 2219-2227.doi: 10.3724/SP.J.1042.2022.02219
• Regular Articles • Previous Articles Next Articles
WU Xia1,2,3,4, WANG Junzhe1, WANG Yun1, CHEN Ying5, YANG Haibo1,2,3()
Received:
2021-05-13
Online:
2022-10-15
Published:
2022-08-24
Contact:
YANG Haibo
E-mail:yanghaibo@tjnu.edu.cn
CLC Number:
WU Xia, WANG Junzhe, WANG Yun, CHEN Ying, YANG Haibo. The processing mechanism of category-specific attentional control settings in attentional capture[J]. Advances in Psychological Science, 2022, 30(10): 2219-2227.
[1] | Alexander, R. G., & Zelinsky, G. J. (2011). Visual similarity effects in categorical search. Journal of Vision, 11(8), 69-71. |
[2] |
Antzoulatos, E. G., & Miller, E. K. (2011). Differences between neural activity in prefrontal cortex and striatum during learning of novel abstract categories. Neuron, 71(2), 243-249.
doi: 10.1016/j.neuron.2011.05.040 pmid: 21791284 |
[3] |
Battistoni, E., Kaiser, D., Hickey, C., & Peelen, M. V. (2018). The time course of spatial attention during naturalistic visual search. Cortex, 122, 225-234.
doi: 10.1016/j.cortex.2018.11.018 URL |
[4] |
Berggren, N., Nako, R., & Eimer, M. (2019). Out with the old: New target templates impair the guidance of visual search by pre-existing task goals. Journal of Experimental Psychology: General, 149(6), 1156-1168.
doi: 10.1037/xge0000697 URL |
[5] |
Berggren, N., & Eimer, M. (2020a). Attentional access to multiple target objects in visual search. Journal of Cognitive Neuroscience, 32(2), 283-300.
doi: 10.1162/jocn_a_01476 URL |
[6] |
Berggren, N., & Eimer, M. (2020b). The guidance of attention by templates for rejection during visual search. Attention Perception & Psychophysics, 83(1), 38-57.
doi: 10.3758/s13414-020-02191-z URL |
[7] |
Braunlich, K., Gomez-Lavin, J., & Seger, C. A. (2015). Frontoparietal networks involved in categorization and item working memory. NeuroImage, 107, 146-162.
doi: S1053-8119(14)00981-1 pmid: 25482265 |
[8] | Bravo, M. J., & Farid, H. (2009). The specificity of the search template. Journal of Vision, 9(1), 34. |
[9] |
Buschman, T., Denovellis, E., Diogo, C., Bullock, D., & Miller, E. (2012). Synchronous oscillatory neural ensembles for rules in the prefrontal cortex. Neuron, 76(4), 838-846.
doi: 10.1016/j.neuron.2012.09.029 pmid: 23177967 |
[10] |
Büsel, C., Pomper, U., & Ansorge, U. (2018). Capture of attention by target-similar cues during dual-color search reflects reactive control among top-down selected attentional control settings. Psychonomic Bulletin & Review, 26(2), 531-537.
doi: 10.3758/s13423-018-1543-5 URL |
[11] |
Chang, S., & Egeth, H. E. (2019). Enhancement and suppression flexibly guide attention. Psychological Science, 30(12), 1724-1732.
doi: 10.1177/0956797619878813 pmid: 31693453 |
[12] |
Cho, S. A., & Cho, Y. S. (2018). Multiple attentional control settings at distinct locations without the confounding of repetition priming. Attention Perception & Psychophysics, 80, 1718-1730.
doi: 10.3758/s13414-018-1549-0 URL |
[13] |
Contini, E. W., Wardle, S. G., & Carlson, T. A. (2017). Decoding the time-course of object recognition in the human brain: From visual features to categorical decisions. Neuropsychologia, 105, 165-176.
doi: S0028-3932(17)30059-3 pmid: 28215698 |
[14] |
Corradi-Dell'Acqua, C., Fink, G. R., & Weidner, R. (2015). Selecting category specific visual information: Top-down and bottom-up control of object based attention. Consciousness and Cognition, 35, 330-341.
