Advances in Psychological Science ›› 2020, Vol. 28 ›› Issue (1): 111-127.doi: 10.3724/SP.J.1042.2020.00111
• Regular Articles • Previous Articles Next Articles
OU Jianxin1,2, WU Yin1,2, LIU Jinting1,2, LI Hong1,2,3()
Received:
2019-01-29
Online:
2020-01-15
Published:
2019-11-21
Contact:
LI Hong
E-mail:lihongszu@szu.edu.cn
CLC Number:
OU Jianxin, WU Yin, LIU Jinting, LI Hong. Computational psychiatry: A new perspective on research and clinical applications in depression[J]. Advances in Psychological Science, 2020, 28(1): 111-127.
1 | 孙也婷, 陈桃林, 何度, 董再全, 程勃超, 王淞 , .. 龚启勇. (印刷中). 基于精神影像和人工智能的抑郁症客观生物标志物研究进展.生物化学与生物物理进展. |
2 | 文宏伟, 陆菁菁, 何晖光 . ( 2018). 机器学习在神经精神疾病诊断及预测中的应用. 协和医学杂志, 9( 1), 19-24. |
3 | 谢小华, 冯建峰 . ( 2019). 上海市脑与类脑智能基础转化应用研究的现状及展望. 心理学通讯, 2( 2), 84-87. |
4 | Almgren H., van de Steen F., Kuhn S., Razi A., Friston K., & Marinazzo D . ( 2018). Variability and reliability of effective connectivity within the core default mode network: A multi-site longitudinal spectral DCM study. Neuroimage, 183, 757-768. doi: 10.1016/j.neuroimage. 2018.08.053 |
5 | Andrews S., Tsochantaridis I., & Hofmann T . ( 2002). Support vector machines for multiple-instance learning. Paper presented at the Advances in Neural Information Processing Systems 15, Vancouver, British Columbia, Canada. |
6 | ArnstenA.F., . ( 2009). Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience, 10( 6), 410-422. doi: 10.1038/nrn2648 |
7 | AshbyW.R., . ( 1947). Principles of the self-organizing dynamic system. Journal of General Psychology, 37( 2), 125-128. doi: 10.1080/00221309.1947.9918144 |
8 | AssociationA.P., . ( 2013). Diagnostic and statistical manual of mental disorders (DSM-5®): American Psychiatric Pub. |
9 | Bahn S., Noll R., Barnes A., Schwarz E., & Guest P. C . ( 2011). Challenges of introducing new biomarker products for neuropsychiatric disorders into the market. International Review of Neurobiology, 101, 299-327. doi: 10.1016/B978-0-12-387718-5.00012-2 |
10 | Boes A. D., Uitermarkt B. D., Albazron F. M., Lan M. J., Liston C., Pascual-Leone A., .. Fox M. D . ( 2018). Rostral anterior cingulate cortex is a structural correlate of repetitive TMS treatment response in depression. Brain Stimulation, 11( 3), 575-581. doi: 10.1016/j.brs.2018.01.029 |
11 | BzdokD., &Meyer-Lindenberg, A . ( 2018). Machine learning for precision psychiatry: Opportunities and challenges. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3( 3), 223-230. doi: 10.1016/j.bpsc. 2017.11.007 |
12 | ChekroudA.M., . ( 2017). Bigger data, harder questions- opportunities throughout mental health care. JAMA Psychiatry, 74( 12), 1183-1184. doi: 10.1001/jamapsychiatry. 2017.3333 |
13 | Chekroud A. M., Gueorguieva R., Krumholz H. M., Trivedi M. H., Krystal J. H., & McCarthy G . ( 2017). Reevaluating the efficacy and predictability of antidepressant treatments: A symptom clustering approach. JAMA Psychiatry, 74( 4), 370-378. doi: 10.1001/ jamapsychiatry. 2017.0025 |
14 | Chekroud A. M., Lane C. E., & Ross D. A . ( 2017). Computational psychiatry: Embracing uncertainty and focusing on individuals, not averages. Biological Psychiatry, 82( 6), e45-e47. doi: 10.1016/j.biopsych.2017. 07.011 |
15 | Chekroud A. M., Zotti R. J., Shehzad Z., Gueorguieva R., Johnson M. K., Trivedi M. H., .. Corlett P. R . ( 2016). Cross-trial prediction of treatment outcome in depression: A machine learning approach. Lancet Psychiatry, 3( 3), 243-250. doi: 10.1016/S2215-0366(15)00471-X |
16 | Chen C., Takahashi T., Nakagawa S., Inoue T., & Kusumi I . ( 2015). Reinforcement learning in depression: A review of computational research. Neuroscience and Biobehavioral Reviews, 55, 247-267. doi: 10.1016/j.neubiorev.2015.05. 005 |
17 | Cicero D. C., Martin E. A., Becker T. M., & Kerns J. G . ( 2014). Reinforcement learning deficits in people with schizophrenia persist after extended trials. Psychiatry Research, 220( 3), 760-764. doi: 10.1016/j.psychres.2014.08. 013 |
