Advances in Psychological Science ›› 2021, Vol. 29 ›› Issue (5): 787-795.doi: 10.3724/SP.J.1042.2021.00787
• Regular Articles • Previous Articles Next Articles
YU Wenbo1, WANG Lu1, CHENG Xingyue1, WANG Tianlin2, ZHANG Jingjing3, LIANG Dandan1()
Received:
2020-06-28
Online:
2021-05-15
Published:
2021-03-30
Contact:
LIANG Dandan
E-mail:ldd233@163.com
CLC Number:
YU Wenbo, WANG Lu, CHENG Xingyue, WANG Tianlin, ZHANG Jingjing, LIANG Dandan. The influence of linguistic experience on statistical word segmentation[J]. Advances in Psychological Science, 2021, 29(5): 787-795.
[1] | 冯胜利. (1998). 论汉语的 “自然音步”. 中国语文, (1),40-47. |
[2] | 李斌, 刘雪扬. (2018). 基于《汉语大词典》的汉语词汇历时演变计量研究. 南京师大学报(社会科学版), (5),152-160. |
[3] | 李利, 李亚娴, 康宇, 王莉. (2020). 声调语言经验在汉语二语者普通话声调感知中的作用. 华南师范大学学报(社会科学版), (1),83-91. |
[4] | 廖毅, 张薇. (2019). 母语背景在汉语声调感知中的影响——以英语和粤语背景学习者为例. 汉语学习, (1),75-86. |
[5] | 林焘, 王理嘉. (1992). 语音学教程. 北京: 北京大学出版社. |
[6] | 王婷, 王丹, 张积家, 崔健爱. (2017). “各说各话”的语言经验对景颇族大学生执行功能的影响. 心理学报, 49(11),1392-1403. |
[7] | 于文勃, 梁丹丹. (2018). 口语加工中的词语切分线索. 心理科学进展, 26(10),1765-1774. |
[8] | 张珊珊, 杨亦鸣. (2012). 从记忆编码加工看人脑中的基本语言单位——一项基于单音节语言单位的ERPs研究. 外语与外语教学, (2),1-6. |
[9] |
Antovich, D. M., & Estes, K. G. (2017). Learning across languages: Bilingual experience supports dual language statistical word segmentation. Developmental Science, 21(2),e12548. doi: 10.1111/desc.12548.
doi: 10.1111/desc.12548 URL |
[10] |
Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4),390-412.
doi: 10.1016/j.jml.2007.12.005 URL |
[11] |
Batterink, L. J. (2017). Rapid statistical learning supporting word extraction from continuous speech. Psychological Science, 28(7),921-928.
doi: 10.1177/0956797617698226 URL pmid: 28493810 |
[12] |
Batterink, L. J., Reber, P. J., Neville, H. J., & Paller, K. A. (2015). Implicit and explicit contributions to statistical learning. Journal of Memory and Language, 83,62-78.
doi: 10.1016/j.jml.2015.04.004 URL pmid: 26034344 |
[13] |
Batterink, L. J., & Paller, K. A. (2017). Online neural monitoring of statistical learning. Cortex, 90,31-45.
URL pmid: 28324696 |
[14] |
Bogaerts, L., Siegelman, N., & Frost, R. (2016). Splitting the variance of statistical learning performance: A parametric investigation of exposure duration and transitional probabilities. Psychonomic Bulletin & Review, 23(4),1250-1256.
URL pmid: 26743060 |
[15] |
Bonatti, L. L., Peña, M., Nespor, M., & Mehler, J. (2005). Linguistic constraints on statistical computations: The role of consonants and vowels in continuous speech processing. Psychological Science, 16(6),451-459.
doi: 10.1111/j.0956-7976.2005.01556.x URL pmid: 15943671 |
[16] |
Bortfeld, H., Morgan, J. L., Golinkoff, R. M., & Rathbun, K. (2005). Mommy and me: familiar names help launch babies into speech-stream segmentation. Psychological Science, 16(4),298-304.
doi: 10.1111/j.0956-7976.2005.01531.x URL pmid: 15828977 |
[17] |
Bosseler, A. N., Teinonen, T., Tervaniemi, M., & Huotilainen, M. (2016). Infant directed speech enhances statistical learning in newborn infants: An ERP study. PLoS ONE, 11(9),e0162177. doi: 10.1371/journal.pone.0162177.
