Advances in Psychological Science ›› 2023, Vol. 31 ›› Issue (11): 2142-2154.doi: 10.3724/SP.J.1042.2023.02142
• Regular Articles • Previous Articles Next Articles
ZHAO Rong, HUANG Yujie, KE Libinuer·aierken, LI Jingjing, GAO Jun
Received:
2023-04-24
Online:
2023-11-15
Published:
2023-08-28
CLC Number:
ZHAO Rong, HUANG Yujie, KE Libinuer·aierken, LI Jingjing, GAO Jun. The role of different sensory channels in stress contagion and its neural mechanisms[J]. Advances in Psychological Science, 2023, 31(11): 2142-2154.
[1] Akitsuki, Y., & Decety, J. (2009). Social context and perceived agency affects empathy for pain: An event- related fMRI investigation. [2] Allsop S. A., Wichmann R., Mills F., Burgos-Robles A., Chang C.-J., Felix-Ortiz A. C., .. Tye K. M. (2018). Corticoamygdala transfer of socially derived information gates observational learning. [3] Beckett S. R., Duxon M. S., Aspley S., & Marsden C. A. (1997). Central c-fos expression following 20kHz/ultrasound induced defence behaviour in the rat. [4] Benuzzi F., Lui F., Ardizzi M., Ambrosecchia M., Ballotta D., Righi S., Pagnoni G., Gallese V., & Porro C. A. (2018). Pain mirrors: Neural correlates of observing self or others' facial expressions of pain. [5] Bhatnagar S., Vining C., & Denski, K. A. I. (2004). Regulation of chronic stress-induced changes in hypothalamic-pituitary- adrenal activity by the basolateral amygdala. [6] Botvinick M., Jha A. P., Bylsma L. M., Fabian S. A., Solomon P. E., & Prkachin K. M. (2005). Viewing facial expressions of pain engages cortical areas involved in the direct experience of pain. [7] Brechbühl J., Klaey M., & Broillet M. C. (2008). Grueneberg ganglion cells mediate alarm pheromone detection in mice. [8] Brechbühl J., Moine F., Klaey M., Nenniger-Tosato M., Hurni N., Sporkert F., .. Broillet M.-C. (2013). Mouse alarm pheromone shares structural similarity with predator scents. [9] Cao Y., Yusri N. M., Powell T., & Cunnington R. (2019). Neural and behavioral markers of observed pain of older adults. [10] Carnevali L., Montano N., Statello R., Coude G., Vacondio F., Rivara S., .. Sgoifo A. (2017). Social stress contagion in rats: Behavioural, autonomic and neuroendocrine correlates. [11] Carnevali L., Montano N., Tobaldini E., Thayer J. F., & Sgoifo A. (2020). The contagion of social defeat stress: Insights from rodent studies. [12] Carrillo M., Migliorati F., Bruls R., Han Y., Heinemans M., Pruis I., .. Keysers C. (2015). Repeated witnessing of conspecifics in pain: Effects on emotional contagion. [13] Chen Q., Panksepp J. B., & Lahvis G. P. (2009). Empathy is moderated by genetic background in mice. [14] Choi, J.-S., & Brown, T. H. (2003). Central amygdala lesions block ultrasonic vocalization and freezing as conditional but not unconditional responses. [15] Christov-Moore, L., & Iacoboni, M. (2019). Sex differences in somatomotor representations of others' pain: A permutation-based analysis. [16] Chun E. K., Donovan M., Liu Y., & Wang Z. (2022). Behavioral, neurochemical, and neuroimmune changes associated with social buffering and stress contagion. [17] Concina G., Renna A., Grosso A., & Sacchetti B. (2019). The auditory cortex and the emotional valence of sounds. [18] Corridi P., Chiarotti F., Bigi S., & Alleva E. (1993). Familiarity with conspecific odor and isolation-induced aggressive behavior in male mice (Mus domesticus). [19] Damon F., Mezrai N., Magnier L., Leleu A., Durand K., & Schaal B. (2021). Olfaction in the multisensory processing of faces: A narrative review of the influence of human body odors. [20] Davis, M. H. (1980). A multidimensional approach to individual differences in empathy. JASA Catalog of Selected Documents in Psychology, 10, 85. [21] Debiec, J., & Sullivan, R. M. (2014). Intergenerational transmission of emotional trauma through amygdala- dependent mother-to-infant transfer of specific fear. [22] Dimitroff S. J., Kardan O., Necka E. A., Decety J., Berman M. G., & Norman G. J. (2017). Physiological dynamics of stress contagion. [23] Dou H., Lei Y., Pan Y., Li H., & Astikainen P. (2023). Impact of observational and direct learning on fear conditioning generalization in humans. [24] Durand K., Schaal B., Goubet N., Lewkowicz D. J., & Baudouin J.