18 | Clark L., Chamberlain S. R., & Sahakian B. J . ( 2009). Neurocognitive mechanisms in depression: Implications for treatment. Annual Review of Neuroscience, 32( 1), 57-74. doi: 10.1146/annurev.neuro.31.060407.125618 |
19 | Cooper J. A., Arulpragasam A. R., & Treadway M. T . ( 2018). Anhedonia in depression: Biological mechanisms and computational models. Current Opinion in Behavioral Sciences, 22, 128-135. doi: 10.1016/j.cobeha.2018.01.024 |
20 | CuiZ., &Gong, G . ( 2018). The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features. Neuroimage, 178, 622-637. doi: 10.1016/j.neuroimage. 2018.06.001 |
21 | CuthbertB.., &Insel T.R, . ( 2013). Toward the future of psychiatric diagnosis: The seven pillars of RDoC. BMC Medicine, 11( 1), 126. doi: 10.1186/1741-7015-11-126 |
22 | Czajkowski S. M., Powell L. H., Adler N., Naar-King S., Reynolds K. D., Hunter C. M., .. Charlson M. E . ( 2015). From ideas to efficacy: The ORBIT model for developing behavioral treatments for chronic diseases. Health Psychology, 34( 10), 971-982. doi: 10.1037/hea0000161 |
23 | Davey C., Breakspear M., Pujol J., & Harrison B . ( 2018). 201. A dynamic causal model of the depressed self. Biological Psychiatry, 83( 9). doi: 10.1016/j.biopsych. 2018.02.220 |
24 | Daw N. D., Gershman S. J., Seymour B., Dayan P., & Dolan R. J . ( 2011). Model-based influences on humans' choices and striatal prediction errors. Neuron, 69( 6), 1204-1215. doi: 10.1016/j.neuron.2011.02.027 |
25 | Daw N. D., Niv Y., & Dayan P . ( 2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8( 12), 1704-1711. doi: 10.1038/nn1560 |
26 | DeBattista C., Kinrys G., Hoffman D., Goldstein C., Zajecka J., Kocsis J., .. Fava M . ( 2011). The use of referenced-EEG (rEEG) in assisting medication selection for the treatment of depression. Journal of Psychiatric Research, 45( 1), 64-75. doi: 10.1016/j.jpsychires.2010.05. 009 |
27 | DeRubeis R. J., Cohen Z. D., Forand N. R., Fournier J. C., Gelfand L. A., & Lorenzo-Luaces L . ( 2014). The Personalized Advantage Index: Translating research on prediction into individualized treatment recommendations. A demonstration. PloS One, 9( 1), e83875. doi: 10. 1371/journal.pone.0083875 |
28 | Dillon D. G., Wiecki T., Pechtel P., Webb C., Goer F., Murray L., .. Pizzagalli D. A . ( 2015). A computational analysis of flanker interference in depression. Psychological Medicine, 45( 11), 2333-2344. doi: 10.1017/ S0033291715000276 |
29 | Doll B. B., Bath K. G., Daw N. D., & Frank M. J . ( 2016). Variability in dopamine genes dissociates model-based and model-free reinforcement learning. Journal of Neuroscience, 36( 4), 1211-1222. doi: 10.1523/JNEUROSCI. 1901-15.2016 |
30 | Donde C., Amad A., Nieto I., Brunoni A. R., Neufeld N. H., Bellivier F., .. Geoffroy P. A . ( 2017). Transcranial direct-current stimulation (tDCS) for bipolar depression: A systematic review and meta-analysis. Progress in Neuro- Psychopharmacology and Biological Psychiatry, 78, 123-131. doi: 10.1016/j.pnpbp.2017.05.021 |
31 | DruckerE., &Krapfenbauer, K . ( 2013). Pitfalls and limitations in translation from biomarker discovery to clinical utility in predictive and personalised medicine. The EPMA Journal, 4( 1), 7. doi: 10.1186/1878-5085-4-7 |
32 | Drysdale A. T., Grosenick L., Downar J., Dunlop K., Mansouri F., Meng Y., .. Liston C . ( 2017). Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nature Medicine, 23( 1), 28-38. doi: 10.1038/nm.4246 |
33 | Dutilh G., Vandekerckhove J., Forstmann B. U., Keuleers E., Brysbaert M., & Wagenmakers E. J . ( 2012). Testing theories of post-error slowing. Attention Perception & Psychophysics, 74( 2), 454-465. doi: 10.3758/s13414-011- 0243-2 |
