Advances in Psychological Science ›› 2021, Vol. 29 ›› Issue (11): 1911-1919.doi: 10.3724/SP.J.1042.2021.01911
• Conceptual Framework • Previous Articles Next Articles
ZHANG Shun1(), YANG Xiaolei2, Ren Jiawen1, ZHANG Jinghuan1
Received:
2021-05-19
Online:
2021-11-15
Published:
2021-09-23
Contact:
ZHANG Shun
E-mail:yinxingren1986@hotmail.com
CLC Number:
ZHANG Shun, YANG Xiaolei, Ren Jiawen, ZHANG Jinghuan. The relationship between methylation of dopamine-related genes, family environment and creativity[J]. Advances in Psychological Science, 2021, 29(11): 1911-1919.
作者(年份) | 样本量种族 | 创造力测量工具 | 考察的多巴胺相关基因 | 主要研究发现 |
---|---|---|---|---|
Reuter et al. ( | 92 高加索人群 | 柏林智力结构测验(BIS)中的Inventiveness分量表 | COMT, DRD2 | DRD2基因Taq IA (rs1800497)多态性与创造力显著相关, 携带A1等位基因的个体具有更高的创造力。 |
Lu & Shi ( | 108 中国汉族人群 | Williams创造潜能测验 Torrance创造思维测验(图形) | COMT | COMT基因 Val158Met(rs4680)多态性与想象力显著相关, 携带Val等位基因的被试更富有想象力。 |
Runco et al. ( | 147 高加索人群 | 发散思维测验:举例任务、图形任务、真实创造性问题解决任务 | COMT, DAT, DRD2, DRD4 | COMT基因Val158Met(rs4680)多态性、DAT基因VNTR多态性、DRD4基因 VNTR多态性与创造力显著相关。 |
Mayseless et al. ( | 185 高加索人群 | 发散思维测验:多用途任务、Torrance创造思维测验中的圆圈任务 | DRD4 | DRD4基因VNTR多态性与创造力显著相关, 携带7R等位基因的个体创造力较低。 |
Murphy et al. ( | 147 高加索人群 | 发散思维测验:举例任务、图形任务、真实创造性问题解决任务 | COMT, DAT, DRD2, DRD4 | COMT基因Val158Met(rs4680)多态性、DAT基因VNTR多态性、DRD2基因Taq IA (rs1800497)多态性、DRD4基因VNTR多态性对创造力存在显著的二元和三元交互作用。 |
Zhang et al. ( | 543 中国汉族人群 | 发散思维测验:多用途任务、图形任务 | DRD2 | DRD2基因Taq IA (rs1800497)、C957T(rs6277)、rs2283265、rs1076560等9个多态性位点及单体型与创造力显著相关。其中, 部分多态性位点上携带次要等位基因(如Taq IA的T等位基因, 即A1等位基因)或纯合主要等位基因的个体(如C957T的CC基因型)的个体具有更高的创造力。 |
Zhang et al. ( | 543 中国汉族人群 | 发散思维测验:多用途任务、图形任务 | COMT, DRD2 | COMT基因Val158Met(rs4680)、rs174697、rs737865和rs5993883多态性位点与创造力显著相关。其中, 部分多态性位点的次要等位基因(如rs4680的A等位基因)与高创造力相关。DRD2基因与COMT基因对创造力存在显著的四元交互作用。 |
Jiang et al. ( | 753 中国汉族人群 | 经典顿悟问题解决任务 | COMT | COMT基因Val158Met(rs4680)和rs4630多态性与创造力显著相关, rs4680的A等位基因、rs4633的T等位基因与高创造力相关。rs5993883多态性仅在男性中与创造力显著相关。 |
Takeuchi et al. ( | 766 亚洲人群 | S-A创造力测验 | DRD2 | DRD2基因Taq IA (rs1800497)多态性可能通过情绪智力和情绪状态影响创造力。 |
Zabelina et al. ( | 100 高加索人群 | Torrance创造思维测验成人简版(ATTA) 创造性成就问卷(CAQ) | COMT, DAT | COMT基因Val158Met (rs4680)多态性与DAT基因VNTR 多态性对创造力具有显著的交互作用。 |