-Y. (2020). Does any mother's body odor stimulate interest in mother's face in 4-month-old infants? [25] Eisenberg, N. (2000). Emotion, regulation, and moral development. [26] Engert V., Linz R., & Grant J. A. (2019). Embodied stress: The physiological resonance of psychosocial stress. [27] Engert V., Plessow F., Miller R., Kirschbaum C., & Singer T. (2014). Cortisol increase in empathic stress is modulated by emotional closeness and observation modality. [28] Erkens V. A., Nater U. M., Hennig J., & Hausser J. A. (2019). Social identification and contagious stress reactions. [29] Fallon N., Roberts C., & Stancak A. (2020). Shared and distinct functional networks for empathy and pain processing: A systematic review and meta-analysis of fMRI studies. [30] Feldman, R. (2007). Parent-infant synchrony and the construction of shared timing: Physiological precursors, developmental outcomes, and risk conditions. [31] Finnell J. E., Muniz B. L., Padi A. R., Lombard C. M., Moffitt C. M., Wood C. S., Wilson L. B., Reagan L. P., Wilson M. A., & Wood S. K. (2018). Essential role of ovarian hormones in susceptibility to the consequences of witnessing social defeat in female rats. [32] Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. [33] Gilpin N. W., Herman M. A., & Roberto M. (2015). The central amygdala as an integrative hub for anxiety and alcohol use disorders. [34] Gottfried J. A., Deichmann R., Winston J. S., & Dolan R. J. (2002). Functional heterogeneity in human olfactory cortex: An event-related functional magnetic resonance imaging study. [35] Gottfried, J. A., & Dolan, R. J. (2003). The nose smells what the eye sees: Crossmodal visual facilitation of human olfactory perception. [36] Greer P. L., Bear D. M., Lassance J.-M., Bloom M. L., Tsukahara T., Pashkovski S. L., .. Datta S. R. (2016). A family of non-GPCR chemosensors defines an alternative logic for mammalian olfaction. [37] Guzman Y. F., Tronson N. C., Guedea A., Huh K. H., Gao C., & Radulovic J. (2009). Social modeling of conditioned fear in mice by non-fearful conspecifics. [38] Habib K. E., Gold P. W., & Chrousos G. P. (2001). Neuroendocrinology of stress. [39] Hernandez-Lallement J., Gomez-Sotres P., & Carrillo M. (2022). Towards a unified theory of emotional contagion in rodents: A meta-analysis. [40] Hess, U., & Blairy, S. (2001). Facial mimicry and emotional contagion to dynamic emotional facial expressions and their influence on decoding accuracy.International Journal of Psychophysiology, 40(2), 129-141. [41] Inagaki H., Kiyokawa Y., Tamogami S., Watanabe H., Takeuchi Y., & Mori Y. (2014). Identification of a pheromone that increases anxiety in rats. [42] Iniguez S. D., Flores-Ramirez F. J., Riggs L. M., Alipio J. B., Garcia-Carachure I., Hernandez M. A., .. Castillo S. A. (2018). Vicarious social defeat stress induces depression- related outcomes in female mice. [43] Jackson P. L., Meltzoff A. N., & Decety J. (2005). How do we perceive the pain of others? A window into the neural processes involved in empathy. [44] Jeon D., Kim S., Chetana M., Jo D., Ruley H. E., Lin S.-Y., .. Shin H.-S. (2010). Observational fear learning involves affective pain system and Cav1.2 Ca2+ channels in ACC. [45] Jessen, S. (2020). Maternal odor reduces the neural response to fearful faces in human infants. [46] Jin J., Zelano C., Gottfried J. A., & Mohanty A. (2015). Human amygdala represents the complete spectrum of subjective valence. [47] Jones, C. E., & Monfils, M.-H. (2016). Dominance status predicts social fear transmission in laboratory rats. [48] Kamiloglu R. G., Smeets M. A. M., de Groot, J. H. B., & Semin G. R. (2018). Fear odor facilitates the detection of fear expressions over other negative expressions. [49] Keum, S., & Shin, H.