34 | Eldar E., Roth C., Dayan P., & Dolan R. J . ( 2018). Decodability of reward learning signals predicts mood fluctuations. Current Biology, 28( 9), 1433-1439. doi: 10.1016/j.cub.2018.03.038 |
35 | Etkin, A. ( 2018). Addressing the causality gap in human psychiatric neuroscience. JAMA Psychiatry, 75( 1), 3-4. doi: 10.1001/jamapsychiatry.2017.3610 |
36 | Farhan A. A., Lu J., Bi J., Russell A., Wang B., & Bamis A . ( 2016). Multi-view Bi-clustering to identify smartphone sensing features indicative of depression. Paper presented at the 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Washington, DC, USA. |
37 | Feng Z., Xu S., Huang M., Shi Y., Xiong B., & Yang H . ( 2016). Disrupted causal connectivity anchored on the anterior cingulate cortex in first-episode medication-naive major depressive disorder. Progress in Neuro- Psychopharmacology and Biological Psychiatry, 64, 124-130. doi: 10.1016/j.pnpbp.2015.07.008 |
38 | Forstmann B. U., Ratcliff R., & Wagenmakers E. J . ( 2016). Sequential sampling models in cognitive neuroscience: Advantages, applications, and extensions. Annual Review of Psychology, 67, 641-666. doi: 10.1146/annurev-psych- 122414-033645 |
39 | Frässle S., Lomakina E. I., Razi A., Friston K. J., Buhmann J. M., & Stephan K. E . ( 2017). Regression DCM for fMRI. Neuroimage, 155, 406-421. doi: 10.1016/j.neuroimage.2017.02.090 |
40 | Frässle S., Yao Y., Schobi D., Aponte E. A., Heinzle J., & Stephan K. E . ( 2018). Generative models for clinical applications in computational psychiatry. Wiley Interdisciplinary Reviews: Cognitive Science, 9( 3), e1460. doi: 10.1002/wcs.1460 |
41 | FristonK.J., . ( 2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11( 2), 127-138. doi: 10.1038/nrn2787 |
42 | Friston K. J., Harrison L., & Penny W . ( 2003). Dynamic causal modelling. Neuroimage, 19( 4), 1273-1302. doi: 10. 1016/s1053-8119(03)00202-7 |
43 | Friston K. J., Kahan J., Biswal B., & Razi A . ( 2014). A DCM for resting state fMRI. Neuroimage, 94, 396-407. doi: 10.1016/j.neuroimage.2013.12.009 |
44 | Friston K. J., Litvak V., Oswal A., Razi A., Stephan K. E., van Wijk, B. C. M., .. Zeidman P . ( 2016). Bayesian model reduction and empirical Bayes for group (DCM) studies. Neuroimage, 128, 413-431. doi: 10.1016/j. neuroimage. 2015.11.015 |
45 | Friston K. J., Preller K. H., Mathys C., Cagnan H., Heinzle J., Razi A., & Zeidman P . ( 2019). Dynamic causal modelling revisited. Neuroimage, 199, 730-744. doi: 10.1016/j.neuroimage.2017.02.045 |
46 | Gilmartin M. R., Balderston N. L., & Helmstetter F. J . ( 2014). Prefrontal cortical regulation of fear learning. Trends in Neurosciences, 37( 8), 455-464. doi: 10.1016/ j.tins.2014.05.004 |
47 | GoldJ.., &Shadlen M.N, . ( 2007). The neural basis of decision making. Annual Review of Neuroscience, 30( 1), 535-574. doi: 10.1146/annurev.neuro.29.051605.113038 |
48 | GoldbergD., &Fawcett, J . ( 2012). The importance of anxiety in both major depression and bipolar disorder. Depression and Anxiety, 29( 6), 471-478. doi: 10.1002/ da.21939 |
49 | GomezP., &Perea, M . ( 2014). Decomposing encoding and decisional components in visual-word recognition: A diffusion model analysis. Quarterly Journal of Experimental Psychology, 67( 12), 2455-2466. doi: 10.1080/17470218.2014.937447 |
50 | Hammen C.., ( 2018). Risk factors for depression: An autobiographical review. Annual Review of Clinical Psychology, 14, 1-28. doi: 10.1146/annurev-clinpsy-050817- 084811 |
51 | Hanks T. D., Ditterich J., & Shadlen M. N . ( 2006). Microstimulation of macaque area LIP affects decision-making in a motion discrimination task. Nature Neuroscience, 9( 5), 682-689. doi: 10.1038/nn1683 |
52 | Haque A., Guo M., Miner A. S., & Li F.-F . ( 2018). Measuring depression symptom severity from spoken language and 3D facial expressions. Arxiv Preprint Arxiv:1811.08592. |