Zhang & Zhang ( | 425 中国汉族人群 | 经典顿悟问题解决任务 | DRD2 | DRD2基因Taq IA (rs1800497)、rs2283265、rs1076560等7个多态性位点及单体型与创造力显著相关。其中, 部分多态性位点的次要等位基因(如Taq IA的T等位基因, 即A1等位基因)与高创造力相关。 |
Han et al. ( | 321 中国汉族人群 | 发散思维测验:多用途任务 聚合思维:远距离联想测验(RAT) | COMT, DRD2 | COMT基因rs5993883多态性与创造力显著相关。 |
作者(年份) | 样本量种族 | 创造力测量工具 | 考察的多巴胺相关基因 | 主要研究发现 |
---|---|---|---|---|
Reuter et al. ( | 92 高加索人群 | 柏林智力结构测验(BIS)中的Inventiveness分量表 | COMT, DRD2 | DRD2基因Taq IA (rs1800497)多态性与创造力显著相关, 携带A1等位基因的个体具有更高的创造力。 |
Lu & Shi ( | 108 中国汉族人群 | Williams创造潜能测验 Torrance创造思维测验(图形) | COMT | COMT基因 Val158Met(rs4680)多态性与想象力显著相关, 携带Val等位基因的被试更富有想象力。 |
Runco et al. ( | 147 高加索人群 | 发散思维测验:举例任务、图形任务、真实创造性问题解决任务 | COMT, DAT, DRD2, DRD4 | COMT基因Val158Met(rs4680)多态性、DAT基因VNTR多态性、DRD4基因 VNTR多态性与创造力显著相关。 |
Mayseless et al. ( | 185 高加索人群 | 发散思维测验:多用途任务、Torrance创造思维测验中的圆圈任务 | DRD4 | DRD4基因VNTR多态性与创造力显著相关, 携带7R等位基因的个体创造力较低。 |
Murphy et al. ( | 147 高加索人群 | 发散思维测验:举例任务、图形任务、真实创造性问题解决任务 | COMT, DAT, DRD2, DRD4 | COMT基因Val158Met(rs4680)多态性、DAT基因VNTR多态性、DRD2基因Taq IA (rs1800497)多态性、DRD4基因VNTR多态性对创造力存在显著的二元和三元交互作用。 |
Zhang et al. ( | 543 中国汉族人群 | 发散思维测验:多用途任务、图形任务 | DRD2 | DRD2基因Taq IA (rs1800497)、C957T(rs6277)、rs2283265、rs1076560等9个多态性位点及单体型与创造力显著相关。其中, 部分多态性位点上携带次要等位基因(如Taq IA的T等位基因, 即A1等位基因)或纯合主要等位基因的个体(如C957T的CC基因型)的个体具有更高的创造力。 |
Zhang et al. ( | 543 中国汉族人群 | 发散思维测验:多用途任务、图形任务 | COMT, DRD2 | COMT基因Val158Met(rs4680)、rs174697、rs737865和rs5993883多态性位点与创造力显著相关。其中, 部分多态性位点的次要等位基因(如rs4680的A等位基因)与高创造力相关。DRD2基因与COMT基因对创造力存在显著的四元交互作用。 |
Jiang et al. ( | 753 中国汉族人群 | 经典顿悟问题解决任务 | COMT | COMT基因Val158Met(rs4680)和rs4630多态性与创造力显著相关, rs4680的A等位基因、rs4633的T等位基因与高创造力相关。rs5993883多态性仅在男性中与创造力显著相关。 |
Takeuchi et al. ( | 766 亚洲人群 | S-A创造力测验 | DRD2 | DRD2基因Taq IA (rs1800497)多态性可能通过情绪智力和情绪状态影响创造力。 |
Zabelina et al. ( | 100 高加索人群 | Torrance创造思维测验成人简版(ATTA) 创造性成就问卷(CAQ) | COMT, DAT | COMT基因Val158Met (rs4680)多态性与DAT基因VNTR 多态性对创造力具有显著的交互作用。 |
Zhang & Zhang ( | 425 中国汉族人群 | 经典顿悟问题解决任务 | DRD2 | DRD2基因Taq IA (rs1800497)、rs2283265、rs1076560等7个多态性位点及单体型与创造力显著相关。其中, 部分多态性位点的次要等位基因(如Taq IA的T等位基因, 即A1等位基因)与高创造力相关。 |
Han et al. ( | 321 中国汉族人群 | 发散思维测验:多用途任务 聚合思维:远距离联想测验(RAT) | COMT, DRD2 | COMT基因rs5993883多态性与创造力显著相关。 |
[1] | 李金珍, 王文忠, 施建农. (2004). 儿童实用创造力发展及其与家庭环境的关系. 心理学报, 36(6), 732-737. |
[2] | 李亚丹, 黄晖, 杨文静, 陈群林, 邱江, 张庆林. (2016). “基因-脑-环境-行为”框架下创造力与精神疾病的关系及大数据背景下的研究展望. 科学通报, 61(11), 1233- 1249. |