-S. (2019). Neural basis of observational fear learning: A potential model of affective empathy. [50] Kim E. J., Kim E. S., Covey E., & Kim J. J. (2010). Social transmission of fear in rats: The role of 22-kHz ultrasonic distress vocalization. [51] Kiyokawa Y., Kawai K., & Takeuchi Y. (2018). The benefits of social buffering are maintained regardless of the stress level of the subject rat and enhanced by more conspecifics. [52] Kiyokawa Y., Kikusui T., Takeuchi Y., & Mori Y. (2004). Alarm pheromones with different functions are released from different regions of the body surface of male rats. [53] Kiyokawa Y., Kikusui T., Takeuchi Y., & Mori Y. (2005). Mapping the neural circuit activated by alarm pheromone perception by c-Fos immunohistochemistry. [54] Kiyokawa Y., Kodama Y., Kubota T., Takeuchi Y., & Mori Y. (2013). Alarm pheromone is detected by the vomeronasal organ in male rats. [55] Kiyokawa Y., Takeuchi Y., Nishihara M., & Mori Y. (2009). Main olfactory system mediates social buffering of conditioned fear responses in male rats. [56] Knapska E., Nikolaev E., Boguszewski P., Walasek G., Blaszczyk J., Kaczmarek L., & Werka T. (2006). Between-subject transfer of emotional information evokes specific pattern of amygdala activation. [57] Knapska E., Radwanska K., Werka T., & Kaczmarek L. (2007). Functional internal complexity of amygdala: Focus on gene activity mapping after behavioral training and drugs of abuse. [58] Kong, M. S., & Zweifel, L. S. (2021). Central amygdala circuits in valence and salience processing. [59] Lamm C., Batson C. D., & Decety J. (2007). The neural substrate of human empathy: Effects of perspective-taking and cognitive appraisal. [60] Lamm C., Decety J., & Singer T. (2011). Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. [61] Lamm C., Meltzoff A. N., & Decety J. (2010). How do we empathize with someone who is not like us? A functional magnetic resonance imaging study. [62] Langford D. J., Crager S. E., Shehzad Z., Smith S. B., Sotocinal S. G., Levenstadt J. S., .. Mogil J. S. (2006). Social modulation of pain as evidence for empathy in mice. [63] Lassalle A., Zürcher N. R., Porro C. A., Benuzzi F., Hippolyte L., Lemonnier E., .. Hadjikhani N. (2019). Influence of anxiety and alexithymia on brain activations associated with the perception of others' pain in autism. [64] Laukka P., Linnman C., Åhs F., Pissiota A., Frans Ö., Faria V., .. Furmark T. (2008). In a nervous voice: Acoustic analysis and perception of anxiety in social phobics' speech. [65] Lee I. C., Yu T.-H., Liu W.-H., & Hsu K.-S. (2021). Social transmission and buffering of hippocampal metaplasticity after stress in mice. [66] Lidhar N. K., Insel N., Dong J. Y., & Takehara-Nishiuchi K. (2017). Observational fear learning in degus is correlated with temporal vocalization patterns. [67] Mackay-Sim, A., & Laing, D. G. (1981). The sources of odors from stressed rats. [68] Markovic J., Anderson A. K., & Todd R. M. (2014). Tuning to the significant: Neural and genetic processes underlying affective enhancement of visual perception and memory.Behavioural brain research, 259, 229-241. [69] Nakashima S. F., Ukezono M., Nishida H., Sudo R., & Takano Y. (2015). Receiving of emotional signal of pain from conspecifics in laboratory rats. [70] Olsson A., Nearing K. I., & Phelps E. A. (2007). Learning fears by observing others: The neural systems of social fear transmission. [71] Olsson, A., & Phelps, E. A. (2007). Social learning of fear. [72] Ouda L., Jilek M., & Syka J. (2016). Expression of c-Fos in rat auditory and limbic systems following 22-kHz calls. [73] Panksepp, J. B., & Lahvis, G. P. (2011). Rodent empathy and affective neuroscience. [74] Park J., Carrillo B., & Mendes W. B. (2021). Is vicarious stress functionally adaptive? Perspective-taking modulates the effects of vicarious stress on future firsthand stress. [75] Pärnamets P., Espinosa L., & Olsson A. (2020). Physiological synchrony predicts observational threat learning in humans. [76] Parsana A. J., Li N., & Brown T. H. (2012). Positive and negative ultrasonic social signals elicit opposing firing patterns in rat amygdala. [77] Pause, B. M. (2012). Processing of Body Odor Signals by the Human Brain. [78] Peen N. F., Duque-Wilckens N., & Trainor B. C. (2021). Convergent neuroendocrine mechanisms of social buffering and stress contagion. [79] Pereira A. G., Cruz A., Lima S. Q., & Moita M. A. (2012). Silence resulting from the cessation of movement signals danger. [80] Perez-Manrique, A., & Gomila, A. (2022). Emotional contagion in nonhuman animals: A review. [81] Pfeifer L. S., Heyers K., Ocklenburg S., & Wolf O. T. (2021). Stress research during the COVID-19 pandemic and beyond. [82] Pisansky M. T., Hanson L. R., Gottesman, II, & Gewirtz, J. C. (2017). Oxytocin enhances observational fear in mice. [83] Rabinak C. A., Angstadt M., Welsh R. C., Kenndy A. E., Lyubkin M., Martis B., & Phan K. L. (2011). Altered amygdala resting-state functional connectivity in post-traumatic stress disorder. [84] Rudrauf D., David O., Lachaux J.