53 | Heller A. S., Ezie C. E. C., Otto A. R., & Timpano K. R . ( 2018). Model-based learning and individual differences in depression: The moderating role of stress. Behaviour Research and Therapy, 111, 19-26. doi: 10.1016/j.brat. 2018.09.007 |
54 | Herrman H., Kieling C., McGorry P., Horton R., Sargent J., & Patel V . ( 2019). Reducing the global burden of depression: A Lancet-World Psychiatric Association Commission. The Lancet, 393( 10189), e42-e43. doi: 10.1016/ s0140-6736(18)32408-5 |
55 | Honnorat N., Dong A., Meisenzahl-Lechner E., Koutsouleris N., & Davatzikos C . ( 2017). Neuroanatomical heterogeneity of schizophrenia revealed by semi-supervised machine learning methods. Schizophrenia Research . doi: 10.1016/j. schres.2017.12.008 |
56 | HusainM., &Roiser J.P, . ( 2018). Neuroscience of apathy and anhedonia: A transdiagnostic approach. Nature Reviews Neuroscience, 19( 8), 470-484. doi: 10.1038/ s41583-018-0029-9 |
57 | Huys Q.J. M . (2015) Computational psychiatry. In: Jaeger D., Jung R. (Eds.) Encyclopedia of computational neuroscience (pp. 775-783). Springer, New York, NY |
58 | HuysQ. J.M., . ( 2018 a). Advancing clinical improvements for patients using the theory-driven and data-driven branches of computational psychiatry. JAMA Psychiatry, 75( 3), 225-226. doi: 10.1001/jamapsychiatry.2017.4246 |
59 | Huys Q. J.M. (2018b). Bayesian approaches to learning and decision-making. In A. Anticevic & J. D. Murray (Eds.), Computational Psychiatry (pp. 247-271): Academic Press. |
60 | Huys Q. J. M., Maia T. V., & Frank M. J . ( 2016). Computational psychiatry as a bridge from neuroscience to clinical applications. Nature Neuroscience, 19( 3), 404-413. doi: 10.1038/nn.4238 |
61 | Huys Q. J. M., Moutoussis M., & Williams J . (2011). Are computational models of any use to psychiatry? Neural Networks, 24( 6), 544-551. doi: 10.1016/j.neunet.2011.03.001 |
62 | InselT.., &Cuthbert B.N, . ( 2015). Medicine. Brain disorders? Precisely. Science, 348( 6234), 499-500. doi: 10.1126/science.aab2358 |
63 | Janssen R. J., Mourao-Miranda J., & Schnack H. G . ( 2018). Making individual prognoses in psychiatry using neuroimaging and machine learning. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3( 9), 798-808. doi: 10.1016/j.bpsc.2018.04.004 |
64 | Kapur S., Phillips A. G., & Insel T. R . ( 2012). Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Molecular Psychiatry, 17( 12), 1174-1179. doi: 10.1038/mp.2012.105 |
65 | KendlerK.S., . (2008). Explanatory models for psychiatric illness. American Journal of Psychiatry, 165( 6), 695-702. doi: 10.1176/appi.ajp.2008.07071061 |
66 | KrajbichI., &Rangel, A . (2011). Multialternative drift-diffusion model predicts the relationship between visual fixations and choice in value-based decisions. Proceedings of the National Academy of Sciences of the United States of America, 108( 33), 13852-13857. doi: 10. 1073/pnas.1101328108 |
67 | LeCun Y., Bengio Y., & Hinton G . (2015). Deep learning. Nature, 521( 7553), 436-444. doi: 10.1038/nature14539 |
68 | Ledford, H. ( 2014). Medical research: If depression were cancer. Nature, 515( 7526), 182-184. doi: 10.1038/515182a |
69 | Lee D., Seo H., & Jung M. W . (2012). Neural basis of reinforcement learning and decision making. Annual Review of Neuroscience, 35( 1), 287-308. doi: 10.1146/ annurev-neuro-062111-150512 |
70 | Li B., Daunizeau J., Stephan K. E., Penny W., Hu D., & Friston K . (2011). Generalised filtering and stochastic DCM for fMRI. Neuroimage, 58( 2), 442-457. doi: 10. 1016/j.neuroimage.2011.01.085 |
71 | LibbrechtM.., &Noble W.S, . (2015). Machine learning applications in genetics and genomics. Nature Reviews Genetics, 16( 6), 321-332. doi: 10.1038/nrg3920 |
72 | Lin T., Liu T., Lin Y., Yan L., Chen Z., & Wang J . (2017). Comparative study on serum levels of macro and trace elements in schizophrenia based on supervised learning methods. Journal of Trace Elements in Medicine and Biology, 43, 202-208. doi: 10.1016/j.jtemb.2017.03.010 |