[3] | 师保国, 申继亮. (2007). 家庭社会经济地位、智力和内部动机与创造性的关系. 心理发展与教育, 23(1), 30-34. |
[4] | 王晓玲, 张景焕, 初玉霞, 刘桂荣. (2009). 小学儿童家庭环境、创意自我效能与创造力的关系. 心理学探新, 29, 46-50. |
[5] | 衣新发, 王小娟, 胡卫平. (2013). 创造力基因组学研究. 华东师范大学学报(教育科学版), 31, 56-62. |
[6] | 张景焕, 李建全, 郑雪梅, 张舜, 刘桂荣. (2014). 父母教养方式对初中生创造思维的影响:自我概念的中介作用. 心理与行为研究, 12, 145-150. |
[7] |
Abdolmaleky, H. M., Cheng, K. H., Faraone, S. V., Wilcox, M., Glatt, S. J., Gao, F., ... Thiagalingam, S. (2006). Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Human Molecular Genetics, 15(21), 3132-3145.
pmid: 16984965 |
[8] |
Alelu-Paz, R., Gonzalez-Corpas, A., Ashour, N., Escanilla, A., Monje, A., Guerrero Marquez, C., ... Ropero, S. (2015). DNA methylation pattern of gene promoters of major neurotransmitter systems in older patients with schizophrenia with severe and mild cognitive impairment. International Journal of Geriatric Psychiatry, 30(6), 558-565.
doi: 10.1002/gps.v30.6 URL |
[9] |
Bagot, R. C., Labonte, B., Pena, C. J., & Nestler, E. J. (2014). Epigenetic signaling in psychiatric disorders: Stress and depression. Dialogues in Clinical Neuroscience, 16(3), 281-295.
doi: 10.31887/DCNS URL |
[10] |
Bagot, R. C., & Meaney, M. J. (2010). Epigenetics and the biological basis of gene × environment interactions. Journal of the American Academy of Child & Adolescent Psychiatry, 49(8), 752-771.
doi: 10.1016/j.jaac.2010.06.001 URL |
[11] |
Barker, E. D., Walton, E., & Cecil, C. A. M. (2018). Annual Research Review: DNA methylation as a mediator in the association between risk exposure and child and adolescent psychopathology. Journal of Child Psychology and Psychiatry, 59(4), 303-322.
doi: 10.1111/jcpp.2018.59.issue-4 URL |
[12] |
Bird, A. (2007). Perceptions of epigenetics. Nature, 447, 396-398.
doi: 10.1038/nature05913 URL |
[13] |
Boot, N., Baas, M., van Gaal, S., Cools, R., & de Dreu, C. K. W. (2017). Creative cognition and dopaminergic modulation of fronto-striatal networks: Integrative review and research agenda. Neuroscience & Biobehavioral Reviews, 78, 13-23.
doi: 10.1016/j.neubiorev.2017.04.007 URL |
[14] |
Bouchard Jr, T. J., Lykken, D. T., Tellegen, A., Blacker, D. M., & Waller, N. G. (1993). Creativity, heritability, familiarity: Which word does not belong? Psychological Inquiry, 4(3), 235-237.