URL pmid: 27617967 |
[18] |
Buiatti, M., Peña, M., & Dehaene-Lambertz, G. (2009). Investigating the neural correlates of continuous speech computation with frequency-tagged neuroelectric responses. NeuroImage, 44(2),509-519.
URL pmid: 18929668 |
[19] |
Cutler, A., & Norris, D. (1988). The role of strong syllables in segmentation for lexical access. Journal of Experimental Psychology: Human Perception and Performance, 14(1),113-121.
doi: 10.1037/0096-1523.14.1.113 URL |
[20] | de Saussure, F., & Baskin, W. (1916). Course in general linguistics. London, UK: Duckworth. |
[21] |
Ding, N., Melloni, L., Zhang, H., Tian, X., & Poeppel, D. (2016). Cortical tracking of hierarchical linguistic structures in connected speech. Nature Neuroscience, 19(1),158-164.
doi: 10.1038/nn.4186 URL pmid: 26642090 |
[22] |
Emberson, L. L., Misyak, J. B., Schwade, J. A., Christiansen, M. H., & Goldstein, M. H. (2019). Comparing statistical learning across perceptual modalities in infancy: An investigation of underlying learning mechanism (s). Developmental Science, 22(6),e12847. doi: 10.1111/ DESC.12847.
doi: 10.1111/desc.12847 URL pmid: 31077516 |
[23] |
Endress, A. D., & Langus, A. (2017). Transitional probabilities count more than frequency, but might not be used for memorization. Cognitive Psychology, 92,37-64.
doi: 10.1016/j.cogpsych.2016.11.004 URL pmid: 27907807 |
[24] | Erickson, L. C., Kaschak, M. P., Thiessen, E. D., & Berry, C. A. S. (2016). Individual differences in statistical learning: Conceptual and measurement issues. Collabra: Psychology, 2(1),14. doi: 10.1525/ collabra.41. |
[25] |
Erickson, L. C., Thiessen, E. D., & Estes, K. G. (2014). Statistically coherent labels facilitate categorization in 8-month-olds. Journal of Memory and Language, 72,49-58.
doi: 10.1016/j.jml.2014.01.002 URL |
[26] |
Estes, K. G., Evans, J. L., Alibali, M. W., & Saffran, J. R. (2007). Can infants map meaning to newly segmented words? Statistical segmentation and word learning. Psychological Science, 18(3),254-260.
URL pmid: 17444923 |
[27] | Estes, K. G., Gluck, C. W., & Bastos, C. (2015). Flexibility in statistical word segmentation: Finding words in foreign speech. Language Learning and Development, 11(3),252- 269. |
[28] |
Estes, K. G., & Lew-Williams, C. (2015). Listening through voices: Infant statistical word segmentation across multiple speakers. Developmental Psychology, 51(11),1517-1528.
doi: 10.1037/a0039725 URL pmid: 26389607 |
[29] |
Franco, A., Eberlen, J., Destrebecqz, A., Cleeremans, A., & Bertels, J. (2015). Rapid serial auditory presentation: A new measure of statistical learning in speech segmentation. Experimental Psychology, 62,346-351.
doi: 10.1027/1618-3169/a000295 URL pmid: 26592534 |
[30] |
Frost, R., Armstrong, B. C., & Christiansen, M. H. (2020). Statistical learning research: A critical review and possible new directions. Psychological Bulletin, 145(12),1128-1153.
doi: 10.1037/bul0000210 URL pmid: 31580089 |
[31] |
Frost, R. L. A., Monaghan, P., & Christiansen, M. H. (2019). Mark my words: High frequency marker words impact early stages of language learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(10),1883-1898.