73 | Lu Q., Li H., Luo G., Wang Y., Tang H., Han L., & Yao Z . ( 2012). Impaired prefrontal-amygdala effective connectivity is responsible for the dysfunction of emotion process in major depressive disorder: A dynamic causal modeling study on MEG. Neuroscience Letters, 523( 2), 125-130. doi: 10.1016/j.neulet.2012.06.058 |
74 | Lu Y., Tang C., Liow C. S., Ng W. W., Ho C. S., & Ho R. C . ( 2014). A regressional analysis of maladaptive rumination, illness perception and negative emotional outcomes in Asian patients suffering from depressive disorder. Asian Journal of Psychiatry, 12, 69-76. doi: 10.1016/j.ajp.2014.06.014 |
75 | MaiaT.., &Frank M.J, . ( 2011). From reinforcement learning models to psychiatric and neurological disorders. Nature Neuroscience, 14( 2), 154-162. doi: 10.1038/nn.2723 |
76 | Maia T. V., Huys Q. J. M., & Frank M. J . ( 2017). Theory-based computational psychiatry. Biological Psychiatry, 82( 6), 382-384. doi: 10.1016/j.biopsych.2017. 07.016 |
77 | MalhiG.., &Mann J.J, . ( 2018). Depression. The Lancet, 392( 10161), 2299-2312. doi: 10.1016/s0140-6736(18)31948-2 |
78 | Mazurek M. E., Roitman J. D., Ditterich J., & Shadlen M. N . ( 2003). A role for neural integrators in perceptual decision making. Cerebral Cortex, 13( 11), 1257-1269. doi: 10.1093/cercor/bhg097 |
79 | McEwenB.., &Morrison J.H, . ( 2013). The brain on stress: Vulnerability and plasticity of the prefrontal cortex over the life course. Neuron, 79( 1), 16-29. doi: 10.1016/ j.neuron.2013.06.028 |
80 | Mendelson A. F., Zuluaga M. A., Lorenzi M., Hutton B. F., Ourselin S .,& Alzheimer's Disease Neuroimaging I. .,( 2017). Selection bias in the reported performances of AD classification pipelines. Neuroimage: Clinical, 14, 400-416. doi: 10.1016/j.nicl.2016.12.018 |
81 | Montague P. R., Dolan R. J., Friston K. J., & Dayan P . ( 2012). Computational psychiatry. Trends in Cognitive Sciences, 16( 1), 72-80. doi: 10.1016/j.tics.2011.11.018 |
82 | Moustafa A. A., Keri S., Somlai Z., Balsdon T., Frydecka D., Misiak B., & White C . ( 2015). Drift diffusion model of reward and punishment learning in schizophrenia: Modeling and experimental data. Behavioural Brain Research, 291, 147-154. doi: 10.1016/j.bbr.2015.05.024 |
83 | Niv, Y. ( 2009). Reinforcement learning in the brain. Journal of Mathematical Psychology, 53( 3), 139-154. doi: 10. 1016/j.jmp.2008.12.005 |
84 | Nouretdinov I., Costafreda S. G., Gammerman A., Chervonenkis A., Vovk V., Vapnik V., & Fu C. H . ( 2011). Machine learning classification with confidence: Application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression. Neuroimage, 56( 2), 809-813. doi: 10.1016/j. neuroimage.2010.05.023 |
85 | Patel M. J., Andreescu C., Price J. C., Edelman K. L., Reynolds C. F .,3rd & Aizenstein, H. J. .,( 2015). Machine learning approaches for integrating clinical and imaging features in late-life depression classification and response prediction. International Journal of Geriatric Psychiatry, 30( 10), 1056-1067. doi: 10.1002/gps.4262 |
86 | Patel M. J., Khalaf A., & Aizenstein H. J . ( 2016). Studying depression using imaging and machine learning methods. Neuroimage: Clinical, 10, 115-123. doi: 10.1016/j.nicl. 2015.11.003 |
87 | Paulus M. P., Huys Q. J., & Maia T. V . ( 2016). A roadmap for the development of applied computational psychiatry. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1( 5), 386-392. doi: 10.1016/j.bpsc.2016. 05.001 |
88 | Pe M. L., Vandekerckhove J., & Kuppens P . ( 2013). A diffusion model account of the relationship between the emotional flanker task and rumination and depression. Emotion, 13( 4), 739-747. doi: 10.1037/a0031628 |
89 | PizzagalliD.A., . ( 2014). Depression, stress, and anhedonia: Toward a synjournal and integrated model. Annual Review of Clinical Psychology, 10( 1), 393-423. doi: 10.1146/ annurev-clinpsy-050212-185606 |