doi: 10.1207/s15327965pli0403_18 URL |
[15] |
Braun, P. R., Han, S., Hing, B., Nagahama, Y., Gaul, L. N., Heinzman, J. T., ... Shinozaki, G. (2019). Genome-wide DNA methylation comparison between live human brain and peripheral tissues within individuals. Translational Psychiatry, 9, 47.
doi: 10.1038/s41398-019-0376-y URL |
[16] | Canter, S. (1973). Personality traits in twins. In G. Claridge, S. Canter, & W. I. Hume (Eds.), Personality differences and biological variations (pp.21-51). New York: Pergamon Press. |
[17] |
Chermahini, S. A., & Hommel, B. (2010). The (b)link between creativity and dopamine: Spontaneous eye blink rates predict and dissociate divergent and convergent thinking. Cognition, 115(3), 458-465.
doi: 10.1016/j.cognition.2010.03.007 pmid: 20334856 |
[18] |
Cimino, S., Cerniglia, L., Ballarotto, G., Marzilli, E., Pascale, E., D'Addario, C., ... Tambelli, R. (2019). Children's DAT1 polymorphism moderates the relationship between parents' psychological profiles, children's DAT methylation, and their emotional/behavioral functioning in a normative sample. International Journal of Environmental Research and Public Health, 16(14), 2567.
doi: 10.3390/ijerph16142567 URL |
[19] |
Cimino, S., Marzilli, E., Babore, A., Trumello, C., & Cerniglia, L. (2021). DAT1 and its psychological correlates in children with avoidant/restrictive food intake disorder: A cross-sectional pilot study. Behavioral Sciences, 11(1), 9.
doi: 10.3390/bs11010009 URL |
[20] | Cools, R., & d'Esposito, M. (2009). Dopaminergic modulation of flexible cognitive control in humans. In A. Björklund, S. Dunnet, L. Iversen, & S. Iversen (Eds.), Dopamine Handbook (pp.249-260). Oxford, UK: Oxford University Press. |
[21] | Dai, D. Y., Tan, X. Y., Marathe, D., Valtcheva, A., Pruzek, R. M., & Shen, J. L. (2012). Influences of social and educational environments on creativity during adolescence: Does SES matter? Creativity Research Journal, 24(2-3), 191-199. |
[22] |
Fearon, D. D., Copeland, D., & Saxon, T. F. (2013). The relationship between parenting styles and creativity in a sample of Jamaican children. Creativity Research Journal, 25(1), 119-128.
doi: 10.1080/10400419.2013.752287 URL |
[23] | Feist, G. J. (2010). The function of personality in creativity:The nature and nurture of the creative person. In J. C. Kaufman & R. J. Sternberg (Eds.), Cambridge handbook of creativity (pp.113-130). New York: Cambridge University Press. |
[24] |
Flaherty, A. W. (2005). Frontotemporal and dopaminergic control of idea generation and creative drive. Journal of Comparative Neurology, 493(1), 147-153.
pmid: 16254989 |
[25] |
Grigorenko, E. L., LaBuda, M. C., & Carter, A. S. (1992). Similarity in general cognitive ability, creativity, and cognitive style in a sample of adolescent Russian twins. Acta Geneticae Medicae et Gemellologiae: Twin Research, 41(1), 65-72.
doi: 10.1017/S000156600000252X URL |
[26] | Hagerty, S. L., YorkWilliams, S. L., Bidwell, L. C., Weiland, B. J., Sabbineni, A., Blaine, S. K., ... Hutchison, K. E. (2018). DRD2 methylation is associated with executive control network connectivity and severity of alcohol problems among a sample of polysubstance users. Addiction Biology, 25(1), e12684. |
[27] |
Han, W., Zhang, M., Feng, X., Gong, G., Peng, K., & Zhang, D. (2018). Genetic influences on creativity: An exploration of convergent and divergent thinking. PeerJ, 6, e5403.