URL pmid: 30652894 |
[32] |
Gómez, D. M., Mok, P., Ordin, M., Mehler, J., & Nespor, M. (2017). Statistical speech segmentation in tone languages: The role of lexical tones. Language & Speech, 61(1),84-96.
URL pmid: 28486862 |
[33] |
Gout, A., Christophe, A., & Morgan, J. L. (2004). Phonological phrase boundaries constrain lexical access II. Infant data. Journal of Memory and Language, 51(4),548-567.
doi: 10.1016/j.jml.2004.07.002 URL |
[34] |
Gout, A., Christophe, A., & Morgan, J. L. (2004). Phonological phrase boundaries constrain lexical access II. Infant data. Journal of Memory and Language, 51(4),548-567.
doi: 10.1016/j.jml.2004.07.002 URL |
[35] |
Hoch, L., Tyler, M. D., & Tillmann, B. (2013). Regularity of unit length boosts statistical learning in verbal and nonverbal artificial languages. Psychonomic Bulletin & Review, 20(1),142-147.
URL pmid: 22890871 |
[36] |
Johnson, E. K., & Tyler, M. D. (2010). Testing the limits of statistical learning for word segmentation. Development Science, 13(2),339-345.
doi: 10.1111/desc.2010.13.issue-2 URL |
[37] | Kurumada, C., Meylan, S. C., & Frank, M. C. (2011). Zipfian word frequencies support statistical word segmentation. Proceedings of the Annual Meeting of the Cognitive Science Society, 33,2667-2672.Retrieved from https:// escholarship.org/uc/item/58j0m9rq. |
[38] |
Lew-Williams, C., & Saffran, J. R. (2012). All words are not created equal: Expectations about word length guide infant statistical learning. Cognition, 122(2),241-246.
URL pmid: 22088408 |
[39] |
Li, M., Xu, Y., Luo, X., Zeng, J., & Han, Z. (2020). Linguistic experience acquisition for novel stimuli selectively activates the neural network of the visual word form area. NeuroImage, 215. doi: 10.1016/j.neuroimage. 2020.116838.
doi: 10.1016/j.neuroimage.2020.116841 URL pmid: 32283274 |
[40] |
Magezi, D. A. (2015). Linear mixed-effects models for within-participant psychology experiments: An introductory tutorial and free, graphical user interface (LMMgui). Frontiers in Psychology, 6. doi: 10.3389/FPSYG.2015. 00002.
doi: 10.3389/fpsyg.2015.02034 URL pmid: 26834666 |
[41] | McQueen, J. M. (1998). Segmentation of continuous speech using phonotactics. Journal of Memory and Language, 39(1),21-46. |
[42] | Nazzi, T., Dilley, L. C., Jusczyk, A. M., Shattuck-Hufnagel, S., & Jusczyk, P. W. (2005). English-learning infants’ segmentation of verbs from fluent speech. Language and Speech, 48(3),279-298. |
[43] |
Onnis, L., & Thiessen, E. D. (2013). Language experience changes subsequent learning. Cognition, 126(2),268-284.
URL pmid: 23200510 |
[44] | Palmer, S. D., Hutson, J., White, L., & Mattys, S. L. (2019). Lexical knowledge boosts statistically-driven speech segmentation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(1),139-146. |
[45] |
Palmer, S. D., & Mattys, S. L. (2016). Speech segmentation by statistical learning is supported by domain-general processes within working memory. The Quarterly Journal of Experimental Psychology, 69(12),2390-2401.
doi: 10.1080/17470218.2015.1112825 URL pmid: 27167308 |
[46] | Potter, C. E., Wang, T., & Saffran, J. R. (2017). Second language experience facilitates statistical learning of novel linguistic materials. Cognitive Science, 41(S4),913-927. |
[47] |
Poulin-Charronnat, B., Perruchet, P., Tillmann, B., & Peereman, R. (2016). Familiar units prevail over statistical cues in word segmentation. Psychological Research, 81,990-1003.
doi: 10.1007/s00426-016-0793-y URL pmid: 27580733 |
[48] |
Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274(5294),1926-1928.