90 | Radenbach C., Reiter A. M., Engert V., Sjoerds Z., Villringer A., Heinze H. J., .. Schlagenhauf F . ( 2015). The interaction of acute and chronic stress impairs model-based behavioral control. Psychoneuroendocrinology, 53, 268-280. doi: 10.1016/j.psyneuen.2014.12.017 |
91 | Ratcliff ,R.( 1978). A theory of memory retrieval. Psychological Review, 85( 2), 59-108. doi: 10.1037/0033-295x.85.2.59 |
92 | RatcliffR., &McKoon, G . ( 2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural Computation, 20( 4), 873-922. doi: 10.1162/neco. 2008.12-06-420 |
93 | Ratcliff R., Smith P. L., Brown S. D., & McKoon G . ( 2016). Diffusion decision model: Current issues and history. Trends in Cognitive Sciences, 20( 4), 260-281. doi: 10.1016/j.tics.2016.01.007 |
94 | Razi A., Kahan J., Rees G., & Friston K. J . ( 2015). Construct validation of a DCM for resting state fMRI. Neuroimage, 20, 1-14. doi: 10.1016/j.neuroimage.2014. 11.027 |
95 | RobinsonO.., &Chase H.W, . ( 2017). Learning and choice in mood disorders: Searching for the computational parameters of anhedonia. Computational Psychiatry, 1( 1), 208-233. doi: 10.1162/CPSY_a_00009 |
96 | Rock P. L., Roiser J. P., Riedel W. J., & Blackwell A. D . ( 2014). Cognitive impairment in depression: A systematic review and meta-analysis. Psychological Medicine, 44( 10), 2029-2040. doi: 10.1017/S0033291713002535 |
97 | Rothkirch M., Tonn J., Kohler S., & Sterzer P . ( 2017). Neural mechanisms of reinforcement learning in unmedicated patients with major depressive disorder. Brain, 140( 4), 1147-1157. doi: 10.1093/brain/awx025 |
98 | Rush A. J., Trivedi M. H., Wisniewski S. R., Nierenberg A. A., Stewart J. W., Warden D., .. Fava M . ( 2006). Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: A STAR*D report. American Journal of Psychiatry, 163( 11), 1905-1917. doi: 10.1176/ajp.2006.163.11.1905 |
99 | RussoS.., &Nestler E.J, . ( 2013). The brain reward circuitry in mood disorders. Nature Reviews Neuroscience, 14( 9), 609-625. doi: 10.1038/nrn3381 |
100 | Rutledge R. B., Moutoussis M., Smittenaar P., Zeidman P., Taylor T., Hrynkiewicz L., .. Dolan R. J . ( 2017). Association of neural and emotional impacts of reward prediction errors with major depression. JAMA Psychiatry, 74( 8), 790-797. doi: 10.1001/jamapsychiatry.2017.1713 |
101 | SchnackH.., &Kahn R.S, . ( 2016). Detecting neuroimaging biomarkers for psychiatric disorders: Sample size matters. Frontiers in Psychiatry, 7, 50. doi: 10.3389/fpsyt.2016.00050 |
102 | Schwabe,L. .( 2013) Stress and the engagement of multiple memory systems: Integration of animal and human studies. Hippocampus, 23( 11), 1035-1043. doi: 10.1002/hipo.22175 |
103 | SchwabeL., &Wolf O.T, . ( 2011). Stress-induced modulation of instrumental behavior: From goal-directed to habitual control of action. Behavioural Brain Research, 219( 2), 321-328. doi: 10.1016/j.bbr.2010.12.038 |
104 | Sejnowski T. J., Koch C., & Churchland P. S . ( 1988). Computational neuroscience. Science, 241( 4871), 1299-1306. doi: 10.1126/science.3045969 |
105 | Shalev-Shwartz S., & Ben-David, S. ( 2014) .Understanding machine learning:From theory to algorithms: Cambridge University Press From theory to algorithms: Cambridge University Press. |
106 | Shatte A. B. R., Hutchinson D. M., & Teague S. J . ( 2019). Machine learning in mental health: A scoping review of methods and applications. Psychological Medicine, 49( 9), 1426-1448. doi: 10.1017/S0033291719000151 |
107 | Singh A., Thakur N., & Sharma A . ( 2016). A review of supervised machine learning algorithms. Paper presented at the International Conference on Computing for Sustainable Global Development, New Delhi, India. |
108 | Stephan K. E., Iglesias S., Heinzle J., & Diaconescu A. O . ( 2015). Translational perspectives for computational neuroimaging. Neuron, 87( 4), 716-732. doi: 10.1016/j. neuron.2015.07.008 |