doi: 10.7717/peerj.5403 URL |
[28] |
Hur, Y. M., Jeong, H. U., & Piffer, D. (2014). Shared genetic and environmental influences on self-reported creative achievement in art and science. Personality and Individual Differences, 68, 18-22.
doi: 10.1016/j.paid.2014.03.041 URL |
[29] |
Ibrahim, O., Sutherland, H. G., Haupt, L. M., & Griffiths, L. R. (2018). An emerging role for epigenetic factors in relation to executive function. Briefings in Functional Genomics, 17(3), 170-180.
doi: 10.1093/bfgp/elx032 pmid: 29165573 |
[30] |
Jaenisch, R., & Bird, A. (2003). Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nature Genetics, 33(Suppl), 245-254.
doi: 10.1038/ng1089 URL |
[31] | Jiang, W., Shang, S., & Su, Y. (2015). Genetic influences on insight problem solving: The role of catechol-O- methyltransferase (COMT) gene polymorphisms. Frontiers in Psychology, 6, 1569. |
[32] |
Kandler, C., Riemann, R., Angleitner, A., Spinath, F. M., Borkenau, P., & Penke, L. (2016). The nature of creativity: The roles of genetic factors, personality traits, cognitive abilities, and environmental sources. Journal of Personality and Social Psychology, 111(2), 230-249.
doi: 10.1037/pspp0000087 URL |
[33] |
Karlic, H., & Baurek, P. (2011). Epigenetics and the power of art. Clinical Epigenetics, 2, 279-282.
doi: 10.1007/s13148-011-0033-7 URL |
[34] |
Kordi-Tamandani, D. M., Sahranavard, R., & Torkamanzehi, A. (2013). Analysis of association between dopamine receptor genes' methylation and their expression profile with the risk of schizophrenia. Psychiatric Genetics, 23(5), 183-187.
doi: 10.1097/YPG.0b013e328363d6e1 pmid: 23851595 |
[35] |
Lewis, C. R., Henderson-Smith, A., Breitenstein, R. S., Sowards, H. A., Piras, I. S., Huentelman, M. J., ... Lemery-Chalfant, K. (2019). Dopaminergic gene methylation is associated with cognitive performance in a childhood monozygotic twin study. Epigenetics, 14(3), 310-323.
doi: 10.1080/15592294.2019.1583032 URL |
[36] | Lu, L. P., & Shi, J. N. (2010). Association between creativity and COMT genotype. Chengdu, China: IEEE. |
[37] |
Mayseless, N., Uzefovsky, F., Shalev, I., Ebstein, R. P., & Shamay-Tsoory, S. G. (2013). The association between creativity and 7R polymorphism in the dopamine receptor D4 gene (DRD4). Frontiers in Human Neuroscience, 7, 502.
doi: 10.3389/fnhum.2013.00502 pmid: 23986684 |
[38] |
Meaney, M. J. (2010). Epigenetics and the biological definition of gene × environment interactions. Child Development, 81(1), 41-79.
doi: 10.1111/cdev.2010.81.issue-1 URL |
[39] |
Mehrinejad, S. A., Rajabimoghadam, S., & Tarsafi, M. (2015). The relationship between parenting styles and creativity and the predictability of creativity by parenting styles. Procedia-Social and Behavioral Sciences, 205, 56-60.
doi: 10.1016/j.sbspro.2015.09.014 URL |
[40] |
Miller, A. L., Lambert, A. D., & Speirs Neumeister, K. L. (2012). Parenting style, perfectionism, and creativity in high-ability and high-achieving young adults. Journal for the Education of the Gifted, 35(4), 344-365.
doi: 10.1177/0162353212459257 URL |
[41] |
Moltafet, G., Sadati Firoozabadi, S. S., & Pour-Raisi, A. (2018). Parenting style, basic psychological needs, and emotional creativity: A path analysis. Creativity Research Journal, 30(2), 187-194.
doi: 10.1080/10400419.2018.1446748 URL |
[42] |
Moore, L. D., Le, T., & Fan, G. (2013). DNA methylation and its basic function. Neuropsychopharmacology, 38, 23-38.