-P., Kovach C. K., Martinerie J., Renault B., & Damasio A. (2008). Rapid interactions between the ventral visual stream and emotion-related structures rely on a two-pathway architecture. [85] Saarela M. V., Hlushchuk Y., Williams A. C. d. C., Schurmann M., Kalso E., & Hari R. (2006). The compassionate brain: Humans detect intensity of pain from another's face. [86] Sadananda M., Wohr M., & Schwarting R. K. (2008). Playback of 22-kHz and 50-kHz ultrasonic vocalizations induces differential c-fos expression in rat brain. [87] Seo D., Olman C. A., Haut K. M., Sinha R., MacDonald A. W., 3rd, & Patrick, C. J. (2014). Neural correlates of preparatory and regulatory control over positive and negative emotion. [88] Singer T., Seymour B., O'Doherty J., Kaube H., Dolan R. J., & Frith C. D. (2004). Empathy for pain involves the affective but not sensory components of pain. [89] Sliwa J., Mallet M., Christiaens M., & Takahashi D. Y. (2022). Neural basis of multi-sensory communication in primates. [90] Smith C. G., Jones E. J. H., Charman T., Clackson K., Mirza F. U., & Wass S. V. (2021). Vocalization and physiological hyperarousal in infant-caregiver dyads where the caregiver has elevated anxiety. [91] Smith M. L., Walcott A. T., Heinricher M. M., & Ryabinin A. E. (2017). Anterior cingulate cortex contributes to alcohol withdrawal-induced and socially transferred hyperalgesia. [92] Spampanato J., Polepalli J., & Sah P. (2011). Interneurons in the basolateral amygdala. [93] Sterley T. L., Baimoukhametova D., Füzesi T., Zurek A. A., Daviu N., Rasiah N. P., .. Bains J. S. (2018). Social transmission and buffering of synaptic changes after stress. [94] Stevenson, R. J. (2010). An initial evaluation of the functions of human olfaction. [95] Swain M., Routray A., & Kabisatpathy P. (2018). Databases, features and classifiers for speech emotion recognition: A review. [96] Tirindelli R., Dibattista M., Pifferi S., & Menini A. (2009). From pheromones to behavior. [97] Tsigos, C., & Chrousos, G. P. (2002). Hypothalamic- pituitary-adrenal axis, neuroendocrine factors and stress. [J] [98] Ueda, H., & Neyama, H. (2017). LPA1 receptor involvement in fibromyalgia-like pain induced by intermittent psychological stress, empathy. [99] Ueno H., Suemitsu S., Murakami S., Kitamura N., Wani K., Takahashi Y., .. Ishihara T. (2020). Conformity-like behaviour in mice observing the freezing of other mice: A model of empathy. [100] Vermeulen, N., & Mermillod, M. (2010). Fast emotional embodiment can modulate sensory exposure in perceivers. [101] Vesker M., Bahn D., Kauschke C., Tschense M., Dege F., & Schwarzer G. (2018). Auditory emotion word primes influence emotional face categorization in children and adults, but not vice versa. [102] von Dawans B., Strojny J., & Domes G. (2021). The effects of acute stress and stress hormones on social cognition and behavior: Current state of research and future directions. [103] Walcott A. T., Smith M. L., Loftis J. M., & Ryabinin A. E. (2018). Social transfer of alcohol withdrawal-induced hyperalgesia in female prairie voles. [104] Wang H., Chen J., Xu X., Sun W.