109 | Stephan K. E., Kasper L., Harrison L. M., Daunizeau J., den Ouden H. E., Breakspear M., & Friston K. J . ( 2008). Nonlinear dynamic causal models for fMRI. Neuroimage, 42( 2), 649-662. doi: 10.1016/j.neuroimage.2008.04.262 |
110 | StephanK.., &Mathys, C . ( 2014). Computational approaches to psychiatry. Current Opinion in Neurobiology, 42, 85-92. doi: 10.1016/j.conb.2013.12.007 |
111 | Stephan K. E., Penny W. D., Moran R. J., den Ouden H. E., Daunizeau J., & Friston K. J . ( 2010). Ten simple rules for dynamic causal modeling. Neuroimage, 49( 4), 3099-3109. doi: 10.1016/j.neuroimage.2009.11.015 |
112 | Stephan K. E., Schlagenhauf F., Huys Q. J. M., Raman S., Aponte E. A., Brodersen K. H., .. Heinz A . ( 2017). Computational neuroimaging strategies for single patient predictions. Neuroimage, 145( Pt B), 180-199. doi: 10.1016/ j.neuroimage.2016.06.038 |
113 | Sterzer P., Adams R. A., Fletcher P., Frith C., Lawrie S. M., Muckli L., .. Corlett P. R . ( 2018). The predictive coding account of psychosis. Biological Psychiatry, 84( 9), 634-643. doi: 10.1016/j.biopsych.2018.05.015 |
114 | SuttonR.., &Barto A.G, . ( 1998). Reinforcement learning: An introduction: MIT press. |
115 | SuttonR.., &Barto A.G, . ( 2018). Reinforcement learning: An introduction: MIT press. |
116 | Tran B. X., Vu G. T., Ha G. H., Vuong Q. H., Ho M. T., Vuong T. T .,.. Ho R. C. M. .,( 2019). Global evolution of research in artificial intelligence in health and medicine: A bibliometric study. Journal of Clinical Medicine, 8( 3), 360. doi: 10.3390/jcm8030360 |
117 | Turner B. M., van Maanen L., & Forstmann B. U . ( 2015). Informing cognitive abstractions through neuroimaging: The neural drift diffusion model. Psychological Review, 122( 2), 312-336. doi: 10.1037/a0038894 |
118 | van Ravenzwaaij, D., &Oberauer, K . ( 2009). How to use the diffusion model: Parameter recovery of three methods: EZ, fast-dm, and DMAT. Journal of Mathematical Psychology, 53( 6), 463-473. doi: 10.1016/j.jmp.2009.09.004 |
119 | Vos T., Allen C., Arora M., Barber R. M., Bhutta Z. A., Brown A .,.. Murray C. J. L. .,( 2016). Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015. The Lancet, 388( 10053), 1545-1602. doi: 10. 1016/s0140-6736(16)31678-6 |
120 | Voss A., Nagler M., & Lerche V . ( 2013). Diffusion models in experimental psychology: A practical introduction. Experimental Psychology, 60( 6), 385-402. doi: 10.1027/ 1618-3169/a000218 |
121 | Wagstaff K., Cardie C., Rogers S., & Schrödl S . ( 2001). Constrained k-means clustering with background knowledge. Paper presented at the Proceedings of the Eighteenth International Conference on Machine Learning, Williamstown, MA, USA. |
122 | Wang X. W., Nie D., & Lu B. L . ( 2014). Emotional state classification from EEG data using machine learning approach. Neurocomputing, 129, 94-106. doi: 10.1016/j. neucom.2013.06.046 |
123 | White C. N., Ratcliff R., Vasey M. W., & McKoon G . ( 2009). Dysphoria and memory for emotional material: A diffusion-model analysis. Cognition & Emotion, 23( 1), 181-205. doi: 10.1080/02699930801976770 |
124 | White C. N., Ratcliff R., Vasey M. W., & McKoon G . ( 2010 a). Anxiety enhances threat processing without competition among multiple inputs: A diffusion model analysis. Emotion, 10( 5), 662-677. doi: 10.1037/a0019474 |
125 | White C. N., Ratcliff R., Vasey M. W., & McKoon G . ( 2010 b). Using diffusion models to understand clinical disorders. Journal of Mathematical Psychology, 54( 1), 39-52. doi: 10.1016/j.jmp.2010.01.004 |
126 | WHO. ( 2018). Depression. Retrieved from |
127 | Wiecki T. V., Poland J., & Frank M. J . ( 2015). Model-based cognitive neuroscience approaches to computational psychiatry: Clustering and classification. Clinical Psychological Science, 3( 3), 378-399. doi: 10. 1177/2167702614565359 |