doi: 10.1038/npp.2012.112 pmid: 22781841 |
[43] | Moriam, S., & Sobhani, M. E. (2013). Epigenetic effect of chronic stress on dopamine signaling and depression. Genetics & Epigenetics, 5, 11-16. |
[44] | Mulder, R. H., Rijlaarsdam, J., & van IJzendoorn, M. H. (2017). DNA methylation:A mediator between parenting stress and adverse child development? In K. Deater-Deckard & R. Panneton (Eds.), Parental stress and early child development (pp.157-180). New York: Springer. |
[45] |
Murphy, M., Runco, M. A., Acar, S., & Reiter-Palmon, R. (2013). Reanalysis of genetic data and rethinking dopamine's relationship with creativity. Creativity Research Journal, 25(1), 147-148.
doi: 10.1080/10400419.2013.752305 URL |
[46] | Nichols, R. C. (1978). Twin studies of ability, personality and interests. Homo, 29, 158-173. |
[47] |
Petronis, A. (2010). Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature, 465, 721-727.
doi: 10.1038/nature09230 URL |
[48] |
Piffer, D., & Hur, Y.-M. (2014). Heritability of creative achievement. Creativity Research Journal, 26(2), 151- 157.
doi: 10.1080/10400419.2014.901068 URL |
[49] |
Ren, Z. T., Yang, W. J., & Qiu, J. (2019). Neural and genetic mechanisms of creative potential. Current Opinion in Behavioral Sciences, 27, 40-46.
doi: 10.1016/j.cobeha.2018.09.003 URL |
[50] |
Reuter, M., Roth, S., Holve, K., & Hennig, J. (2006). Identification of first candidate genes for creativity: A pilot study. Brain Research, 1069(1), 190-197.
doi: 10.1016/j.brainres.2005.11.046 URL |
[51] |
Reznikoff, M., Domino, G., Bridges, C., & Honeyman, M. (1973). Creative abilities in identical and fraternal twins. Behavior Genetics, 3, 365-377.
pmid: 4798144 |
[52] |
Robinson, O. J., Overstreet, C., Charney, D. R., Vytal, K., & Grillon, C. (2013). Stress increases aversive prediction error signal in the ventral striatum. Proceedings of the National Academy of Sciences of the United States of America, 110(10), 4129-4133.
doi: 10.1073/pnas.1213923110 pmid: 23401511 |
[53] |
Roeling, M. P., Willemsen, G., & Boomsma, D. I. (2017). Heritability of working in a creative profession. Behavior Genetics, 47, 298-304.
doi: 10.1007/s10519-016-9832-0 URL |
[54] |
Roth, T. L. (2012). Epigenetics of neurobiology and behavior during development and adulthood. Developmental Psychobiology, 54(6), 590-597.
doi: 10.1002/dev.20550 URL |
[55] |
Runco, M. A., Noble, E. P., Reiter-Palmon, R., Acar, S., Ritchie, T., & Yurkovich, J. M. (2011). The genetic basis of creativity and ideational fluency. Creativity Research Journal, 23(4), 376-380.
doi: 10.1080/10400419.2011.621859 URL |
[56] |
Si, S., Su, Y. K., Zhang, S., & Zhang, J. H. (2020). Genetic susceptibility to parenting style: DRD2 and COMT influence creativity. Neuroimage, 213, 116681.
doi: S1053-8119(20)30168-3 pmid: 32119983 |
[57] |
Si, S., Zhang, S., Yu, Q., & Zhang, J. H. (2018). The interaction of DRD2 and parenting style in predicting creativity. Thinking Skills and Creativity, 27, 64-77.
doi: 10.1016/j.tsc.2017.11.001 URL |
[58] |
Si, S., Zhang, S., & Zhang, J. H. (2020). DRD2 Taq IA polymorphism interacts with parenting in predicting creativity: Evidence of differential susceptibility. Creativity Research Journal, 32(3), 274-286.
doi: 10.1080/10400419.2020.1821550 URL |
[59] |
Smith, A. K., Kilaru, V., Klengel, T., Mercer, K. B., Bradley, B., Conneely, K. N., ... Binder, E. B. (2014). DNA extracted from saliva for methylation studies of psychiatric traits: Evidence tissue specificity and relatedness to brain. American Journal of Medical Genetics Part B Neuropsychiatric Genetics, 168(1), 36-44.