URL pmid: 8943209 |
[49] | Saffran, J. R., & Kirkham, N. Z. (2018). Infant statistical learning. Annual Review of Psychology, 69(1),181-203. |
[50] |
Sanders, L. D., Newport, E. L., & Neville, H. J. (2002). Segmenting nonsense: An event-related potential index of perceived onsets in continuous speech. Nature Neuroscience, 5(7),700-703.
doi: 10.1038/nn873 URL pmid: 12068301 |
[51] |
Schad, D. J., Vasishth, S., Hohenstein, S., & Kliegl, R. (2020). How to capitalize on a priori contrasts in linear (mixed) models: A tutorial. Journal of Memory and Language, 110. doi: 10.1016/j.jml.2019.104038.
URL pmid: 33100506 |
[52] |
Shoaib, A., Wang, T., Hay, J. F., & Lany, J. (2018). Do infants learn words from statistics? Evidence from English-learning infants hearing Italian. Cognitive Science, 42(8),3083-3099.
doi: 10.1111/cogs.12673 URL pmid: 30136301 |
[53] |
Siegelman, N., Bogaerts, L., Elazar, A., Arciuli, J., & Frost, R. (2018). Linguistic entrenchment: Prior knowledge impacts statistical learning performance. Cognition, 177,198-213.
doi: 10.1016/j.cognition.2018.04.011 URL pmid: 29705523 |
[54] |
Siegelman, N., Bogaerts, L., & Frost, R. (2017). Measuring individual differences in statistical learning: Current pitfalls and possible solutions. Behavior Research Methods, 49(2),418-432.
doi: 10.3758/s13428-016-0719-z URL pmid: 26944577 |
[55] | Smith, N. A., & Trainor, L. J. (2008). Infant-directed speech is modulated by infant feedback. Infancy, 13(4),410-420. |
[56] | Suomi, K., McQueen, J. M., & Cutler, A. (1997). Vowel harmony and speech segmentation in Finnish. Journal of Memory and Language, 36(3),422-444. |
[57] |
Thiessen, E. D., Hill, E. A., & Saffran, J. R. (2005). Infant-directed speech facilitates word segmentation. Infancy, 7(1),53-71.
URL pmid: 33430544 |
[58] | Toro, J. M., Pons, F., Bion, R. A. H., & Sebastián-Gallés, N. (2011). The contribution of language-specific knowledge in the selection of statistically-coherent word candidates. Journal of Memory and Language, 64(2),171-180. |
[59] |
Wang, T. L., & Saffran, J. R. (2014). Statistical learning of a tonal language: the influence of bilingualism and previous linguistic experience. Frontiers in Psychology, 5,593. doi: 10.3389/fpsyg.2014.00953.
URL pmid: 25071617 |
[1] | GU Junjuan, SHI Jinfu. The cognitive mechanism of Chinese character position processing and word boundary effect [J]. Advances in Psychological Science, 2021, 29(2): 191-201. |
[2] | YU Wenbo, LIANG Dandan. Word segmentation cues in the process of spoken language [J]. Advances in Psychological Science, 2018, 26(10): 1765-1774. |
[3] | BAI Xuejun;ZHANG Manman;ZANG Chuanli;LI Xin;CHEN Lu;YAN Guoli. The Effect of Word Boundary Information on Chinese Word Acquisition and Recognition: Evidence from Eye Movements [J]. Advances in Psychological Science, 2014, 22(1): 1-8. |
[4] | LI Xing-Shan;LIU Ping-Ping;MA Guo-Jie. Advances in Cognitive Mechanisms of Word Segmentation During Chinese Reading [J]. , 2011, 19(4): 459-470. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||