128 | Wiecki T. V., Sofer I., & Frank M. J . ( 2013). HDDM: Hierarchical bayesian estimation of the drift-diffusion model in python. Frontiers in Neuroinformatics, 7, 14. doi: 10.3389/fninf.2013.00014 |
129 | Williams L. M., Korgaonkar M. S., Song Y. C., Paton R., Eagles S., Goldstein-Piekarski A., .. Etkin A . ( 2015). Amygdala reactivity to emotional faces in the prediction of general and medication-specific responses to antidepressant treatment in the randomized iSPOT-D trial. Neuropsychopharmacology, 40( 10), 2398-2408. doi: 10. 1038/npp.2015.89 |
130 | Wunderlich K., Dayan P., & Dolan R. J . ( 2012). Mapping value based planning and extensively trained choice in the human brain. Nature Neuroscience, 15( 5), 786-791. doi: 10.1038/nn.3068 |
[1] | LIU Wenhua, WEN Xiujuan, CHEN Ling, YANG Rui, HU Yiru. Reward-anticipation and outcome-evaluation ERPs and its application in psychiatric disorders [J]. Advances in Psychological Science, 2023, 31(5): 783-799. |
[2] | LIU Wenbin, QI Zhengtang, LIU Weina. The effects of different sensory functions on depression and its neuromechanism [J]. Advances in Psychological Science, 2023, 31(4): 641-656. |
[3] | YAN Lei, YUAN Yiren, WANG Juan, ZHANG Yanhong, YANG Linchuan. The influence of social identity on depression and its theoretical explanation [J]. Advances in Psychological Science, 2023, 31(4): 657-668. |
[4] | CHEN Xinwen, LI Hongjie, DING Yulong. Exploring the neural representation patterns in event-related EEG/MEG signals: The methods based on classification decoding and representation similarity analysis [J]. Advances in Psychological Science, 2023, 31(2): 173-195. |
[5] | XIAO Tingwei, DONG Jie, LIANG Fei, WANG Fushun, LI Yang. The relationship between disgust and suicidal behavior [J]. Advances in Psychological Science, 2023, 31(1): 87-98. |
[6] | DU Yufei, OUYANG Huiyue, YU Lin. The relationship between grandparenting and depression in Eastern and Western cultures: A meta-analysis [J]. Advances in Psychological Science, 2022, 30(9): 1981-1992. |
[7] | LIU Xiaohan, CHEN Minglong, GUO Jing. Application of machine learning in prognosis and trajectory of post-traumatic stress disorder in children [J]. Advances in Psychological Science, 2022, 30(4): 851-862. |
[8] | CHEN XiangHe, LI WenXiu, LIU Bo, YIN RongBin. The potential role of bone-derived factor ucOCN in the anti-depressive effects of exercise [J]. Advances in Psychological Science, 2022, 30(2): 375-388. |
[9] | ZHANG Yali, ZHANG Jiangen, LI Hongxia, JIANG Yongzhi. The relationship between socioeconomic status and depression: A systematic review and meta-analysis [J]. Advances in Psychological Science, 2022, 30(12): 2650-2665. |
[10] | YUAN Yuzhuo, LUO Fang. Early screening and diagnosis of autism spectrum disorder assisted by artificial intelligence [J]. Advances in Psychological Science, 2022, 30(10): 2303-2320. |
[11] | HOU Tingting, CHEN Xiao, KONG Depeng, SHAO Xiujun, LIN Fengxun, LI Kaiyun. Application of machine learning in early identification and diagnosis of autistic children [J]. Advances in Psychological Science, 2022, 30(10): 2321-2337. |
[12] | HUANG Guanlan, ZHOU Xiaolu. The linguistic patterns of depressed patients [J]. Advances in Psychological Science, 2021, 29(5): 838-848. |
[13] | SU Yue, LIU Mingming, ZHAO Nan, LIU Xiaoqian, ZHU Tingshao. Identifying psychological indexes based on social media data: A machine learning method [J]. Advances in Psychological Science, 2021, 29(4): 571-585. |
[14] | QIN Haofang, HUANG Rong, JIA Shiwei. Feedback-related negativity: A biomarker for depression [J]. Advances in Psychological Science, 2021, 29(3): 404-413. |
[15] | HUANG Zhijing, LI Xu. Processing of emotional information in working memory in major depressive disorder [J]. Advances in Psychological Science, 2021, 29(2): 252-267. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||