doi: 10.1016/j.concog.2015.02.006 pmid: 25735196 |
[15] |
Eimer, M., & Grubert, A. (2014). The gradual emergence of spatially selective target processing in visual search: From feature-specific to object-based attentional control. Journal of Experimental Psychology: Human Perception and Performance, 40(5), 1819-1831.
doi: 10.1037/a0037387 URL |
[16] |
Folk, C. L., Leber, A. B., & Egeth, H. E. (2002). Made you blink! Contingent attentional capture produces a spatial blink. Perception & Psychophysics, 64(5), 741-753.
doi: 10.3758/BF03194741 URL |
[17] |
Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of experimental psychology: Human Perception and Performance, 18(4), 1030-1044.
doi: 10.1037/0096-1523.18.4.1030 URL |
[18] | Folk, C. L., & Remington, R. W. (1998). Selectivity in distraction by irrelevant featural singletons: Evidence for two forms of attentional capture. Journal of Experimental Psychology: Human Perception & Performance, 24(3), 847-858. |
[19] |
Folstein, J. R., Fuller, K., Howard, D., & Depatie, T. (2017). The effect of category learning on attentional modulation of visual cortex. Neuropsychologia, 104, 18-30.
doi: S0028-3932(17)30278-6 pmid: 28754490 |
[20] |
Freedman, D. J., & Assad, J. A. (2009). Distinct encoding of spatial and nonspatial visual information in parietal cortex. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 29(17), 5671-5680.
doi: 10.1523/JNEUROSCI.2878-08.2009 URL |
[21] |
Gaspelin, N., & Luck, S. J. (2018). The role of inhibition in avoiding distraction by salient stimuli. Trends in Cognitive Sciences, 22(1), 79-92.
doi: S1364-6613(17)30239-5 pmid: 29191511 |
[22] | Gaspelin, N., Gaspar, J. M., & Luck, S. J. (2019). Oculomotor inhibition of salient distractors: Voluntary inhibition cannot override selection history. Visual Cognition, 27(3-4), 227-246. |
[23] |
Giammarco, M., Plater, L., Hryciw, J., & Al-Aidroos, N. (2021). Getting it right from the start: Attentional control settings without a history of target selection. Attention Perception & Psychophysics, 83(1), 133-141.
doi: 10.3758/s13414-020-02193-x URL |
[24] |
Grubert, A., Fahrenfort, J., Olivers, C. N. L., & Eimer, M. (2017). Rapid top-down control over template-guided attention shifts to multiple objects. NeuroImage, 146, 843-858.
doi: S1053-8119(16)30424-4 pmid: 27554532 |
[25] |
Grubert, A., & Eimer, M. (2018). The time course of target template activation processes during preparation for visual search. Journal of Neuroscience, 38(44), 9527-9539.
doi: 10.1523/JNEUROSCI.0409-18.2018 pmid: 30242053 |
[26] |
Grubert, A., & Eimer, M. (2020). Preparatory template activation during search for alternating targets. Journal of Cognitive Neuroscience, 32(8), 1525-1535.
doi: 10.1162/jocn_a_01565 pmid: 32319869 |
[27] |
Jenkins, M., Grubert, A., & Eimer, M.. (2016). Rapid parallel attentional selection can be controlled by shape and alphanumerical category. Journal of Cognitive Neuroscience, 28(11), 1672-1687.
pmid: 27315274 |
[28] |
Kim, H., Park, B. Y., & Cho, Y. S. (2019). Uncertainty as a determinant of attentional control settings. Attention Perception & Psychophysics, 81, 1415-1425.
doi: 10.3758/s13414-019-01681-z URL |
[29] |
Kiss, M., & Eimer, M. (2011). The absence of a visual stimulus can trigger task-set-independent attentional capture. Psychophysiology, 48(10), 1426-1433.
doi: 10.1111/j.1469-8986.2011.01207.x pmid: 21504432 |
[30] |
Kiss, M., Grubert, A., & Eimer, M. (2013). Top-down task sets for combined features: Behavioral and electrophysiological evidence for two stages in attentional object selection. Attention Perception & Psychophysics, 75(2), 216-228.