doi: 10.1002/ajmg.b.v168.1 URL |
[60] |
Szyf, M., & Bick, J. (2013). DNA methylation: A mechanism for embedding early life experiences in the genome. Child Development, 84(1), 49-57.
doi: 10.1111/j.1467-8624.2012.01793.x URL |
[61] |
Takeuchi, H., Tomita, H., Taki, Y., Kikuchi, Y., Ono, C., Yu, Z., ... Kawashima, R. (2015). The associations among the dopamine D2 receptor Taq1, emotional intelligence, creative potential measured by divergent thinking, and motivational state and these associations' sex differences. Frontiers in Psychology, 6, 912.
doi: 10.3389/fpsyg.2015.00912 pmid: 26217259 |
[62] |
Ursini, G., Bollati, V., Fazio, L., Porcelli, A., Iacovelli, L., Catalani, A., ... Bertolino, A. (2011). Stress-related methylation of the catechol-O-methyltransferase Val 158 allele predicts human prefrontal cognition and activity. Journal of Neuroscience, 31(18), 6692-6698.
doi: 10.1523/JNEUROSCI.6631-10.2011 URL |
[63] |
Vaessen, T., Hernaus, D., Myin-Germeys, I., & van Amelsvoort, T. (2015). The dopaminergic response to acute stress in health and psychopathology: A systematic review. Neuroscience & Biobehavioral Reviews, 56, 241-251.
doi: 10.1016/j.neubiorev.2015.07.008 URL |
[64] |
van IJzendoorn, M. H., Bakermans-Kranenburg, M. J., & Ebstein, R. P. (2011). Methylation matters in child development: Toward developmental behavioral epigenetics. Child Development Perspectives, 5(4), 305-310.
doi: 10.1111/cdep.2011.5.issue-4 URL |
[65] |
van Mil, N. H., Steegers-Theunissen, R. P., Bouwland-Both, M. I., Verbiest, M. M., Rijlaarsdam, J., Hofman, A., ... Tiemeier, H. (2014). DNA methylation profiles at birth and child ADHD symptoms. Journal of Psychiatric Research, 49, 51-59.
doi: 10.1016/j.jpsychires.2013.10.017 URL |
[66] |
Walton, E., Liu, J., Hass, J., White, T., Scholz, M., Roessner, V., ... Ehrlich, S. (2014). MB-COMT promoter DNA methylation is associated with working-memory processing in schizophrenia patients and healthy controls. Epigenetics, 9(8), 1101-1107.
doi: 10.4161/epi.29223 URL |
[67] |
Yoshino, Y., Kawabe, K., Mori, T., Mori, Y., Yamazaki, K., Numata, S., ... Iga, J. I. (2016). Low methylation rates of dopamine receptor D2 gene promoter sites in Japanese schizophrenia subjects. The World Journal of Biological Psychiatry, 17(6), 449-456.
doi: 10.1080/15622975.2016.1197424 pmid: 27269479 |
[68] |
Zabelina, D. L., Colzato, L., Beeman, M., & Hommel, B. (2016). Dopamine and the creative mind: Individual differences in creativity are predicted by interactions between dopamine genes DAT and COMT. PLoS One, 11(1), e0146768.
doi: 10.1371/journal.pone.0146768 URL |
[69] |
Zhang, D. J., Zhou, Z. K., Gu, C. H., Lei, Y. J., & Fan, C. Y. (2018). Family socio-economic status and parent-child relationships are associated with the social creativity of elementary school children: The mediating role of personality traits. Journal of Child and Family Studies, 27, 2999-3007.
doi: 10.1007/s10826-018-1130-4 URL |
[70] |
Zhang, S., & Zhang, J. H. (2016). The association of DRD2 with insight problem solving. Frontiers in Psychology, 7, 1865.
pmid: 27933030 |
[71] |
Zhang, S., Zhang, M. Z., & Zhang, J. H. (2014a). An exploratory study on DRD2 and creative potential. Creativity Research Journal, 26(1), 115-123.