-J., Chen X., Zhao F., .. Zhang Z. (2019). Direct auditory cortical input to the lateral periaqueductal gray controls sound-driven defensive behavior. [105] Warren B. L., Mazei-Robison M. S., Robison A. J., & Iniguez S. D. (2020). Can I get a witness? Using vicarious defeat stress to study mood-related illnesses in traditionally understudied populations. [106] Warren B. L., Vialou V. F., Iñiguez S. D., Alcantara L. F., Wright K. N., Feng J., .. Bolanos-Guzman C. A. (2013). Neurobiological sequelae of witnessing stressful events in adult mice. [107] Waters S. F., West T. V., Karnilowicz H. R., & Mendes W. B. (2017). Affect contagion between mothers and infants: Examining valence and touch.Journal of Experimental Psychology: General, 146(7), 1043-1051. [108] White, C. N., & Buchanan, T. W. (2016). Empathy for the stressed. [109] Wöhr, M. (2018). Ultrasonic communication in rats: Appetitive 50-kHz ultrasonic vocalizations as social contact calls. [110] Wöhr, M., & Schwarting, R. K. (2007). Ultrasonic communication in rats: can playback of 50-kHz calls induce approach behavior?. PloS one, 2(12), e1365. [111] Wöhr, M., & Schwarting, R. K. W. (2008). Ultrasonic calling during fear conditioning in the rat: No evidence for an audience effect. [112] Xiao Z., Martinez E., Kulkarni P. M., Zhang Q., Hou Q., Rosenberg D., .. Chen Z. S. (2019). Cortical pain processing in the rat anterior cingulate cortex and primary somatosensory cortex. [113] Zaki J., Wager T. D., Singer T., Keysers C., & Gazzola V. (2016). The anatomy of suffering: Understanding the relationship between nociceptive and empathic pain. [114] Zhang M.-M., Geng A.-Q., Chen K., Wang J., Wang P., Qiu X.-T., .. Chen T. (2022). Glutamatergic synapses from the insular cortex to the basolateral amygdala encode observational pain. |
[1] | ZHAO Hui, ZHANG Yaran, XIAO Yuqin, ZHANG Zhuo, YANG Bo. The “cold and hot” amygdala: An important nucleus relative to aggression [J]. Advances in Psychological Science, 2023, 31(7): 1206-1277. |
[2] | WAN Bicheng, YANG Zheng, LI Hongting, MA Shu. The vivid tactile experience from vision and auditory: Clues from multisensory channel integration [J]. Advances in Psychological Science, 2022, 30(3): 580-590. |
[3] | ZHANG Linlin, WEI Kunlin, LI Jing. Interpersonal motor synchronization in children [J]. Advances in Psychological Science, 2022, 30(3): 623-634. |
[4] | FENG Pan, YANG Ke, FENG Tingyong. Cognitive neural mechanisms underlying the impact of oxytocin on fear acquisition and extinction [J]. Advances in Psychological Science, 2022, 30(2): 365-374. |
[5] | WANG Runzhou, BI Hongyan. Auditory temporal processing deficits in developmental dyslexia [J]. Advances in Psychological Science, 2021, 29(7): 1231-1238. |
[6] | CHENG Xiaojun, LIU Meihuan, PAN Yafeng, LI Hong. The teaching and learning brains: Interpersonal neuroscience in educational research [J]. Advances in Psychological Science, 2021, 29(11): 1993-2001. |
[7] | ZHANG Huihui, ZHANG Liang. The effects of early life stress on emotion regulation and the underlying mechanisms [J]. Advances in Psychological Science, 2018, 26(7): 1193-1203. |
[8] | LI Xuejuan, ZHANG Lingcong, LI Hong. The neurobiological system for the influence of emotional arousal on memory consolidation [J]. Advances in Psychological Science, 2017, 25(10): 1749-1757. |
[9] | WANG Lili; JIA Lina; LUO Yuejia. Automatic processing of emotions: Evidence and controversy [J]. Advances in Psychological Science, 2016, 24(8): 1185-1197. |
[10] | SU Lin; YANG Zhou; JACKSON Todd ; CHEN Hong; HUANG Cheng-zhi. The formulation of fear of pain and its influence on pain perception [J]. Advances in Psychological Science, 2016, 24(8): 1228-1236. |
[11] | HUANG Yamei; ZHOU Renlai; WU Mengying. Neurophysiological Mechanism of Neuroticism [J]. Advances in Psychological Science, 2015, 23(4): 602-613. |
[12] | ZHANG Yu;LUO Yu;ZHAO Shouying;CHEN Wei;LI Hong. Attentional Bias towards Threat: Facilitated Attentional Orienting or Impaired Attentional Disengagement? [J]. Advances in Psychological Science, 2014, 22(7): 1129-1138. |
[13] | DU Yi;WU Xihong;LI Liang. Emotional Processing in the Amygdala: Integration of Automatic Process and Attentional Modulation [J]. Advances in Psychological Science, 2013, 21(6): 1020-1027. |
[14] | MA Xie;BA Xuejun;TAO Yun. Music and Emotional Induced Model [J]. Advances in Psychological Science, 2013, 21(4): 643-652. |
[15] | DU Lei. Brain Mechanisms of Threatening Information Detection [J]. Advances in Psychological Science, 2013, 21(2): 243-251. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||