doi: 10.3758/s13414-012-0391-z URL |
[31] |
Kiss, M., Jolicœur, P., Dell’Acqua, R., & Eimer, M. (2008). Attentional capture by visual singletons is mediated by top-down task set: New evidence from the N2pc component. Psychophysiology, 45(6), 1013-1024.
doi: 10.1111/j.1469-8986.2008.00700.x pmid: 18801016 |
[32] |
Lamy, D., Leber, A., & Egeth, H. E. (2004). Effects of task relevance and stimulus-driven salience in feature-search mode. Journal of experimental psychology: Human Perception and Performance, 30(6), 1019-1031.
doi: 10.1037/0096-1523.30.6.1019 URL |
[33] |
Lech, R. K., Güntürkün, O., & Suchan, B. (2016). An interplay of fusiform gyrus and hippocampus enables prototype-and exemplar-based category learning. Behavioural Brain Research, 311, 239-246.
doi: 10.1016/j.bbr.2016.05.049 URL |
[34] |
Lien, M., Ruthruff, E., & Cornett, L. (2010). Attentional capture by singletons is contingent on top-down control settings: Evidence from electrophysiological measures. Visual Cognition, 18(5), 682-627.
doi: 10.1080/13506280903000040 URL |
[35] |
Lim, Y. I., Clement, A., & Pratt, J. (2021). Typicality modulates attentional capture by object categories. Attention Perception & Psychophysics, 83, 1397-1406.
doi: 10.3758/s13414-020-02233-6 URL |
[36] |
Luck, S. J., Gaspelin, N., Folk, C. L., Remington, R. W., & Theeuwes, J. (2021). Progress toward resolving the attentional capture debate. Visual Cognition, 29(1), 1-21.
doi: 10.1080/13506285.2020.1848949 pmid: 33574729 |
[37] | Malcolm, G. L., & Henderson, J. M. (2009). The effects of target template specificity on visual search in real-world scenes: Evidence from eye movements. Journal of Vision, 9(11), 1-13. |
[38] |
Maxfield, J. T., & Zelinsky, G. J. (2012). Searching Through the Hierarchy: How Level of Target Categorization Affects Visual Search. Visual Cognition, 20(10), 1153-1163.
pmid: 23565048 |
[39] |
Memelink, J., & Hommel, B. (2013). Intentional weighting: A basic principle in cognitive control. Psychological Research, 77(3), 249-259.
doi: 10.1007/s00426-012-0435-y pmid: 22526717 |
[40] |
Meyers, E. M., Freedman, D. J., Kreiman, G., Miller, E. K., & Poggio, T. (2008). Dynamic population coding of category information in inferior temporal and prefrontal cortex. Journal of Neurophysiology, 100(3), 1407-1419.
doi: 10.1152/jn.90248.2008 pmid: 18562555 |
[41] |
Moorselaar, D. V., & Slagter, H. A. (2019). Learning what is irrelevant or relevant: Expectations facilitate distractor inhibition and target facilitation through distinct neural mechanisms. Journal of Neuroscience, 39(35), 6953-6967.
doi: 10.1523/JNEUROSCI.0593-19.2019 pmid: 31270162 |
[42] |
Nako, R., Grubert, A., & Eimer, M. (2016). Category-based guidance of spatial attention during visual search for feature conjunctions. Journal of Experimental Psychology: Human Perception and Performance, 42(10), 1571-1586.
doi: 10.1037/xhp0000244 URL |
[43] |
Nako, R., Smith, T. J., & Eimer, M. (2015). Activation of new attentional templates for real-world objects in visual search. Journal of Cognitive Neuroscience, 27(5), 902-912.
doi: 10.1162/jocn_a_00747 pmid: 25321485 |
[44] |
Ort, E., Fahrenfort, J. J., & Olivers, C. N. L. (2017). Lack of free choice reveals the cost of having to search for more than one object. Psychological Science, 28(8), 1137-1147.