doi: 10.1080/10400419.2014.874267 URL |
[72] | Zhang, S., Zhang, M. Z., & Zhang, J. H. (2014b). Association of COMT and COMT-DRD2 interaction with creative potential. Frontiers in Human Neuroscience, 8, 216. |
[73] |
Zhang, T. Y., & Meaney, M. J. (2010). Epigenetics and the environmental regulation of the genome and its function. Annual Review of Psychology, 61, 439-466.
doi: 10.1146/psych.2010.61.issue-1 URL |
[1] | CHENG Meixia, KUANG Ziyi, LENG Xiaoxue, ZHANG Yang, WANG Fuxing. Can learning by non-interactive teaching promote learning? [J]. Advances in Psychological Science, 2023, 31(5): 769-782. |
[2] | ZOU Yanchun, ZHANG Huimin, PENG Jian, TIAN Yiwen. Environmentally specific servant leadership: Consequences and their underlying mechanism [J]. Advances in Psychological Science, 2023, 31(5): 827-839. |
[3] | FANG Junyan, WEN Zhonglin. The endogeneity issue in longitudinal research: Sources and solutions [J]. Advances in Psychological Science, 2023, 31(4): 507-518. |
[4] | LI Yadan, DU Ying, XIE Cong, LIU Chunyu, YANG Yilong, LI Yangping, QIU Jiang. A meta-analysis of the relationship between semantic distance and creative thinking [J]. Advances in Psychological Science, 2023, 31(4): 519-534. |
[5] | ZHANG Jie, ZHANG Huoyin, LI Hong, LEI Yi. The effect of sleep on fear learning and its cognitive neural mechanisms [J]. Advances in Psychological Science, 2023, 31(4): 631-640. |
[6] | YANG Mengxi, LIN Yuying, CHEN Wansi, CHEN Xuan, BAO Hongying, LI Xinyu. Double-edged sword effect of supervisor bottom-line mentality on team innovation [J]. Advances in Psychological Science, 2023, 31(3): 361-370. |
[7] | LI Qingyang, YIN Junting, LUO Junlong. Legs move, thoughts flow: Physical exercise influences creative thinking [J]. Advances in Psychological Science, 2023, 31(3): 455-466. |
[8] | WEN Zhonglin, CHEN Hongxi, FANG Jie, YE Baojuan, CAI Baozhen. Research on test reliability in China’s mainland from 2001 to 2020 [J]. Advances in Psychological Science, 2022, 30(8): 1682-1691. |
[9] | LI Haihong, SHANG Siyuan, XIE Xiaofei. The role of genes in altruistic behavior: Evidence from quantitative genetics and molecular genetics [J]. Advances in Psychological Science, 2022, 30(7): 1574-1588. |
[10] | ZHU Xiumei, ZHENG Xuejiao, XU Hai, XU Yanmei. Within-country regional cultural differences and their organizational implications [J]. Advances in Psychological Science, 2022, 30(7): 1651-1666. |
[11] | LI Jing, WU Xuyao, YUE Lei, ZENG Xiangli, FANG Qingyuan. The impact of materialism on green consumption: Promotion or inhibition? [J]. Advances in Psychological Science, 2022, 30(6): 1191-1204. |
[12] | LIU Haidan, LI Minyi. Associations between home literacy environment and children’s receptive vocabulary: A meta-analysis [J]. Advances in Psychological Science, 2022, 30(3): 556-579. |
[13] | YAO Haijuan, WANG Qi, LI Zhaoqing. Cognitive reappraisal inventiveness in emotion regulation [J]. Advances in Psychological Science, 2022, 30(3): 601-612. |
[14] | LI Ziyi, ZHANG Ze, ZHANG Ying, LUO Jing. The incubation effect of creative thinking [J]. Advances in Psychological Science, 2022, 30(2): 291-307. |
[15] | ZHANG Chao, WEI Xuhua, LI Yingming. Identifying people based on physiognomy: Explanations from cognitive perspective [J]. Advances in Psychological Science, 2022, 30(2): 308-323. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||