doi: 10.1177/0956797617705667 pmid: 28661761 |
[45] |
Peelen, M.V., Fei-Fei, L., & Kastner, S. (2009). Neural mechanisms of rapid natural scene categorization in human visual cortex. Nature, 460(7251), 94-97.
doi: 10.1038/nature08103 URL |
[46] |
Peelen, M. V., & Kastner, S. (2011). A neural basis for real-world visual search in human occipitotemporal cortex. Proceedings of the National Academy of Sciences of the United States of America, 108(29), 12125-12130.
doi: 10.1073/pnas.1101042108 pmid: 21730192 |
[47] |
Peelen, M. V., & Kastner, S. (2014). Attention in the real world: Toward understanding its neural basis. Trends in Cognitive Sciences, 18(5), 242-250.
doi: 10.1016/j.tics.2014.02.004 pmid: 24630872 |
[48] | Reeder, R. R., & Peelen, M. V. (2013). The contents of the search template for category-level search in natural scenes. Journal of Vision, 13(3), 1-13. |
[49] |
Seidl, K. N., Peelen, M. V., & Kastner, S. (2012). Neural evidence for distracter suppression during visual search in real-world scenes. The Journal of Neuroscience, 32(34), 11812-11819.
doi: 10.1523/JNEUROSCI.1693-12.2012 URL |
[50] |
Shadlen, M. N., & Newsome, W. T. (2001). Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. Journal of Neurophysiology, 86(4), 1916-1936.
pmid: 11600651 |
[51] |
Swaminathan, S. K., & Freedman, D. J. (2012). Preferential encoding of visual categories in parietal cortex compared with prefrontal cortex. Nature Neuroscience, 15(2), 315-320
doi: 10.1038/nn.3016 pmid: 22246435 |
[52] |
Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51(6), 599-606.
doi: 10.3758/BF03211656 URL |
[53] |
Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 135(2), 77-99.
doi: 10.1016/j.actpsy.2010.02.006 pmid: 20507828 |
[54] |
Wang, B., & Theeuwes, J. (2020). Salience determines attentional orienting in visual selection. Journal of Experimental Psychology: Human Perception and Performance, 46(10), 1051-1057.
doi: 10.1037/xhp0000796 URL |
[55] |
Weidner, R., & Muller, H. J. (2009). Dimensional weighting of primary and secondary target-defining dimensions in visual search for singleton conjunction targets. Psychological Research, 73, 198-211.
doi: 10.1007/s00426-008-0208-9 pmid: 19084996 |
[56] |
Wenzlaff, H., Bauer, M., Maess, B., & Heekeren, H. R. (2011). Neural characterization of the speed-accuracy tradeoff in a perceptual decision-making task. Journal of Neuroscience, 31(4), 1254-1266.
doi: 10.1523/JNEUROSCI.4000-10.2011 pmid: 21273410 |
[57] | Wolfe, J. M. (2007). Guided search 4.0:Current progress with a model of visual search. In W. Gray (Ed.), Integrated models of cognitive systems (pp. 99-119). New York, NY: Oxford. |
[58] |
Wolfe, J. M. (2012). Saved by a Log: How do humans perform hybrid visual and memory search? Psychological Science, 23(7), 698-703.
doi: 10.1177/0956797612443968 pmid: 22623508 |
[59] |
Wu, R., McGee, B., Echiverri, C., & Zinszer, B. D. (2018). Prior knowledge of category size impacts visual search. Psychophysiology, 55(8), e13075.
doi: 10.1111/psyp.13075 URL |
[60] |
Wu, R., Scerif, G., Aslin, R. N., Smith, T. J., Nako, R., & Eimer, M. (2013). Searching for something familiar or novel: Top-down attentional selection of specific items or object categories. Journal of Cognitive Neuroscience, 25(5), 719-729.
doi: 10.1162/jocn_a_00352 pmid: 23281777 |
[61] |
Wu, X., & Fu, S. (2017). The different roles of category-and feature-specific attentional control settings on attentional enhancement and inhibition. Attention Perception & Psychophysics, 79(7), 1-11.
doi: 10.3758/s13414-016-1264-7 URL |
[62] |
Wu, X., Liu, X., & Fu, S. (2016). Feature-and category-specific attentional control settings are differently affected by attentional engagement in contingent attentional capture. Biological Psychology, 118, 8-16.
doi: 10.1016/j.biopsycho.2016.04.065 URL |
[63] | Wu, X., Wang, X., Saab, R., & Jiang, Y. (2020). Category-based attentional capture can be influenced by colorand shape-dimensions independently in the conjunction search task. Psychophysiology, 57(4), e13526. |
[64] |
Wyble, B., Folk, C., & Potter, M. C. (2013). Contingent attentional capture by conceptually relevant images. Journal of experimental psychology. Human Perception and Performance, 39(3), 861-871.
doi: 10.1037/a0030517 URL |
[65] |
Yang, H., & Zelinsky, G. J. (2009). Visual search is guided to categorically defined targets. Vision Research, 49(16), 2095-2103.
doi: 10.1016/j.visres.2009.05.017 URL |
[1] | ZHANG Fan, CHEN Airui, DONG Bo, WANG Aijun, ZHANG Ming. Rapid disengagement hypothesis and signal suppression hypothesis of visual attentional capture [J]. Advances in Psychological Science, 2021, 29(1): 45-55. |
[2] | Yuanyu Shi, Zhentao Zuo. Same category don't blink in selective attention [J]. Advances in Psychological Science, 2019, 27(suppl.): 30-30. |
[3] | Xiuli Yang, Yanyan Tu, Zhuo Zhang, Huimin Cao, Yanju Ren. Revisiting the components of value-driven attentional capture [J]. Advances in Psychological Science, 2019, 27(suppl.): 68-68. |
[4] | Yujie Chen, Ying Wang, Yi Jiang. Pop-out of Crowds Without Awareness: Invisible Fear Captures Attention in High Trait-Anxiety Individuals [J]. Advances in Psychological Science, 2019, 27(suppl.): 78-78. |
[5] | XIE Shushu, ZHANG Jijia. The mechanism of color category perception: Effects of language [J]. Advances in Psychological Science, 2019, 27(8): 1384-1393. |
[6] | Yangzhuo LI, Xucheng YANG, Hong GAO, Xiangping GAO. The role of working memory representation in visual search: The perspective of non-target template [J]. Advances in Psychological Science, 2018, 26(9): 1608-1616. |
[7] | CUI Yichen, WANG Pei. The dynamic interactive model of person construal on person perception [J]. Advances in Psychological Science, 2018, 26(4): 678-687. |
[8] | SUN Hailong; XING Qiang; LI Aimei. The influence of working memory on perceptual category learning: Problem and conception [J]. Advances in Psychological Science, 2017, 25(3): 424-430. |
[9] | Yanan Chen; Feng Du. Two visual working memory representations simultaneously and involuntarily control attention [J]. Advances in Psychological Science, 2016, 24(Suppl.): 80-. |
[10] | XING Qiang; SUN Hailong; LIU Kai; XIA Jingjing. Representation and Strategy in Unsupervised Category Learning [J]. Advances in Psychological Science, 2015, 23(8): 1390-1397. |
[11] | SUN Hailong;XING Qiang. The Influences of Feedback on Perceptual Category Learning and Its’ Cognitive and Neurophysiological Mechanisms [J]. Advances in Psychological Science, 2014, 22(1): 67-74. |
[12] | ZHANG Ming;WANG Ai-Jun. Working Memory Content-based Attentional Capture and Suppression in the Visual Search [J]. Advances in Psychological Science, 2012, 20(12): 1899-1907. |
[13] | ZUO Bin;ZHANG Xiao-Bin. The Neural Mechanisms of Category Learning and Application [J]. , 2011, 19(6): 843-852. |
[14] | MIN Bao-Quan;ZHOU Ai-Hong;ZHANG Ya-Xu. Category-Specific Semantic Memory Deficits in Patients with Alzheimer’s Disease [J]. , 2011, 19(10): 1453-1459. |
[15] | CHEN An-Tao. A Cognitive Neuroscience Study for Artifact Category Learning [J]. , 2011, 19(1): 18-27. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||